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Abstract: Deep neural networks（DNN）have achieved good results in the application of Named 
Entity Recognition (NER), but most of the DNN methods are based on large numbers of annotated 
data. Electronic Medical Record (EMR) belongs to text data of the specific professional field. The 
annotation of this kind of data needs experts with strong knowledge of the medical field and time 
labeling. To tackle the problems of professional medical areas, large data volume, and annotation 
difficulties of EMR, we propose a new method based on multi-standard active learning to recognize 
entities in EMR. Our approach uses three criteria: the number of labeled data, the cost of sentence 
annotation, and the balance of data sampling to determine the choice of active learning strategy. We 
put forward a more suitable way of uncertainty calculation and measurement rule of sentence 
annotation for NER’s neural network model. Also, we use incremental training to speed up the 
iterative training in the process of active learning. Finally, the named entity experiment of breast 
clinical EMRs shows that it can achieve the same accuracy of NER results under the premise of 
obtaining the same sample’s quality. Compared with the traditional supervised learning method of 
randomly selecting labeled data, the method proposed in this paper reduces the amount of data that 
needs to be labeled by 66.67%. Besides, an improved TF-IDF method based on Word2Vec is also 
proposed to vectorize the text by considering the word frequency. 

Keywords: electronic medical records; multi-standard active learning; uncertainty; labeled costs; 
strategy choice 

 

1. Introduction  

Electronic medical record (EMR) records patients’ critical clinical data during the examination 
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and treatment of diseases. It also contains a large amount of diagnosis and treatment information. By 
mining and using this information, EMR plays an essential role in developing the smart medical 
field [1–2]. Most EMRs are stored in the form of medical text entered in natural language. In this 
way, there are two questions to be considered: 1) It is difficult to directly obtain standardized and 
valuable data from these messy, redundant, and highly complex text data; 2) it is impossible to 
directly apply artificial-intelligence algorithms to further mine and analyze these data. Therefore, 
how to build the structure of EMR has become a hot issue in the era of artificial intelligence. Named 
entity recognition (NER) is the first step to design the structure of EMRs. However, NER’s research 
in the medical field is still a big challenge due to the randomness, variability, and specialization of 
medical text data [3]. 

In recent years, deep neural networks (DNNs) have achieved good results in NER’s application, 
but most deep learning methods are trained based on large numbers of annotated data [4]. Achieving 
excellent performance requires a large amount of labeled data for model training [4]. EMR belongs 
to the text data of the specific professional field. Thus, it requires experts with strong medical 
professional knowledge to annotate large amounts of training corpus, which costs a lot of workforce 
and time. In order to solve this problem, active learning has been proven as an effective tool for NER 
in clinical texts [5]. Controlling the process of labeling instances can reduce the workload of labeling 
medical records. 

The core technology of active learning is strategy selection. Recent studies mainly focus on 
pool-based selection strategies, most of which use uncertainty selection strategies [6–8]. There are two 
uncertainty selection strategies: the one based on confidence and that based on information entropy [7]. 
The method based on confidence is simple to calculate, but it only considers the category with the 
highest posterior probability and ignores other categories’ possibilities. So the effect is not significant 
in multi-class classification problems. In contrast, the approach based on information entropy 
considers the unlabeled samples’ possibilities belonging to each category, so it is more suitable for 
multi-class classification problems. However, the computational complexity becomes higher because 
it requires plenty of logarithmic operations. Although the uncertainty selection strategy is the best 
strategy to reduce the labeling cost [9], literature [8] shows that when evaluating active learning and 
analyzing the algorithm, it should also consider the cost of manual labeling. The goal of active 
learning is to reduce the workforce of labeling data. The uncertainty-based method tries to solve this 
problem by minimizing the amount of required training data under the assumption that the cost of 
manual annotations is fixed. But in actual application scenarios, the workload of manual annotators 
is more complicated. For example, the cost varies depending on the entity type, the error type, the 
medical record sentence’s length, and other factors. Therefore, the literature [8] designed a selection 
strategy considering the labor cost of labeling and applied it to the EMR. However, [8] does not fully 
consider the sparsity of medical short text data where the data distribution is unbalanced, which 
means it still has room for improvement in the entity recognition application from the medical text.  

