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Abstract: An alcohol consumption model with health education and three time delays is formulated
and analyzed. The alcoholism generation number is defined. Two steady states of the model are
found. At the same time, the corresponding global dynamics of the model are analyzed respectively
in four cases with different time delays. Then, the effects of health education and three time delays
in controlling the alcohol problem are discussed. Some numerical simulation results are also given to
support our theoretical predictions.
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1. Introduction

Alcoholism can be viewed as a social epidemic [1], which can bring great harm to individuals,
families and society. The study of alcoholism has become an important aspect of social epidemic.
Alcohol abuse can also lead to a range of negative social effects such as violence, antisocial and
criminal behavior. Alcohol consumption has been identified as a major contributor to the global
burden of chronic disease, injury and economic cost [2–4]. The World Health Organization reports
the harmful use of alcohol causing approximately 3.3 million deaths every year (or 5.9% of all the
global deaths), and 5.1% of the global burden of disease is attributable to alcohol consumption [5].
Therefore, alcoholism is the main targeted healthy risky behavior due to the high relevance of
negative health and social effects. The spread of healthy risky behavior within a community can be
viewed as a diffusion process with its own incidence rate. In this situation, the social interaction is
considered to be the key factor in spreading the alcohol behavior which can result in adverse health
effects. The prevention and control of alcoholism is an urgent problem.

Mathematical modelling is a powerful tool for solving problems in various fields [6–10]. In the last
few decades, mathematical models for human behaviors related to addictions have been developed
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from epidemiological models for the spread of infectious diseases, including drinking, smoking and
drug use, etc., see [11–14] and the references contained therein. In particular, there are several
different mathematical models for alcohol problems that have been formulated and studied recently
[15–27]. Benedict [15] modelled alcoholism as a contagious disease and studied how “infected”
drinking buddies spread problem drinking. Manthey et al. [16] studied campus drinking and
suggested that the reproductive numbers are not sufficient to predict whether drinking behavior will
persist on campus and that the pattern of recruiting new members play a significant role in the
reduction of campus alcohol problems. Santonja et al. [17] proposed a mathematical model for
alcohol consumption in Spanish population. Predictions about the future behavior of the alcohol
consumption in Spain are presented using this model. Environmental and peer influence combinations
to create a culture of drinking were studied in [18–21]. In addition, the two-stage models: one stage
where people who admit having the alcohol problem and other stage where people who do not admit
to having the alcohol problem have been developed in [22, 23]. Bhunu [24] studied the co-interaction
of alcoholism and smoking in a community. Walters et al. [25] also discussed alcohol problems, and
their results showed that an increase in the recovery rate decreased the proportion of binge drinkers in
the population. Huo et al. [26] considered the effect of constant immigration on drinking behavior.
Wang et al. [27] presented an alcoholism model with two control strategies to gain insights into this
increasingly concern about health and social phenomenon. The optimal control strategies are derived
by proposing an objective functional and using Pontryagins Maximum Principle.

It is well known that the prevalence of any epidemic is strongly dependent on the social behavior
of individuals. Human behavior and social response play a very important role in the transmission of
social epidemic. So, the rational way is to make people aware about the alcohol problems through the
media, which can not only influence the individuals’ behavior but also increase the governmental health
care involvement to control the spread of heavy drinking. In recent years, many mathematical models
have been used for studying the impact of public health education by media on epidemic outbreaks [28–
39] and the references cited therein. These studies suggested that education and media have a huge
impact in controlling the spread of infectious diseases. Recently, for drinking problem, Huo et al. [40]
have studied drinking dynamics and focused on awareness programs and treatment in the modelling
process. They have extended the model in [39] via including a treatment class and established some
sufficient conditions for the stability of the alcohol-free and alcohol-present equilibria. Xiang et al. [41]
also studied a drinking model with public health educational campaigns. Using Lyapunov function,
the global stability of equilibria of the model is derived. Their results showed that the public health
educational campaigns is one of the commonly used effective measures in order to prevent and reduce
the alcohol problems. On the other hand, recently, Ma et al. [42, 43] proposed that the multi-group
alcoholism model can contribute to the control of alcohol problems in more realistic situations.

