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Abstract: The combination of Unmanned Aerial Vehicle (UAV) technologies and computer vision 

makes UAV applications more and more popular. Computer vision tasks based on deep learning 

usually require a large amount of task-related data to train algorithms for specific tasks. Since the 

commonly used datasets are not designed for specific scenarios, in order to give UAVs stronger 

computer vision capabilities, large enough aerial image datasets are needed to be collected to meet 

the training requirements. In this paper, we take low-altitude aerial image object detection as an 

example to propose a framework to demonstrate how to construct datasets for specific tasks. Firstly, 

we introduce the existing low-altitude aerial images datasets and analyze the characteristics of 

low-altitude aerial images. On this basis, we put forward some suggestions on data collection of 

low-altitude aerial images. Then, we recommend several commonly used image annotation tools and 

crowdsourcing platforms for data annotation to generate labeled data for model training. In addition, in 

order to make up the shortage of data, we introduce data augmentation techniques, including 

traditional data augmentation and data augmentation based on oversampling and generative 

adversarial networks.  
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1. Introduction 

The combination of Unmanned Aerial Vehicle (UAV) technologies and deep learning makes 

UAV applications more and more popular in various fields, such as surveillance, search and rescue, 

tree height and biomass estimation [1]. One of the ways to improve the performance of deep learning 

model is to increase the size of datasets [2]. In order to give UAVs automated computer vision 

capabilities, it is necessary to organize large enough low-altitude aerial image datasets that meet the 

requirements of algorithm training. There are numerous classical datasets in the field of computer 

vision, such as Visual Object Classes (VOC) [3], ImageNet [4], Microsoft Common Objects in 

Context (MS COCO) [5] and so on. These datasets play the major roles in training and evaluating the 

algorithms, but the images and videos taken by UAVs are obviously different from them. For 

example, due to the shooting height, the images taken by UAVs have a wide view, and the object size 

is much smaller than that in ordinary images. Therefore, the general computer vision datasets cannot 

be used directly in training and evaluating UAV computer vision models.  

Researchers have developed a few aerial view datasets for UAV vision tasks. These datasets 

generally focus on object detection, object tracking and action/event recognition tasks. Datasets used 

for object detection include UAVDT [6], the DET subset and the VID subset of VisDrone [7]. 

Datasets used for object tracking include UAVDT, Stanford Drone [8], UAV123 [9] and the MOT 

subset and the SOT subset of VisDrone. Datasets used for action/event recognition include 

Okutama-Action [10], VIRAT [11] and UCLA Aerial Event dataset [12]. In addition, there are two 

datasets used for other tasks, i.e. Mini-drone video dataset [13] and CARPK dataset [14]. Mini-drone 

video is a dataset for privacy protection in UAV surveillance. In this dataset, human behaviors are 

divided into three categories: normal, suspicious and illicit behaviors. CARPK is a dataset used for 

car counting. We can obtain the above datasets directly from the Internet, or download them by 

filling in the questionnaire. However, the dataset constructed by Kamran et al. [15] for military 

vehicle detection from low-altitude aerial images is not released. We summarize the above available 

datasets and sort out the attributes of each dataset in Table 1. Du et al. [6] also did the collection and 

sorting of datasets. Unlike their work, our work focuses on datasets with aerial view.  

The existing low-altitude aerial image datasets are aimed at specific computer vision tasks or 

specific scenarios, so these datasets cannot fully meet the training needs of other tasks. In order to 

complete a task, we need to organize a dataset that meets its requirements. 

This paper makes the following contributions: 

(ⅰ) Review three classical datasets in object detection and the existing low-altitude aerial image 

datasets; 

(ⅱ) Propose an overall framework for low-altitude aerial image dataset construction, including 

data collection, data annotation and dataset usage; 

(ⅲ) Suggest the existing data augmentation techniques to expand the original data.  