Several studies have recently shown that imbalanced data can easily undermine active learning 
performance [10–14]. In response to this problem, the literature [15–17] proposed solutions based on 
support vector machines to improve active learning efficiency to a certain extent. But these solutions 
take longer to run due to the high time complexity of support vector machine training. With the 
development of unsupervised learning, clustering technology brings hope to solve this problem [18]. 
Especially, the K-means clustering algorithm based on partition has become one of the most 
researched and applied clustering algorithms because of its simple, fast, and easy to expand 
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characteristics [18]. However, the traditional K-means clustering algorithm only considers the 
attribute characteristics of the sample, and it has certain blindness when ignoring the existence of 
priority information. 

In this paper, we propose an active learning method based on a multi-standard combination 
strategy to solve the entity recognition task of EMR. The approach comprehensively considers three 
active-learning indicators: 1) Clustering is used to balance the sample data (i.e., data sparsity); 2) a 
new uncertainty selection strategy based on Gini impurity is proposed to reduce the amount of 
labeled data; 3) a combination strategy based on the relationship between uncertainty and annotation 
cost is designed by considering the practical application scenarios. Then by calculating the combined 
strategy score and selecting the instance with the higher score, the data labeling for training the entity 
recognition model is completed. The uncertainty calculation and measurement rule of sentence 
annotation for the NER’s neural network model is proposed for entity recognition tasks. At present, 
most of the selection strategies of medical text data are single-standard active-learning methods [8,19], 
not based on multi-standard active learning that is widely used in image classification. As far as we 
know, we are the first to propose a medical text data selection strategy based on multi-standard 
active learning. 

2. Related work 

Our work involves the following research directions. 
Data sparsity. For medical EMRs, an undeniable problem is the imbalance of data distribution 

[10–14]. In order to solve the impact of this problem on the active learning model, KSVM active 
learning algorithm [15], improved weighted SVM model [16], the active learning algorithm based on 
SVM hyperplane position correction [17] were proposed. These measures have improved the active 
learning efficiency to a certain extent. However, they take a long time to run because the time 
complexity of SVM training is high. Therefore, in literature [20], a clustering method is proposed to 
select samples to be annotated in the study of the active learning selection strategy. Specifically, the 
samples are first clustered into N categories, then the samples in each category are ranked through 
different methods, and the samples with the highest scores in each category are sorted to obtain the 
top M categories. The disadvantage of this method is that in some categories, there may be no 
samples selected, and this method may easily ignore the sparsity of sample distribution. In literature 
[21], a short text classification method based on clustering is also proposed, which includes K-means, 
singular value decomposition and affine propagation clustering algorithms, etc., among which 
K-means is the most frequently studied clustering algorithm. However, when solving the problem of 
imbalanced data distribution, the certain blindness of the traditional K-means clustering algorithm is 
that it only considers the attribute characteristics of the sample itself and ignores the existence of 
prior information. 

Entity recognition. Since MUC (Message Understanding Conference) proposed the named 
entity recognition task [22], many methods have been proposed. Initially, entity recognition based on 
rules and dictionaries is a mainstream method [23–26]. However, it relies too much on manual 
dictionaries and regulations, which consumes many labor costs, and cannot adapt to new vocabulary 
emerging in the medical field. Then more methods based on machine learning are proposed [27–31], 
such as Bayesian Classification Model [31], Support Vector Machine (SVM) [32], Hidden Markov 
Model (HMM) [33], Maximum Entropy Markov Models (MEMM) [34], Conditional Random Fields 
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(CRF) [35] and many other models. But machine-learning methods still require researchers to extract 
effective features and formulate feature templates manually. In recent years, the rapid development 
of deep learning has attracted attention in entity recognition and the method has been widely used 
[36–38]. However, under typical training procedures, the advantages of deep learning will not be 
obvious when processing small data sets. Therefore, active learning has been increasingly used to 
reduce the amount of labeled data. 

Table 1. Active learning for name entity recognition in electronic medical records. 

Reference Method Selection criterion Data 

Information 

and  

density 

Sparsity 

and 

diversity 

Cost 

Mahnoosh et 

al.[9]  

Domain Knowledge 

Informatics (DKI).  
√   

i2b2/VA 2010[54], 

ShARe/CLEF 2013[55] 

Mahnoosh et 

al.[51] 

Least Confidence (LC), 

Information Density (IDen). 
√   

i2b2/VA2010,ShARe/CLEF 

2013 

Mahnoosh et 

al.[20]  

Clustering And 

Representation Learning 

Sampling(CARLS).  