At the same time, time delays have been considered into the infections diseases models by many
authors [44–48]. Delay differential equations exhibit much more complicated dynamics than ordinary
differential equations since the time delay may affect the stability of the system, even lead to
instability, oscillation or bifurcation phenomena. Because time delay is common in development of
alcohol consumption habit in population, we should note that there are delays in the “infection”
process which the alcohol consumption habit develops in a individual who is “infected” by alcoholics.
So, it is more realistic to consider the time delay in the modelling alcoholism process. To our
knowledge, the results about alcoholism epidemic model with delays are comparatively scarce.
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Recently, Huo et al. [49] introduced a more realistic binge drinking model with delay. They
concluded that, regardless of the time delay length, the alcohol-free equilibrium is globally
asymptotically stable. Numerical simulations showed that the alcohol-present equilibrium is globally
asymptotically stable. Ma et al. [50] formulated a dynamic alcohol consumption model with
awareness programs and one delay. The results showed that the time delay in alcohol consumption
habit which develops in susceptible population may result in a Hopf bifurcation by increasing the
value of time delay.

Motivated by the above works and based on the previous work in [41], we formulate an alcoholism
model that incorporates both public health education and three delays to study the dynamics and control
of drinking. We incorporate the delays τ1, τ2 to describe the time needed for a susceptible individual to
become an alcohol user, and the delay τ3 to describe temporarily recovered population that will take a
period of time to become a alcohol consumer again. Here, time delay for the “infection” and “recovery”
are included together. The goal of this paper is to analyze the effects of public health education and
three delays on alcohol control. So, the research work of this paper improves the existing results.

The remaining part of this paper is organized as follows. In next section, we formulate the delayed
mathematical model. The positivity and ultimate boundedness of the solutions for system are shown in
Section 3. In Section 4, for four different delay cases, the global dynamics of the delayed alcoholism
model is discussed in detail. In Section 5, the impacts of public health education and delays on alcohol
control will be discussed. The sensitivity analysis of system parameters is given in Section 6. Then,
in order to support our theoretical predictions, some numerical simulations are included in Section 7.
Finally, a brief conclusion is also given in the last section.

2. Model formulation

In 2015, Xiang et al. [41] investigated a SEARQ drinking model with the public health educational
campaigns, as the following drinking dynamics:

dS (t)
dt

= qµΛ − βS (t)A(t) − (µ + p)S (t),

dE(t)
dt

= (1 − q)µΛ + pS (t) − σβE(t)A(t) − (µ + ε)E(t),

dA(t)
dt

= βS (t)A(t) + σβE(t)A(t) + δR(t) − (µ + a1 + γ)A(t),

dR(t)
dt

= γA(t) − (µ + a2 + ξ + δ)R(t),

dQ(t)
dt

= ξR(t) + εE(t) − µQ(t),

(2.1)

where the total population in the model is divided into five types: at time t, S (t) denotes the numbers
of susceptible individuals who consume alcohol in moderation and do not accept the public health
education, but may develop problems with alcohol; E(t) is referred to educated susceptible individuals
who consume alcohol in moderation and accept the public health education, in which the average rate
of turning to drink is reduced relatively to the tuen rate of uneducated individuals; A(t) is alcoholics
class who have drinking problems or addictions; R(t) is temporarily recovered drinkers, that is, former
alcoholics who have entered treatment and are abstaining from alcohol; Q(t) represent quit drinkers
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who permanently quit drink. All parameters are assumed to be positive constants. It is also assumed
that the drinking only spreads due to the direct contact between susceptible individuals or educated
drinkers and alcoholics. The global stability of equilibria are obtained by constructing suitable
Lyapunov functions (see Theorem 4.1 in [41]).