2. Related work 

2.1. Computer vision standard datasets 

In order to evaluate the performance of computer vision models, researchers organized some 

large-scale computer vision datasets as the criteria to test the performance of models. This section 
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introduces three commonly used classical datasets: VOC, ImageNet and MS COCO. These three 

datasets are authoritative evaluations in computer vision field.  

VOC dataset is a classical dataset in computer vision field, which has a good image quality and 

complete annotations. It can be used for tasks such as image classification, object detection, image 

segmentation, personnel layout and action recognition. The VOC dataset has been used in Pascal 

VOC Challenge, which began in 2005 and ended in 2012. The VOC2005 dataset contains only 4 

classes of objects: bicycles, cars, motorcycles and people. It is only suitable for classification and 

detection tasks. In 2007, the dataset was expanded to 20 classes, which can be clustered into 4 

categories: people, animals, vehicles and household objects. VOC2007 contains 9963 images with 

24,640 annotated objects. VOC2012 is the final version. There are 11,530 images in the training set 

and the verification set in VOC2012, including 27,450 annotated objects. 

ImageNet dataset was used in ImageNet Large Scale Visual Recognition Challenge (ILSVRC), 

which began in 2010 and ended in 2017. The main challenges of the competition include object 

localization, object detection, object detection from video and scene classification. ImageNet dataset 

contains 1419k images that are divided into 21,841 categories.  

MS COCO dataset was designed for the challenge of the same name. MS COCO is one of the 

most popular and authoritative competitions in computer vision field. MS COCO was labeled by 

Microsoft in 2014. It consists of images with daily scenes containing common objects. Many objects 

in this dataset can only be identified by context, due to their small size or ambiguous appearance. To 

push research in contextual reasoning, the annotation information of images not only includes 

category and location information but also semantic text description of images. However, MS COCO 

does not focus on aerial view. 

2.2. Available low-altitude aerial image datasets 

The images in the above datasets generally do not have aerial view, so they cannot be used to 

train UAV vision tasks. In order to meet different UAV task requirements, researchers have 

constructed a few datasets that have aerial view images. These datasets generally focus on object 

detection, object tracking and action/event recognition tasks. Next, we will introduce 10 aerial image 

datasets in Table 1. 

UAVDT [6] is a dataset produced by the University of the Chinese Academy of Sciences, in which 

only vehicles are annotated. The videos are taken by DJI Inspire 2, with a resolution of 1080 × 540 pixels. 

About 80,000 frames in UAVDT dataset are annotated over 2700 vehicles. The dataset is divided into 

two parts. One part is used for single object tracking and the other part is used for object detection and 

multi-object tracking. The annotations of the two parts are different. For single object tracking tasks, 8 

attributes are annotated for each sequence, i.e., Background Clutter, Camera Rotation, Object Rotation, 

Small Object, Illumination Variation, Scale Variation and Large Occlusion. For multi-object tracking 

tasks, three attributes are annotated for each sequence, i.e., Flying Altitude, Camera View and Weather 

Condition. For object detection tasks, the other 3 attributes are annotated, i.e., Vehicle category, Vehicle 

occlusion and out-of-view. 

VisDrone dataset [7] is a dataset used for the VisDrone Challenge. It was collected by the 

AISKYEYE team at Lab of Machine Learning and Data Mining, Tianjin University, China. VisDrone 

dataset covers a wide range of aspects including location (taken from 14 different cities in China), 

environment (urban and country), objects (pedestrians, vehicles, bicycles, etc.), and density (sparse and 
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crowded scenes). The data is collected by various drone platforms, i.e., DJI Mavic, Phantom series. 

These data are used for four tasks: object detection in images, object detection in videos, single-object 

tracking and multi-object tracking. VisDrone2019, used for the VisDrone2019 Challenge, consists of 

288 video clips formed by 261,908 frames and 10,209 static images. The maximal resolutions of video 

clips and static images are 3840 × 2160 and 2000 × 1500, respectively. 

Table 1. Aerial image datasets. 