 √  
i2b2/VA2010,ShARe/CLEF 

2013 

Wang et 

al.[52] 

Combination of selection 

strategies based on 

Uncertainty (information 

Entropy) and Diversity. 

√ √  Private data 

Cheng et 

al.[53] 

cost-sensitive active 

learning (CostAL). 
√  √ Private data 

Active learning. The core goal of active learning is to establish the criteria for selecting sample 
data that are most useful for the model [39–43]. Over the past few decades and so far, this problem 
has been the most concerned active-learning research point. Early researches included the 
member-based query method [21] and the stream-based sampling method [44]. The former ignores 
the actual distribution of the examples, and the latter’s research lacks universality. Therefore, various 
pool-based sampling methods were subsequently proposed, including uncertainty-based sampling 
[45–47], version space-reduced sampling [48], and error-reduced sampling [49]. Although [50] can 
reduce version space, it may also select wild points in the data. Also, [49] has high time complexity, 
narrow application, and low-cost performance. Therefore, the most widely used method is based on 
uncertainty sampling. Similarly, the literature [9] shows a variety of selection strategies, and the 
experimental results also show that the performance of using uncertainty-based selection strategies to 
select examples with high information content is relatively the best. There are two major 
uncertainty-based selection strategies, which are respectively based on the least confidence(LC) and 
information entropy. The approach based on LC only considers the category with the highest 
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posterior probability and ignores other categories’ possibilities. In contrast, the method based on 
information entropy considers the unlabeled samples’ possibilities belonging to each class, so it is 
more applicable in multi-class problems. However, it requires many logarithmic operations, so that 
the computational complexity is very high. 

In recent years, active learning selection strategies have been increasingly used for entity 
recognition in electronic medical records[9,20,51–53]. In [9], by comparing the performance of 
different AL query strategies for NER task in electronic medical records, they proposed a new active 
learning query strategy for information extraction, called Domain Knowledge Informativeness (DKI). 
Mahnoosh et al. [51] used the Least Confidence and Information Density as the active learning 
selection strategies while discusses the various evaluation metrics for active learning, taking into 
account the number of sentences, words and concepts. In Mahnoosh’s another paper [20], they 
presented a novel active learning query strategy that takes into account sparsity and density using 
clustering. Given uncertainty and diversity, Wang et al. [52] proposed an active learning combination 
strategy for the NER in Chinese electronic medical records. However, one of the problems with these 
precious work is that they did not consider the time cost of labeling the instances. When there is a 
longer sentence in actual application scenarios, the information selected based on the uncertainty 
selection strategy requires a longer labeling time. Therefore, some active-learning methods based on 
cost sensitivity are studied to save the annotation cost [49,50,53]. These studies consider the cost of 
labeling data, but to a certain extent, the amount of information of the selected data is not necessarily 
important. We provide a table of comparison of previous works done in active learning and entity 
recognition for electronic medical records. The details are shown in Table 1. 

3. Proposed approach 

Different active learning strategies have different advantages in identifying which instance to 
query the given current classifier. This section proposes a method that combines different 
active-learning strategies’ advantages in a balanced way. The proposed active learning method has 
four key components: an uncertainty measure, a cost-based measure, a data sparseness-based 
measure, and a combination strategy.  

We denote 𝑈 as the unlabeled dataset with 𝑛  instances, 

U x                                    (1) 

where 𝑥  is the 𝑗-th instance. In this paper, we perform batch-mode active learning. At each 
iteration, a small batch of instances with size 𝑏 will be selected from 𝑈 to query their labels. 𝑄 is 
defined as a small batch of instances: 

Q x                                    (2) 

In the following subsections, we will first introduce the batch-mode multi-standard active 
learning framework for NER of EMR, then propose the criterion for selecting instances and 
summarize the algorithm’s main steps at last. 

3.1. The framework 

Our method focuses on batch-mode Multi-Standard Active Learning(MSAL). Figure 1 shows 
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the framework of the NER process based on MSAL. The way of MSAL is trained to recognize 
entities in EMR by iteratively selecting the training data and gradually improving the model 
performance to obtain strong generalization ability in a smaller data set. First, the unlabeled dataset 
is clustered and then the model is used to predict the clustered texts. According to the prediction 
results, uncertainty-based and cost-based selection strategies are used in each category to select the 
texts that meet the needs for annotation. The selected instance is then added to the labeled data set 
for the next training until the specified precision or the data amount is reached. 