As is known to us, there are delays in the “infection” or “recovery” process of drinking. So we
propose a mathematical model with health education and three delays to study the dynamics and control
of alcoholism. In this paper, we incorporate three delays into the alcoholism model (2.1). Assume that
homogenous mixing and each individual has the same chance to get infected. The variables and model
structure are described in Figure 1.

Figure 1. The transfer diagram of system (2.2).

Our model can be described by the following ordinary differential equations:

dS (t)
dt

= qµΛ − βS (t)A(t) − (µ + p)S (t),

dE(t)
dt

= (1 − q)µΛ + pS (t) − σβE(t)A(t) − (µ + ε)E(t),

dA(t)
dt

= βS (t − τ1)A(t − τ1) + σβE(t − τ2)A(t − τ2) + δR(t − τ3) − (µ + a1 + γ)A(t),

dR(t)
dt

= γA(t) − (µ + a2 + ξ + δ)R(t),

dQ(t)
dt

= ξR(t) + εE(t) − µQ(t).

(2.2)

Here the meanings of parameters are the same as system (2.1). Time delay τ1 ≥ 0 to describe the
time needed for a uneducated susceptible individual to become an heavy alcohol consumer, τ2 ≥ 0 to
describe the time needed for a educated susceptible individual to become an heavy alcohol consumer,
and time delay τ3 ≥ 0 to describe the time needed for a temporarily recovered drinkers re-enter the
alcoholics groups. There is a time delay during which the alcohol consumption habit develops in
his/her body. It is only after such time delay that he/she becomes a alcohol consumer.
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Let τ = max{τ1, τ2, τ3}. We denote by C = C([−τ, 0],R) the Banach space of continuous real-valued
functions on the interval [−τ, 0], with the sup-norm

||φ|| = sup
−τ≤θ≤0

{|φ(θ)|}, φ ∈ C.

The nonnegative cone of C is defined as

C+ = C([−τ, 0],R+).

We suppose that the initial conditions for system (2.2) take the forms:

S (θ) = φ1(θ), E(θ) = φ2(θ), A(θ) = φ3(θ),R(θ) = φ4(θ),Q(θ) = φ5(θ),
φ = (φ1, φ2, φ3, φ4, φ5) ∈ C+ ×C+ ×C+ ×C+ ×C+, φi(0) > 0, i = 1, 2, 3, 4, 5.

(2.3)

Remark 2.1. Assume τi ≡ 0(i = 1, 2, 3), the system (2.2) becomes the system (2.1) in [41]. Therefore,
system (2.2) expands system (2.1).

3. Positivity and ultimate boundedness

Since the variable Q does not appear explicitly in the first four equations in (2.2), then the dynamics
of system (2.2) is the same as the following reduced system:

dS (t)
dt

= qµΛ − βS (t)A(t) − (µ + p)S (t), (3.1a)

dE(t)
dt

= (1 − q)µΛ + pS (t) − σβE(t)A(t) − (µ + ε)E(t), (3.1b)

dA(t)
dt

= βS (t − τ1)A(t − τ1) + σβE(t − τ2)A(t − τ2) + δR(t − τ3) − mA(t), (3.1c)

dR(t)
dt

= γA(t) − nR(t). (3.1d)

Thus, in the rest of the article, we are concerned with the above system (3.1). For system (3.1), it is
important to prove that all the state variables remain nonnegative (for biological reasons). We give the
following lemma.

Lemma 3.1. Consider system (3.1) with the initial conditions (2.3), we have
(i) All solutions of system (3.1) are strictly positive;
(ii) All solutions of system (3.1) are ultimately bounded if δ < µ.

Proof. (i) We prove the system (3.1) with initial conditions (2.3) has strictly positive solutions for
all t ≥ 0.