Datasets Scale Contents Camera altitude 
Maximum 

resolution 

UAVDT[6] 80 k images Vehicles on the road 10~70 m 1080 × 540 

VisDrone[7] 
10 k images, 

288 videos 

People and vehicles in daily 

scenes 
N/A 

Image:2000 × 1500 

Video:3840 × 2160 

Stanford Drone[8] N/A 
People and vehicles on the 

road 
80 m 1400 × 1904 

UAV123[9] 110 k images 
Cars, trucks, ships, people, 

etc. 

Set1:5~25 m  

Set2, Set3: N/A 
1280 × 720 

Okutama-Action[10] 77 k images 
People performing various 

actions 
10~45 m 3840 × 2160 

VIRAT2.0[11] ground 

subset 
N/A 

People and vehicles in natural 

scenes 
N/A 1920 × 1080 

VIRAT2.0 aerial subset N/A 
People and vehicles in natural 

scenes 
N/A 640 × 480 

UCLA Aerial Event[12] 27 videos People in outdoor scenes 25 m N/A 

Mini-drone video[13] N/A  
People and vehicles in a 

parking lot 
N/A 1920×1080 

CARPK[14] 1448 images Vehicles in parking lots 40 m N/A 

Stanford Drone dataset [8] is provided by Computational Vision and Geometry Laboratory, 

Stanford University for human motion trajectory prediction in crowded scenes. This dataset consists 

of eight different scenarios: gates, little, nexus, coupa, bookstore, deathCircle, quad and hyang. The 

agents include pedestrians, cyclists, skateboarders, cars, buses and golf carts. Different types of 

agents are labeled with bounding boxes of different colors. The dataset is large in scale and contains 

60 video sequences. In these videos, most of the agents are cyclists and pedestrians. 

UAV123 [9] is a dataset for single object tracking, which consists of 123 video sequences with 

more than 110k frames. UAV123 dataset can be divided into three subsets. Set1 contains 103 

sequences, and an unmanned aerial vehicle (DJI S1000) takes the video, with altitudes ranging from 

5 m to 25 m. Set2 consists of 12 sequences, captured by a boardcam (with no image stabilization) 

mounted at a small, low-cost UAV. Due to the limitation of video transmission bandwidth, these 

sequences have low quality and resolution, and contain reasonable noise. Set3 contains eight 

sequences, which are synthetic videos captured by UAV simulators. Set1 is provided at 30 FPS. The 

annotation was done manually at 10 FPS and then linearly interpolated to 30 FPS. 

Okutama-Action dataset [10] is a dataset for action recognition which is captured from UAVs 

(DJI Phantom 4) at a baseball field in Okutama, Japan. Okutama-Action dataset contains 43 video 

sequences with 77k frames in 4k resolution. Compared with the previous datasets, Okutama-Action 
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has a significant increase in sequence length, averaging 60 seconds per sequence. In each video, up 

to 9 actors sequentially perform a diverse set of actions. Due to the long length of the single video, 

this dataset can also be used for object detection. This dataset contains not only tracking labels for 

object tracking and single action labels for action recognition, but also multi-action labels for action 

recognition. In multi-action labels, one person can be annotated more than one label, such as the 

label of a person standing on the phone may be “standing, calling”. This dataset can also be used for 

pedestrian detection tasks if all the information representing actions in the labels is artificially 

blocked. It should be noted that the actions in the video are performed by actors, that is to say, these 

videos are not taken by people in natural scenes, and the video background is relatively clean, so 

Okutama-Action has no advantages in naturalness and reality. 

VIRAT2.0 dataset [11] supported by DARPA is also a dataset for action recognition. In April 2011, 

the first version of VIRAT dataset was released, which contains an annotated training subset and an 

unannotated test subset. Then in October 2011, VIRAT2.0 Ground Video Subset (captured by 

cameras stationed at the top of buildings) was released. There are total 12 event types annotated in 

Ground Video subset. These videos were captured from 11 different outdoor scenes. In January 2012, 

VIRAT2.0 Aerial Video Subset (captured by aerial vehicles) was released. VIRAT2.0 includes diverse 

types of human actions and human-vehicle interactions, with a large number of examples (>30) per 

action class. These videos were collected in natural scenes showing people performing normal actions 

in standard contexts. The backgrounds are uncontrolled and cluttered, and there are frequent 

incidental movers. These video sequences which include different camera angles and resolutions are 

shot at several different sites, and the actions are performed by different people. Compared with the 

existing action recognition dataset, VIRAT is realistic, natural and challenging in resolving power, 

background clutter, scene diversity and human activity categories. So far, the Aerial Video Subset has 

not been annotated. 