 

Figure 1. The framework of the Multi-Standard Active Learning(MSAL) model for 
named entity recognition. 

3.2. The active selection criterion 

The critical problem of improving the accuracy of entity recognition in medical EMR is to 
consider the reliability, the annotation cost of selecting instances, and the sparsity of medical short 
text data. On the one hand, the uncertainty measure is the best way to reduce the cost of annotation. 
Thus, adding a cost-based query strategy can further improve the active learning performance in 
EMR entity recognition. On the other hand, clustering can ensure data sampling balance for the 
sparsity of medical short text data. Therefore, we propose three criteria to estimate the usefulness of 
an instance on these two aspects. They are named clustering, uncertainty, and labeled cost, 
respectively. The workflow of criteria calculating is summarized in Figure 2. 

3.2.1. Clustering 

In order to ensure the instance distribution balance, it is necessary to evaluate the instances in 
the clustering category. In this paper, the improved TF-IDF [56] method based on Word2Vec [56] is 
used to vectorize the text, and then the k-means clustering algorithm is used to cluster the samples. 

Although the word vectors obtained through Word2Vec retain the semantic information well, 
they may fail to express the importance of words to the text. While the TF-IDF algorithm only 
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considers the word frequency of text features in the corpus and ignores the context information [56]. 
Therefore, an improved vector calculation method is proposed to construct text vectors based on 
word vectors and weights: 

vec X ∑ emb x ∗ tf_idf∈                         (3) 

where 𝑒𝑚𝑏 𝑥  is an n-dimensional word vector generated by Word2Vec, * indicates dot product, 
𝑡𝑓 is the frequency of the word in the sentence, 𝑖𝑑𝑓 is the frequency of reverse documents, the 
dimension of 𝑡𝑓_𝑖𝑑𝑓 is n * m, which represents the weight matrix of each word in each sentence. 
Therefore, vec X  represents the importance of the non-sparse n-dimensional word vector in m text 
sentences. 

Then the k-means algorithm is used to cluster the generated text vectors. First, K initial cluster 
centers are selected, then the Euclidean distance between each text vector and the cluster center is 
used as the similarity metric: 

dis vec Xi ,Ck  ∑ vec Xi p-Ckp
2
 n

p 1                           (4) 

where 𝑋  represents the 𝑖-th instance in the sample set, 𝐶  represents the 𝑘-th cluster center, 𝑝 is 
the word vector of the text vector, 𝑛 is the word dimension of the text vector. 

Accordingly, each sample is divided into the nearest cluster. After the division is completed, the 
new cluster center is recalculated using the mean value. The processes of dividing the samples and 
calculating the new cluster center execute cyclically until the clustering criterion function 𝐸 
converge: 

E ∑ ∑ ‖V C ‖∈ℝ                               (5) 

where 𝑉 represents a text vector in all sample sets and 𝐶  is one of the 𝑘 clustering centers. 

3.2.2. Uncertainty 

The least confidence (LC), which is often used as the uncertainty measurement method, selects 
the instances with the most uncertain prediction results, i.e., the instances with the smallest 
maximum posterior probability. But LC only considers the category with the highest posterior 
probability and ignores the possibility of other categories. In information theory, information entropy 
is typically used to describe the uncertainty of information. Therefore, in strategy selection, entropy 
is also commonly used as a criterion to measure the uncertainty of an instance: 

x∗ argmax ,…,  ∑ P y x logP y x                  (6) 

where 𝑃 𝑦 𝑥  represents the possibility that 𝑥  belongs to the class 𝑗. The entropy-based method 

considers the possibility that an instance belongs to each class, so it is more applicable in multi-class 
situations. However, the entropy-based method involves a large number of logarithmic operations. 
When the amount of data is large, the calculation complexity is extremely high. Inspired by Gini 
impurity, which is like information entropy that can express the degree of data confusion, this paper 
uses Gini impurity to measure the instance’s uncertainty. It can solve a large number of logarithmic 
operations and reduce the high computational complexity in information entropy. 