Assuming the contrary and letting t1 > 0 be the first time such that S (t1) = 0. From Eq (3.1a),
we have S

′

(t1) = qµΛ > 0, hence for sufficiently small η > 0, S (t) < 0 for t ∈ (t1 − η, t1) . But this
contradicts S (t) > 0 for t ∈ [0, t1). It prove that S (t) > 0 for all t ≥ 0. Suppose that t2 > 0 be the first
time such that E(t2) = 0. From Eq (3.1b), we have E

′

(t2) = (1 − q)µΛ + pS (t2) > 0. We use the same
method to prove E(t) > 0 for all t ≥ 0.
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From Eq (3.1c), we can obtain

A
′

(t) ≥ [βS (t − τ1) + σβE(t − τ2) − m]A(t).

By using the method of variation of constant and the step-to-step integration, we get

A(t) ≥ φ3(0)exp
(∫ t

0
[βS (ξ − τ1) + σβE(ξ − τ2) − m]dξ

)
,

which implies that A(t) > 0 for all t > 0.
Then from Eq (3.1d), we obtain

R
′

(t) = γA(t) − nR(t),

hence

R(t) = φ4(0)e−nt + γ

∫ t

0
A(s)en(s−t)ds,

which shows R(t) > 0 for all t > 0 because of R(0) = φ4(0) > 0.
(ii) We show that the solutions of system (3.1) are ultimately bounded for all t ≥ 0.
According to Eq (3.1a), we have

lim sup
t→∞

S (t) ≤
qµΛ

µ + p
. (3.2)

So, S (t) is ultimately bounded.
According to Eq (3.1b), we have

lim sup
t→∞

E(t) ≤
µΛ[p + µ(1 − q)]

(µ + ε)(µ + p)
,

and E(t) is ultimately bounded, too. Then, we define

X(t) = S (t + τ2 + τ3) + E(t + τ1 + τ3) + A(t + τ1 + τ2 + τ3) + R(t + τ1 + τ2 + τ3),

we have X(t) ≥ 0, and yield

X
′

(t) ≤ µΛ + pS (t + τ1 + τ3) − µX(t) + δR(t + τ1 + τ2). (3.3)

From Eq (3.2), we choose T > 0 so large such that t ≥ T − τ1 − τ3 > 0, then

S (t + τ1 + τ3) ≤
qµΛ

µ + p
,

and from the definition of X(t), we obtains

R(t + τ1 + τ2) = X(t − τ3) − S (t + τ2) − E(t + τ1) − A(t + τ1 + τ2).

Then, we get from Eq (3.3) that

X
′

(t) ≤ M − µX(t) + δX(t − τ3), (3.4)
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where M = µΛ(1 +
q

µ+p ). Following the method of Kuang [45], we assume that δ < µ, by considering
the auxiliary system

z
′

(t) = M − µz(t) + δz(t − τ3),

there is a unique positive steady state z∗ = M
µ−δ

is globally asymptotically stable. It follows from Eq
(3.4) that

lim sup
t→∞

X(t) ≤
M

µ − δ
.

Therefore, S (t), E(t), A(t) and R(t) are ultimately bounded. This proof is completed.
As a consequence of Lemma 3.1, we know that the dynamics of system (3.1) can be analyzed in the

following bounded feasible region, namely, for sufficiently small ε > 0 such that

Ω =
{
(S , E, A,R) ∈ C+ ×C+ ×C+ ×C+ : ||S || ≤ qΛ + ε, ||S + E|| ≤ Λ + ε, ||S + E + A + R|| ≤

M
µ − δ

+ ε
}
.

Hence, the region Ω is positive invariant set for system (3.1) and the system is well posed.
Remark 3.1. From the above discussion, we can see the parameter δ (i.e. the fraction of compartment R
who relapse into drinking compartment A) could not be too large (δ < µ). The public health educational
campaigns is an effective measure in reducing the value of return proportion δ.

4. Equilibria and stability

Following the compartment approach, the alcoholism generation number R0 of the alcohol
consumption model (2.2) can be easily obtained by the next generation matrix method [51], which is
given by the following expression:

R0 =
β(S 0 + σE0)(µ + a2 + ξ + δ)

(µ + a1 + γ)(µ + a2 + ξ + δ) − γδ
=:

β(S 0 + σE0)n
mn − γδ

,

where S 0 =
qµΛ

µ+p , E0 =
µΛ[p+µ(1−q)]

(µ+ε)(µ+p) , m = µ+ a1 +γ, n = µ+ a2 + ξ+ δ, and mn > γδ. It acts as a threshold
as is shown in the following results.