UCLA Aerial Event dataset [12] is a dataset used for joint inference of groups, events and 

human roles in aerial videos. The videos are captured by a GoPro stationed on a low-cost hex-rotor. 

During the shooting, the hex-rotor was flying at an altitude of 25 meters. Typically, the size of a 

person is only 15 × 15 pixels in a frame. There are 27 video sequences in the dataset, ranging in 

length from 2 to 5 minutes. These videos are captured at a park where the terrain is interesting: 

hiking routes, parking lots, camping sites, picnic areas with shelters, restrooms, tables, trash bins and 

BBQ ovens. The annotation in the dataset includes individuals, objects, groups, events, human roles 

and goals (destinations). There are 12 events, 18 human roles and 12 object categories. 

Detecting/tracking humans and objects in the videos can recognize some events recognized, such as 

BBQ, queuing, exchanging objects, loading/unloading.  

Mini-drone video dataset [13] is used to explore privacy protection in UAV surveillance. It was 

established by the Multimedia Signal Processing Group, EPFL. Safety issues need to be carefully 

considered when holding major events. Considering the difficulty of establishing a complete 

surveillance system, drone-based surveillance is particularly advantageous. However, researchers 

have observed that UAV surveillance may affect visual privacy. To analyze these surveillance 

devices, Bonetto et al. established the Mini-drone video dataset. This dataset consists of 38 different 

contents captured in 1920 × 1080 resolution and the duration of each content is 16 to 24 seconds. The 

videos were taken in a parking lot with the mini-drone Phantom 2 Vision+. The behaviors in this 

dataset can be clustered into three categories: normal, suspicious, and illicit behaviors. Normal 

behaviors include walking, getting in their cars and parking. In suspicious content, there is no priori 
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wrong, but people act in a questionable way. Illicit behaviors include mis-parking vehicles, stealing 

items and cars, or fighting. Mini-drone video dataset was annotated using the open source ViPER-GT 

tool, and the annotations include body silhouette, facial region, accessories, vehicles, license plates, 

and video capture. This dataset was originally used for privacy protection research, but considering 

the content of the video sequences, it is possible to extend this dataset to other Computer Vision tasks 

such as detection and action recognition by re-annotation. 

CARPK dataset [14] is used for vehicle counting, which is produced by National Taiwan 

University. The data is taken by DJI PHANTOM 3 Pro with a shooting height about 40m in four 

different parking lots in Taipei, including National Taiwan University, in front of Chiang Kai-shek 

Memorial Hall, behind Chiang Kai-shek Memorial Hall and Taipei Zoo. The CARPK dataset 

contains 89,777 car information, in which the maximum number of vehicles in a single scene is 188. 

The dataset has four different scenarios and uses bounding boxes to locate the object accurately. 

Although the CARPK is a dataset for counting, it is possible to extend it to object detection tasks. 

3. Construction of low-altitude aerial image datasets 

3.1. Data collection 

Mobile cameras equipped on UAVs have a unique perspective. The images taken by these 

cameras are significantly different from those taken by ordinary cameras. The characteristics of 

low-altitude aerial images must be taken into account when constructing a low-altitude aerial image 

dataset. Generally speaking, low-altitude aerial images have the following characteristics. 

1) Small objects. Due to the high shooting height, the objects in the images are usually very 

small, which is a main character of UAV-view images and brings difficulties to object detection. At 

present, there is no clear definition of the object size or the proportion of small objects in the whole 

picture. In VIRAT dataset supported by DARPA, the human height is 10–200 pixels or the height 

proportion of human in in video is 2–20% [11]. In DAC-SDC dataset [16], the size of many small 

objects is 1–2% of the images. However, in standard datasets, the size of objects is usually larger. 