Gini impurity refers to the expected error rate of the specific result in the collection. It can be 
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randomly applied to a data item, which is the simple probability that a random event becomes its 
opposite. Given a data set D, the impurity of it can be measured by the Gini index. The Gini index 
reflects the probability of inconsistency in the class labels of the two samples randomly selected 
from data set D. The smaller the probability of inconsistency is, the purer the set is. The uncertainty 
of one instance is defined as: 

S ∑ ∑ p| | p = 1 ∑ p    | |                  (7) 

where K represents the number of classes, 𝑝  represents the probability that the instance belongs to 
the 𝑘-th class, and 𝑝  represents the probability when the instance belongs to other classes except 
the 𝑘-th class. It can be seen from the above formula that the Gini index only needs to accumulate 
the probability that the instances belong to each class, which greatly reduces the amount of 
calculation. It is similar to entropy. When the instances are distributed in different classes with the 
same probability, the Gini index’s value is the largest. When all instances belong to the same class, 
the Gini index is 0, which means the impurity is the lowest. 

3.2.3. Labeled cost 

According to [57], the concept of Annotation Rate (AR) is proposed for describing the actual 
annotation cost: 

  AR          

     
                (8) 

In the formula of AR, it is assumed that the annotation time of each sample is the same. 
However, in actual scenarios, each sample has a different annotation time which depends on the 
length of the sentence. Each expert has a certain reading speed. For a longer sentence, they need 
more time to annotate it. Therefore, when we describe the actual annotation cost of samples, we 
consider using the length of the sentence to represent it. 

First, assuming there is reading cost, the average reading time for the selected sentence is Cr. 
Then, the prediction result of the selected sentence should be modified. If a particular value is 

labeled 𝑦 , the probability of correcting the word can be approximate 1-𝑃 , . Simultaneously, the 

time of the expert’s revision is counted as the average word modification time Cw. Therefore, the 
labeling cost of each sentence can be defined as: 

Cost C ∗ len Sentence C ∗ ∑ 1 P ,                    (9) 

where 𝑝 ,  is the probability of the value label 𝑦  with the 𝑖-th word obtained by softmax. 

3.2.4. Combination strategy 

As mentioned above, uncertainty is the best strategy to reduce the cost of annotation. But in the 
actual application scenario, it undoubtedly pays a high cost to obtain the most informative sample. 
We consider the selection strategy based on uncertainty and labeling cost to select the most suitable 
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model labeling instance. Therefore, the selected instance can be applied to the actual scene and 
improve classification performance. 

It can be easily found that the active learning algorithm needs a longer labeling time to select 
more informative instances. If we want to acquire a higher accuracy rate, we need to set a higher 
weight ratio to the selection strategy based on uncertainty; if we’re going to reduce the time for 
labeling instances, we have to lose the accuracy. When we use the selection strategy to select 
instances actively, we try our best to reduce the labeling time and ensure accuracy. Formally, we 
employ a trade-off parameter to balance the two criteria as the iterations progress: 

score x S /βCost                         (10) 

where 𝛽 is a trade-off parameter. Finally, we select the batch of instances with the highest score (ꞏ) 
value to query their labels and further optimize the classifier. 

3.3. The Multi-Standard Active Learning (MSAL) algorithm 

The main steps of the proposed MSAL algorithm are summarized in Algorithm 1. 

Algorithm 1. The MSAL algorithm. 

Algorithm 1: The MSAL algorithm 
Input: 
L:The labeled set 
U: The unlabeled set with 𝑛  instances 
T: Train set 
C: Cluster category 
Q: The selected set from the unlabeled set with b instances 
Output: 
M: Entity recognition model 
1: Repeat 
2:    Train the model M with L 
3:    Predict U with the model M 
4:    for c in C: 
5:        Select a batch of instances Q from U with largest score 
6:        annotate the instances for Q 
7:        T=random (L)+ Q 
8:        L=L+Q  

9:        U=U-Q 
10: until query budget or expected performance reached 
11: return selected model M 

In the above algorithm, the initial labeled data set is selected by random extraction. 
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Figure 2. The criteria for active selection. 

4. Experiments 

In order to evaluate the entity recognition model based on active learning, the accuracy rate is 
selected as the evaluation standard of the experiment in this paper.  Accuracy is widely used in 
information retrieval and statistical classification researches. In entity recognition, the calculation of 
this indicator is defined as follows: 

                     Accuracy
    

                   (11) 

where "intersection" refers to the number of intersections between the entities extracted by the model 
and the entities actually in the data set, and "entities extracted by the model" refers to the number of 
entities extracted by the model. 

4.1. Dataset 

The experimental data used in this paper are 4000 copies of EMRs with breast disease from a 
top-three hospital in Shanghai, China. The data scale and the numbers of entities are shown in Table 
2 and Table 3, respectively. 