For convenience and simplicity, we still set P0 is the alcohol-free equilibrium and P∗ is the unique
alcohol-present equilibrium for system (3.1). In addition, from the system (3.1), we have

S ∗ =
qµΛ

µ + p + βA∗
, E∗ =

[pq + (1 − q)(µ + p + βA∗)]µΛ

(µ + p + βA∗)(µ + ε + βσA∗)
, R∗ =

γA∗

µ + a2 + ξ + δ
,

where A∗ is the unique positive root of equation H(A) = 0 (see Eq (13) in [41]). Then, we have the
following results.

Lemma 4.1. Consider system (3.1) with the initial conditions (2.3), we have
(i) System (3.1) always has the alcohol-free equilibrium P0(S 0, E0, 0, 0);
(ii) System (3.1) also has a unique alcohol-present equilibrium P∗(S ∗, E∗, A∗,R∗) if R0 > 1.

In the following subsection, we investigate the stability of the equilibria of system (3.1).
Considering the impacts of health education on the susceptible individuals and treatment on the
temporarily recovered individuals, the time delays of three compartments are different, we will be
divided into several cases to discuss.
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4.1. Case I: τ1 = τ2 = τ̃ = 0, τ3 > 0

1) Stability analysis of P0

We linearize the system (3.1) about P0, and the characteristic equation of system (3.1) at P0 is given
by

(λ + p + µ)(λ + µ + ε)
{
[λ + m − β(S 0 + σE0)e−λτ̃](λ + n) − γδe−λτ3

}
= 0. (4.1)

Obviously, we have
λ1 = −(µ + p) < 0, λ2 = −(µ + ε) < 0.

So, our focus is to discuss the solution of the following equation

F(τ̃, τ3, λ) =
[
λ + m − β(S 0 + σE0)e−λτ̃

]
(λ + n) − γδe−λτ3 = 0. (4.2)

First, we set c1 = β(S 0 + σE0) > 0. If R0 < 1 and τ̃ = 0, τ3 > 0, the Eq (4.2) becomes

F(0, τ3, λ) =
[
λ + m − β(S 0 + σE0)

]
(λ + n) − γδe−λτ3 = λ2 + d1λ + d0 − γδe−λτ3 = 0, (4.3)

where d1 = m + n − c1 > 0, d0 = n(m − c1) > 0.
Notice that 0 is not a root of Eq (4.3) because of R0 < 1. Following the method in [54], we let

λ = iω1(ω1 > 0) be a purely imaginary root of Eq (4.3). Substituting it into Eq (4.3) and separating the
real and imaginary parts, then squaring and adding both equations, we can obtain

ω4
1 + (d2

1 − 2d0)ω2
1 + d2

0 − (γδ)2 = 0. (4.4)

Let u1 = ω2
1 , then Eq (4.4) becomes

G(u1) = u2
1 + (d2

1 − 2d0)u1 + d2
0 − (γδ)2 = 0,

where d2
1 − 2d0 = (m − c1)2 + n2 > 0 and d2

0 − (γδ)2 > 0 because of d0 − γδ > 0, so G(u1) = 0 has no
positive root. Hence, we easily obtain all roots of Eq (4.1) have negative real parts. The alcohol-free
equilibrium P0 is locally asymptotically stable for any τ3 > 0 with τ1 = τ2 = τ̃ = 0. In the following,
we prove P0 is globally attractive in Ω for any τ3 > 0 with τ1 = τ2 = τ̃ = 0.