Such as, in VOC dataset, the average size of objects is 20% of the images.  

2) Objects high-density. UAV cameras have a wide view that leads to a large number of 

objects [6].  

3) Wide view. Since the camera is far away from the ground, aerial images generally have a 

wide field of vision. 

4) Overlooking view. Unlike general images, aerial images have an overlooking view, which is 

also a challenge for UAV vision tasks. 

5) Light conditions and shading. Aerial image datasets usually contain attributes such as light 

conditions and occlusion. Therefore, it is necessary to take light conditions and occlusion into 

account when collecting aerial images. 

Usually, the images used to construct the image datasets can be obtained from the internet. The 

data of VOC dataset comes from Flickr [3]. The data of UCF series datasets, HMDB-51 dataset and 

AVA dataset are all from YouTube. And some images of the Military Vehicle Detection dataset [15] 

published by Kamran are also from YouTube. Generally, web crawlers can help to get pictures from 

the internet quickly. However, the low-altitude aerial image datasets have specific requirements on 

the images and videos, so it is difficult to collect enough data from the network. In order to construct 
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a low-altitude aerial image dataset, it is inevitable to use UAVs to capture images or videos. Due to 

the different task requirements for each dataset, the shooting scene and image content also exist 

differences. Okutama-Action, for example, was shot at a baseball field in Okutama with a clean 

background. The VisDrone dataset was gathered in natural scenes in 14 cities, making it more natural 

and realistic. When shooting aerial images, the height and the tilt angle of the camera and the light 

conditions must be taken into account according to the task requirements. In addition, a few datasets 

consist of non-real images. For example, the Set3 of UAV123 dataset contains 8 synthetic sequences 

captured by UAV simulators. In the Military Vehicle Detection datasets, 11,733 toy vehicle images 

are generated from RC Military Toy YouTube Channel. 

3.2. Data annotation 

The common image annotation tools include LabelImg, LabelMe and YOLO-Mark. LabelImg 

and LabelMe both originated from CSAIL, MIT. They are all written in Python and use Qt as their 

graphical interface. LabelImg can annotate objects with rectangular bounding boxes. It can be used 

to make datasets needed by Faster R-CNN, YOLO, SSD and other object detection networks. Its 

annotation format can be YOLO format or VOC format. LabelMe can annotate images in various 

shapes, including polygons, circles, rectangles, lines and points. LabelMe can produce datasets for a 

variety of vision tasks, including instance segmentation, semantic segmentation, object detection and 

image classification. YOLO-Mark can produce YOLO format dataset for object detection task. It is 

designed for YOLO series network specially by YOLO team. In addition, there are other image 

annotation tools, such as Sloth, Annotorious and RectLabel for object detection, Pixel Annotation 

Tool, Semantic Segmentation Editor and Image Annotation Tool for image segmentation. 

The common video annotation tools are VATIC [17] and VoTT. VATIC is an open source video 

annotation tool for computer vision research that crowdsources work to Amazon's Mechanical Turk 

(Mturk). For an input video, VATIC can automatically extract the annotation tasks and integrate with 

Mturk. After all the frames of a video are annotated, the annotated frames can be synthesized into a 

complete video using FFmpeg. VATIC can export the annotation tool in Pascal VOC format. Some 

aerial datasets, such as UAVDT and Okutama-Action, are labeled with VATIC. VoTT is a visual 

annotation tool released by Microsoft. It is developed based on JavaScript and can run across 

Windows and Linux platforms. It can annotate both images and videos. VoTT also has the function 

of target tracking. It uses a tracking algorithm to assist computers to track and annotate objects in 

videos. It can export annotated data in various formats such as CNTK, VOC and YOLO. In addition, 

it also provides a trained Faster R-CNN model, which can be used to automatically annotate before 

manual correction. In addition, there are some other video annotation tools, such as video-labeler 

and CVAT.  