Table 2. The statistics of experimental data scale. 

number of characters number of short 
sentences 

number of long 
sentences 

number of paragraphs 

7971556 606508 228477 32142 

In this experiment, 3200 copies of these medical records were used as training data, and 800 
copies were used as test data to analyze the model’s accuracy. Active learning is a process of increasing 
the training data set. The training set’s initial size was 35000 short sentences (about 300 medical 
records). It iterated by adding 17500 short sentences (approximately 150 medical records) per round. 
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4.2. Model selection 

It is the most common way to treat the NER task of character-level Chinese EMRs as a 
sequence annotation problem. Several commonly used neural network architectures for sequence 
annotation tasks are shown in Table 4. 

With continuous development of deep learning and NER, various improved structures have 
emerged, such as Bi-LSTM, Bi-GRU, Bi-RNN, etc., which learn contextual information from both 
forward and backward directions. CRF can automatically learn constraints from training data and 
improve the effectiveness of predicting labels. Therefore, it is more and more widely used in 
combination with models such as Bi-LSTM. Among them, the Bi-LSTM-CRF model is currently the 
most widely used NER model. 

Although the LSTM networks is the most popular type of neural networks in Name Entity 
Recognition, GRU can also solve the problems of long-term memory and back propagation gradient 
and can also achieve similar performance as LSTM. Compared with LSTM, GRU is easier to 
converge, because its neural unit structure is simpler than that of LSTM. Therefore, it is more suitable 
for active learning, which requires repeated iteration, and can effectively improve the training speed. 
For this reason, the Bi-GRU-CRF model is used as the training model for NER in this paper. 

Table 3. Numbers of experimental data entities. 

Name of entities  Number of entities 
Disease and diagnosis (DIS) 75,121 

Test (TES) 22,059 
Examine (EXA) 9589 
Operation (OPE) 17,931 
Medicine (MED) 36,034 

Anatomic site (ANA) 154,972 
Total number of entities 315,706 

Table 4. Neural network architecture for sequence labeling tasks. 

Name Description Reference 

RNN The disappearance of the gradient makes it impossible for 
long-time dependence. 

Nguyen et al. 
(2016) [58] 

LSTM 

The "forgotten gate" is introduced, which effectively solves the 
problem of gradient disappearance. It is currently the most 
widely used neural network, but it has too many parameters, 4 
times that of RNN, and there is a risk of over-fitting. 

Huang et al. 
(2015) [59] 

GRU 
The few parameters can effectively reduce the risk of 
over-fitting and accelerate the speed of model convergence 
while achieving similar effects to LSTM. 

Yang et al. (2016) 
[60] 
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4.3. Parameter Settings 

The experiment determined the optimal parameters through trial and error. The hyperparameter 
settings used in the experiment are shown in Table 5. 

4.4. Experimental results 

In this part, the impacts of samples selected at different levels of sampling granularity on the 
training of entity recognition models are firstly studied. Then the uncertainty selection strategy based 
on Gini impurity proposed in this article and the uncertainty selection strategy which is most 
commonly used are compared. In order to evaluate the impact of different indicators on the 
performance of multi-standard active learning methods, ablation experiments are implemented. 

Table 5. Experimental parameter settings. 

name value 

Word vector dimension 200 

batch size 3500 

Number of GRU units 300 

dropout 0.5 

Learning rate 0.01 

Number of iterations 50 

Number of cluster categories 10 

4.4.1. Comparative experiment of different sampling granularities 

This experiment studies the accuracy of the entity recognition model based on the Gini impurity 
selection strategy under three sampling granularities of short sentence-level, long sentence-level and 
paragraph-level, so as to select the sampling granularity that can make the model with the highest 
accuracy. The baseline method of this experiment is a random extraction method, which is compared 
with three methods respectively based on short sentence-level Gini impurity, long sentence-level 
Gini impurity, and paragraph-level Gini impurity. The comparison of the entity recognition accuracy 
based on the selection strategy of Gini impurity under three sampling granularities is shown in 
Figure 3. 