We define the following Lyapunov function L1 : C ×C ×C ×C → R:

L1(S t, Et, At,Rt) = At(0) + Rt(0) + δ

∫ 0

−τ3

Rt(s)ds,

where the notation xt(s) = x(t + s) for s ∈ [−τ, 0), and xt(0) = x(t). The time derivative of L1 along the
solution of system (3.1) (τ̃ = 0, τ3 > 0) is

dL1

dt
|(3.1) = βS (t)A(t) + σβE(t)A(t) + δR(t − τ3) + (γ − m)A(t) + (δ − n)R(t) − δR(t − τ3)

≤
{
β[S (t) + σE(t)] − (µ + a1)

}
A(t).

(4.5)

Using Lemma 3.1, we know that S (t) and E(t) are bounded, that is, we obtain that S (t) ≤ S 0 and
E(t) ≤ E0. It is easy to see that dL1

dt |(3.1)≤ 0 if β(S 0 + σE0) < µ + a1. This condition is equivalent to the
transmission rate β meets the following condition:
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(H1): β < µ+a1
S 0+σE0

.

Further, dL1

dt = 0 if and only if A(t) = 0. It can be verified that the maximal invariant set in
{

dL1

dt |(3.1)=

0
}

is the singleton {P0}. By the LaSalle’s invariance principle, we can conclude that P0 is globally
attractive in Ω.

Second, for R0 > 1, it is not difficult to verify that Eq (4.3) has a root with a positive real part. In
fact, F(τ̃, τ3, 0) < 0 if R0 > 1, and lim

λ→∞
F(τ̃, τ3, λ) = ∞. Therefore, the following theorem is obtained.

Theorem 4.1. In Case I, we have
(i) If R0 < 1 and (H1) holds, then the alcohol-free equilibrium P0 is globally asymptotically stable for
any τ3 > 0, τ̃ = 0;
(ii) If R0 > 1, then the alcohol-free equilibrium P0 is unstable for any τ3 > 0, τ̃ = 0.

2) Stability analysis of P∗

We let s(t) = S (t)−S ∗, e(t) = E(t)−E∗, a(t) = A(t)−A∗, r(t) = R(t)−R∗, the linearization of system
(3.1) at P∗ is given by

ds(t)
dt

= −(βA∗ + µ + p)s(t) − βS ∗a(t),

de(t)
dt

= ps(t) − (µ + ε + σβA∗)e(t) − σβE∗a(t),

da(t)
dt

= βA∗s(t − τ1) + σβA∗e(t − τ̃) + (βS ∗ + σβE∗)a(t − τ̃) + δr(t − τ3) − ma(t),

dr(t)
dt

= γa(t) − nr(t).

(4.6)

Further, the Jacobi matrix J at P∗ can be written as

J = J|P∗ =


−(µ + p + βA∗) 0 −βS ∗ 0

p −(µ + ε + σβA∗) −σβE∗ 0
βA∗e−λτ̃ σβA∗e−λτ̃ (βS ∗ + σβE∗)e−λτ̃ − m δe−λτ3

0 0 γ −n

 .
The characteristic equation of system (3.1) at P∗ is det(λI − J) = 0, where I is the identity matrix and
λ is the eigenvalue of matrix J. By computation, the characteristic equation of system (3.1) at P∗ can
be expressed by

λ4 + n1λ
3 + n2λ

2 + n3λ + n4 − (r1λ
3 + r2λ

2 + r3λ + r4)e−λτ̃ − (s2λ
2 + s3λ + s4)e−λτ3 = 0, (4.7)