Large-scale deep networks need huge training datasets. In order to give UAVs computer vision 

capability, we need to produce large enough aerial view image datasets. Data annotation is very 

arduous, especially for a large dataset. The UAVDT dataset has 840,000 annotation boxes, which 

annotate by more than 10 professionals using VATIC. The whole annotation work lasted for two 

months [6].  

One way to solve this problem is to release the annotation task on crowdsourcing platform. 

There are many available image annotation platforms, such as MTurk. Sorokin et al. show that image 

annotations can be effectively outsourced to MTurk. Doing so has produced annotations in quite 
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large numbers relatively cheaply. These annotations are of good quality and can be checked and 

controlled. Many annotations of large image datasets are annotated on MTurk, such as ImageNet, 

MS COCO, LabelMe. In addition, the Ground Video Subset of the VIRAT2.0 is also annotated in 

MTurk. Except MTurk, there are other image annotation platforms, such as Jingdong Zhongzhi, 

Baidu Zhongce, Figure Eight, MicroWorkers etc. 

Another possible solution is to use the hybrid annotation. The hybrid annotation method relies 

on the trained object detector. (Atomic Visual Actions) AVA dataset is a dataset for action recognition 

with 1.58M action labels. Because of the huge workload of labeling tasks, the mixed labeling method 

was adopted [18]. Firstly, Faster-RCNN person detector is used to generate a set of initial bounding 

boxes. Then, an annotation tool is used to annotate the remaining bounding boxes missing from the 

detector. In the next manual annotation process, the detector only missed 5% of the bounding boxes, 

which indicated that the hybrid annotation method was feasible. This hybrid method ensures the 

accuracy of annotations while minimizing the workload and time cost of manual annotations. Object 

detector has proved to be useful in the construction of AVA dataset. It is possible that this method can 

also be applied to build object detection datasets. 

3.3. Dataset partition strategy 

Datasets are generally divided into three parts: training set for model training, verification set 

for validation and test set for model testing. Generally, testing set accounts for about 20% of the total 

size of dataset, and training set plus validation set accounts for about 80% of the total size of dataset. 

In VOC2005, the training-validation set provided 422 images containing 1215 segmentation 

objects, and the test set contains 210 images with 607 objects. In VOC2012, the training-validation 

set contains 11,530 images, but the test set has not been released. MS COCO dataset, released in 

2015, contains 165,482 training images, 81,208 validation images and 81,434 test images (about 50% 

for training, 25% for validation and 25% for testing) [5].  

When capturing aerial images or videos, the same scene may be taken by more than one UAVs. 

In order to ensure the objectivity of the test results, it is necessary to ensure that different sequences 

of the same scene are located in the same subset. In Okutama-Action dataset, the train-validation set 

consists of 33 video sequences, accounting for 77% of the total dataset. And the test set consists of 

10 video sequences, accounting for 23% of the total dataset [10]. It is noteworthy that 

Okutama-Action dataset contains 22 different scenes, of which 21 scenes were shot simultaneously 

by two UAVs which have different perspectives. Therefore, in order to ensure that the test set is 

completely unseen to the model, the sequences captured from the same scene must be in the same set 

when splitting the dataset.  

4. Application of data augmentation 

Low-altitude aerial view datasets are limited in the data source, which may result in a small size 

of the datasets. Data augmentation can effectively expand the scale of training data and enhance the 

generalization performance of the model. Traditional data augmentation techniques make some 

simple operations on original training data to generate new images, such as flipping, clipping, color 

space transformation, adding reasonable noise, etc. These data augmentation methods are easy to 

implement. Recently, due to its good performance in image generation, Generative Adversarial Nets 
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(GAN) have attracted more and more attention. It can generate images according to specific 

requirements or even a text description. Some works show that oversampling and GAN can improve 

the performance of small object detection [19, 20]. 