It can be seen from Figure 3 that the accuracy curve of the random sampling method is more 
tortuous. Because of the randomness of data selection, data that has a negative impact on the model 
may be added, which may compromise the accuracy of the model. All the other three levels have 
promoted the training of the model, but their effects are different. Although the sampling based on 
the paragraph level has a steady improvement effect on the accuracy of the model, the improvement 
rate is not as good as the other two.  Sampling based on short sentences quickly improves the 
performance of the model at first, but it is not as good as sampling based on long sentences in the 
later stage. The division of short sentences is more detailed and can eliminate useless texts more 
accurately. However, compared with long sentences, short sentences may break up a complete 
sentence and lose part of the context, making the model lose a certain amount of information and 
leading to poor effects in the later stage. Therefore, the experiments in this article are based on long 
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sequences, but the training data is converted into short sentences before calculation. 

 

Figure 3. The accuracy of the Gini impurity based on different sampling granularity. 

4.4.2. Study of the uncertainty 

This experiment compares the uncertainty selection strategy based on information entropy 
(ENTROPY), confidence(LC), Gini impurity (GINI) proposed in this paper, and random method 
(RANDOM). The comparison of the accuracy is shown in Figure 4. The complexities of two 
uncertainty selection strategies (ENTROPY) and (GINI) are plotted in Figure 5. 

 

Figure 4. The accuracy of the selection strategies based on uncertainty. 
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It can be seen from Figure 4 that when the same amount of training data increases in iterations, 
the accuracy of the Gini impurity is higher than that of information entropy and confidence. 
Meanwhile, the random selection strategy’s accuracy is not stable, decreasing with the increasing 
number of iterations. 

Figure 5 shows the aspect of algorithm complexity. The computational complexity of the 
uncertainty selection strategy based on Gini impurity is much lower than that of information entropy. 
We can find that with the number of data increases, the gap between the two complexities will 
become more and more obvious. 

 

Figure 5. The computational complexities of information entropy and GINI impurity. 

 

Figure 6. Model accuracies of different selection strategies. 
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4.4.3. Ablation experiment 

This section aims to evaluate the combination strategy’s performance based on the 
multi-standard proposed in this article. We conduct the ablation studies from three different aspects: 
(ⅰ) the effects on experimental results by adding cost or cluster selection strategies; (ⅱ) the impacts 
of labeling time by adding cost selection strategy; (ⅲ) the influence of experimental accuracy with 
β in combination strategy. 

1)  The impact of different selection strategies Table 6 and Figure 6 show the accuracies of 
varying selection strategies. Among them, GINI represents Gini impurity, CLUST indicates the 
combination of the K-means algorithm clustering, and COST stands for the labeling cost. Thus, 
CLUST_COST_GINI means the integration of K-means clustering, labeling cost, and Gini impurity. 

According to the accuracy comparison in Table 5 and Figure 6, it can be found that the accuracy 
has been improved to a certain extent by adding the module CLUST to GINI, especially at the 
beginning of training. Interestingly, the accuracy decreases after increasing the COST based on GINI. 
It is because the model trades the accuracy for a low cost. By adding the modules CLUST and COST 
to GINI, the experimental performance achieves the best. It not only reduces the cost of labeling but 
also improves accuracy. 

Table 6. Accuracies of different selection strategies. 

Epochs Strategies 1 2 3 4 5 6 7 8 9 10 
GINI 0.32 0.28 0.36 0.31 0.35 0.44 0.5 0.55 0.59 0.68
CLUST+GINI 0.4 0.54 0.46 0.53 0.52 0.55 0.61 0.62 0.65 0.7 
COST+GINI 0.38 0.27 0.34 0.33 0.4 0.48 0.37 0.42 0.5 0.6 
CLUST+ COST+GINI 0.58 0.54 0.58 0.58 0.58 0.7 0.71 0.72 0.75 0.75

2) The impact on labeling time. In the former experiment, we found that the accuracy of the 
uncertainty selection strategy considering the labeling cost in the later training process is lower than 
that on Gini impurity. It shows that adding the labeling cost factor is a negative impact on the 
model’s training results. And it also proves that the selection strategy based on cost becomes the 
model accuracy’s expense. Therefore, to verify whether the labeling cost can save labeling time, we 
asked the partner hospital experts to label the samples selected in the two cases (GINI and 
GINI+COST) and count the spending time. The comparison result is shown in Figure 7. Blue bars 
represent GINI, and red bars stand for GINI+COST. 

It can be seen from the comparison that the labeling time with labeling cost (red bars) is lower 
than that without the labeling cost (blue bars), even though the gaps in labeling time of selected 
sentences are gradually becoming narrow with the gradual iteration of training. It is particularly 
apparent at the beginning of training. 