4.1. Traditional data augmentation 

Geometric transformation. Geometric transformation is the earliest data augmentation 

technique [21]. Compared with GAN augmentation method, the computation cost of geometric 

transformation is extremely low. The dataset can be expanded n times by geometric transformation. 

Geometric transformations commonly used include flipping, rotation, cropping, distorting, scaling, 

translation, etc. Flipping and rotation are the simplest augmentation methods. Flipping has been 

proven to be useful on CIFAR-10 and ImageNet. But Shorten et al. [18] believed that there is a 

"security" issue, that is, the use of flipping and rotation on datasets involving text recognition may 

lead to label changes. Aerial images sometimes involve license plates, so we have to take the issue of 

label changes into account when using flipping and rotation techniques. Researchers have validated 

the effectiveness of geometric transformations. Chatfield et al. [22] discussed two kinds of data 

augmentation techniques on VOC datasets. The first strategy is flipping augmentation, and the 

second strategy is C+F, which is the combination of clipping and flipping. The results show that 

flipping can only bring a slightly improvement compared with no augmentation, while the 

improvement is about 2–3% using C+F augmentation. Mash et al. [23] evaluated clipping, rotation, 

scaling, occlusion and the combination of these methods on a dataset for aircraft classification tasks. 

The results showed that the combination of occlusion and clipping had the best performance and the 

test set classification accuracy was improved by 9.1%. Taylor et al. [24] evaluated three geometric 

transformation methods of flipping, rotation and clipping, and found that the clipping transformation 

had the best performance. 

Color space transformation. Simple color space transformations include isolating a single color 

channel such as R, G, or B. An image can be transformed into its representation in one color channel 

by isolating that matrix and adding 2 zero matrices from the other color channels [21]. Unlike 

geometric transformation, color space transformation changes the colors of the images instead of the 

shape of objects. That is to say, the relative position of objects and the position of bounding boxes in 

images are not changed. Therefore, color space transformation will not lead to label changes in UAV 

object detection and tracking tasks. 

Noise injection. When there are a lot of useless features in the training datasets that are not 

helpful to train models, it may lead to over-fitting of the models. Appropriate noise addition to these 

datasets can enhance the generalization performances of models and has little impact on the accuracy. 

Barea et al. [25] had demonstrated the effectiveness of noise injection techniques on 9 benchmark 

datasets that are taken from the UCI database and PROBEN1 benchmark set. 

In addition to the above methods, there are other data augmentation methods, including pixel 

erasure, changing image brightness [26], sharpness, definition and contrast. Normally, traditional 

data augmentation can be implemented by simple algorithms, and the costs of calculations are low.  
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Figure 1. Examples of traditional data augmentation [26]. 

4.2. Data augmentation based on oversampling techniques 

We may encounter the problem of imbalance of sample categories when constructing 

low-altitude aerial image datasets. This problem can be solved by sampling strategies. This section 

introduces three oversampling techniques: SMOTE, sample pairing and mixup. 

1) SMOTE. SMOTE (Synthetic Minority Over-sampling Technique) [27] is a minority 

over-sampling method, which synthesizes samples through a synthesis technique to achieve the 

balance of data categories. SMOTE generates synthetic samples for categories with fewer samples 

by operating in “feature space” rather than “data space”. Firstly, the difference between the feature 

vector and its nearest neighbor is taken. Then, multiply the difference by a random number between 

0 and 1 and add it to the feature vector considered, which will result in a random selection of a point 

along the line between two specific features. Repetition of the above steps can balance the number of 

large and small samples. Unlike general oversampling techniques, SMOTE can avoid duplicate 

samples in the process of sample synthesis. 

2) Sample pairing. In 2018 Inoue [28] proposed a sample pairing data expansion technique, 

which creates a new sample from an image by superimposing another image randomly selected from 

the training data (i.e., simply taking the average of two images for each pixel), and uses the label of 

the first sample as the correct label for the mixed sample. This method has been proved to 

significantly improve the accuracy of image classification tasks on ILSVRC 2012, CIFAR-10, 

CIFAR-100 and other datasets. 

3) Mixup. In 2018, Zhang et al. [29] proposed a method called mixup, which is a new method 

of data augmentation. This method uses linear interpolation to generate extended data. The 

formula is as follows: 

𝑥̃ = 𝜆𝑥𝑖 + (1 − 𝜆)𝑥𝑗 , 𝑦̃ = 𝜆𝑦𝑖 + (1 − 𝜆)𝑦𝑗 (1)  

Where (xi, yi) and (xj, yj) are two samples randomly extracted from training data, and 𝜆 ∈ [0,1]. 
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Experiments show that mixup can improve the accuracy of image classification tasks on CIFAR-10, 

CIFAR-100 and ImageNet-2012. 

4.3. Data augmentation based on GAN 

In 2014, Goodfellow et al. [30] proposed the concept of Generative Adversarial Nets. A GAN 

consists of two parts: the generator G and the discriminator D. The goal of G is to generate a sample 

close to real data according to prior distribution to fool the discriminator, while the goal of D is to 

separate the sample generated by G from the real sample as far as possible. This framework 

corresponds to a minimax two-player game. The game process can be expressed as follows: 

min
𝐺

max
𝐷

(𝐷, 𝐺) = 𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔𝐷(𝑥)] + 𝐸𝑧∼𝑝𝑧(𝑧)[𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)))] (2)  

GAN has powerful generating ability, especially in the field of image generation. So it is a promising 

application to enhance data by using generative adversarial network. 

Goodfellow et al. carried out experiments on MNIST, Toronto Face Database (TFD) and 

CIFAR-10. Although they did not claim that the samples generated by GAN were better than those 

generated by existing methods, they believed that these samples could at least be compared with 

better generation models. It has the same competitiveness, and GAN has more potential. 

Since the concept of GAN was first proposed in 2014, GAN has attracted wide attention, and 

there are many variants of GAN now. Conditional Generative Adversarial Nets (CGAN) [31] can 

train networks with different categories of images and control generators to generate an image with 

specific categories. CGAN inputs a one-hot vector y as an additional vector of random noise vector z 

to generators and discriminators to control the categories of generated images, where y can be any 

type of auxiliary information, such as class labels or data from other patterns.  

Cycle-Consistent Adversarial Networks (Cycle GAN) [32] has good performances in style 

transfer. It can capture the special features of an image set and learn how to transfer these features to 

other image sets. The training images generated by Cycle GAN have different color, density and 

light conditions from the original image. Liu et al. used three object detection models, SSD, 

YOLOv3 and Faster R-CNN, to carry out experiments on a brain slices microscopic dataset. The 

results show that Cycle GAN data augmentation can effectively improve the detection performance 

of the three detection models [20].  

Style-Based Generative Adversarial Networks (Style GAN) [33] allows more linear and less 

entanglement representation of different change factors. So Style GAN could control image synthesis 

by modifying the style in a specific proportion. Style GAN can be used for style transfer and has 

achieved good performance in face image generation. 

GAN can also be combined with other techniques. Wei et al. [34] combined foreground-background 

separation model with a GAN and proposed a data augmentation method based on the 

foreground-background separation model to enhance the performance of object detection in DSSD 

model. This method does not change the main network of DSSD but only adds a GAN to the training 

process of DSSD. The whole network consists of two training stages. In the first stage, the 

foreground-background separation model is realized and the object detection model is pre-trained. In 

the second stage, data augmentation is used to assist the object detection training. 
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Figure 2. Using a collection of paintings of a famous artist, learn to render a user’s 

photograph into their style [32]. 

5. Conclusions 

In this paper, taking UAVs computer vision capability as an example, we propose an overall 

framework for dataset construction for the training of deep learning, including data collection, data 

annotation and dataset usage. Our work may provide a guidance on how to construct an appropriate 

dataset for a deep learning model. In addition, for UAV vision task, a huge challenge is that it is 

difficult to obtain enough appearance information due to the small size of the object. Therefore, 

exploring more effective object detection methods for small objects is an important way to promote 

UAV vision technologies in the future. 
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