3) The effect of different β values. To explore the influence of different β values from Eq (10) 
on NER’s accuracy, this experiment conducted the test on the scale factor β in the combination 
strategy based on the uncertainty and the cost, aiming to select the most suitable. 

By observing the curve in Figure 8, it is clear that β starts from 0.2 to 0.8, and the proportion of 
labeling costs also increases. When β rises to 0.8, the accuracy curve is quite different from the other 
three. If β is too small, the cost of labeling time is enormous, although the corresponding accuracy is 
relatively high. On the contrary, if β is too large, the cost of accuracy in exchange for low cost is too 
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great and meaningless. Therefore, the most suitable β value is 0.6, with the maximum proportion. 

 

Figure 7. Time spent by experts in labeling samples. 

 

Figure 8. Accuracy curves under different β values. 

4.4.4. Comprehensive experimental comparison 

We aim to compare the performances of different selection strategy methods. To achieve the 
same performance accuracy, the number of training data from each selection strategy is different. 
Since the active learning method uses batch mode in this article, the number of training texts is 
proportional to training iterations–the lower the iteration, the better the performance. Therefore, we 
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compare the iteration numbers of different methods at the same accuracy level. All methods are 
tested within 100 iterations. 

As shown in Figure 9, at the accuracy of 0.7, it only requires to iterate five times for the 
combination strategy (CLUST+GINI+COST), when GINI, RANDOM, and GINI+COST need 20, 22, 
and 25-times for iterations, respectively. Achieving the accuracy of 0.75 requires at least 12-times 
iterations for the combination strategy. In the meantime, GINI needs 24 times, RANDOM requires 
36 times, and GINI+COST acquires 42 times. Besides, it can be observed that the combination 
strategy can reach an accuracy of 0.85 with 55 iterations. In comparison, the uncertainty selection 
strategy based on Gini impurity reaches the same accuracy level with 77 iterations in training. It 
should be noted that the RANDOM and COST are not included in the accuracy of 0.8 because the 
instability of RANDOM and the highest accuracy of COST is 0.78. We can conclude that the 
strategy based on uncertainty, labeling cost, and clustering has the best efficiency in improving 
model performance. Compared with the traditional supervised learning method of randomly 
selecting labeled data, the amount of labeled data is reduced by about 66.67%. 

 

Figure 9. The number of iterations required for different performance levels. 

4.4.5. Method improvement  

We studied other possible solutions based on labeling cost in Eq (9). When the predicted result 
of a selected sentence is corrected, each word’s modification time is assumed to be the same. In 
practice, the modification time of each word is different. Therefore, we provide another solution 
using the TF-IDF algorithm on the training sample to consider the word frequency of the corpus’s 
text features. If the word occurs infrequently, it will get a longer labeling time. It is because these 
texts may be rare medical records or new medical records, so the experts need more time to label 
them. 

The labeling time of the improved scheme and the original method is shown in Figure 10. It can 
be seen that the improved method always performs better than the original method. The possible 
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reason is that the original method’s labeling cost is positively related to the sentence’s length. It does 
not consider the memory ability of experts. With the improved method’s help, similar samples only 
need to spend a small amount of time to complete the labeling of a sample. 

  

Figure 10. The improved cost-effective approach. 

5. Conclusions 

This paper proposed and implemented an entity recognition model of breast electronic medical 
records based on multi-criteria active learning. With the comparisons of different experiments, the 
proposed method’s effectiveness and practicability are verified by effectively reducing the required 
labeling workload in practical applications. To solve the problems of brief sentences, semantic 
relevance, and sparse data in the medical text, the improved TF-IDF method based on Word2Vec is 
used to vectorize the text. Then the K-means algorithm is used to cluster the samples. After obtaining 
the clustering results, the uncertainty selection strategy based on Gini impurity is proposed to select 
the most useful labeling instances due to the high algorithm complexity and low accuracy of the 
traditional uncertainty selection strategy based on information entropy. The labeling cost is 
considered to reduce the labeling time for active learning in practical application scenarios. Finally, a 
novel active selection criterion is proposed, which balances between the uncertainty and the labeled 
cost. Compared with the traditional method of randomly selecting labeled data, the proposed method 
reduces the amount of data by 66.67%. Comprehensive experimental results show that the 
combination strategy can achieve optimal performance on a small amount of data after clustering. 
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