where
n1 = 2µ + p + ε + m + n(σ + 1)βA∗,
n2 = σβ2(A∗)2+[(µ+n)(1+σ)+σp+ε+mσ+1]βA∗+σβ(µ+p)(µ+ε)+n(2µ+p+ε)+m(2µ+p+n+ε),
n3 = (m + n)[σβ2(A∗)2 + (µ+ ε)βA∗ +σ(p + µ)βA∗ + (µ+ p)(µ+ ε)] + mn(σ+ 1)βA∗ + n(2µ+ p + ε),
n4 = mn[σβ2(A∗)2 + βA∗(µ + ε + σp + σµ) + (µ + p)(µ + ε)],
r1 = βS ∗ + σβE∗,
r2 = β2S ∗A∗(σ + 2) + σβ2E∗A∗(2σ + 1) + β(2µ + p + n + ε)(S ∗ + σE∗),
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r3 = (βS ∗+σβE∗)[σβ2(A∗)2 +(σ(µ+ p)+nσ+1)βA∗]+(µ+ p)(µ+ε)+n(2µ+ p+ε)+σ2β2E∗A∗(βA∗+
µ + p + n)
+ β2S ∗A∗(σβA∗ + µ + ε + n),

r4 = (βS ∗ +σβE∗)n[σβ2(A∗)2 + βA∗(µ + ε +σp +σµ) + (µ + p)(µ + ε)] + nβ2S ∗A∗(σβA∗ + µ + ε) +

npσβ2(A∗)2

+ nσ2β2E∗A∗(βA∗ + µ + p),
s2 = γδ,
s3 = γδ[βA∗(1 + σ) + (2µ + p + ε)],
s4 = γδ[σβ2(A∗)2 + βA∗(µ + ε + σµ + σp) + (µ + p)(µ + ε)].
Here τ̃ = 0, τ3 > 0, so the characteristic equation Eq (4.7) can be simplified to

λ4 + w1λ
3 + w2λ

2 + w3λ + w4 − (s2λ
2 + s3λ + s4)e−λτ3 = 0, (4.8)

where w1 = n1 − r1,w2 = n2 − r2,w3 = n3 − r3,w4 = n4 − r4.

(H2): Suppose that the following conditions holds:
(i) w1 > 0,w1(w2 − s2) > w3 − s3,w4 − s4 > 0;
(ii) w1[(w3 − s3)(w2 − s2) − w1(w4 − s4)] > (w3 − s3)2.

By the Routh-Hurwitz criteria, we will known that all roots of Eq (4.8) with τ3 = 0 have negative
real parts. We now claim the locally stability of the alcohol-present equilibrium P∗ in Case I.

Theorem 4.2. In case I, the alcohol-present equilibrium P∗ is locally asymptotically stable for any
τ3 > 0 if R0 > 1 and (H2) holds.

4.2. Case II: τ1 = τ2 = τ̃ > 0, τ3 = 0

1) Stability analysis of P0

If R0 < 1 and τ̃ > 0, τ3 = 0, from the discussion of part (1) in Case I, the characteristic equation
F(τ̃, τ3, λ) of system (3.1) at P0 becomes

F(τ̃, 0, λ) =
[
λ + m − β(S 0 + σE0)e−λτ̃

]
(λ + n) − γδ = λ2 + b1λ + b0 − (c1λ + c0)e−λτ̃ = 0, (4.9)

where b1 = m + n > 0, b0 = mn − γδ > 0, c1 = β(S 0 + σE0) > 0, c0 = β(S 0 + σE0)n = nc1 > 0.
Notice that 0 is not a root of Eq (4.9) because of R0 < 1. Let λ = iω2(ω2 > 0) be a purely imaginary

root of Eq (4.9), we have

−ω2
2 + ib1ω2 + b0 − (ic1ω2 + c0)

[
cos(ω2τ̃) − i sin(ω2τ̃)

]
= 0.

Separating the real and imaginary parts, we can get the following equations−ω2
2 + b0 = c0 cos(ω2τ̃) + c1ω2 sin(ω2τ̃),
b1ω2 = c1ω2 cos(ω2τ̃) − c0 sin(ω2τ̃).

(4.10)

Squaring and adding both equations of Eq (4.10), it follows that

ω4
2 + (b2

1 − 2b0 − c2
1)ω2

2 + (b2
0 − c2

0) = 0. (4.11)
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Let u2 = ω2
2 , then Eq (4.11) becomes

G(u2) = u2
2 + (b2

1 − 2b0 − c2
1)u2 + (b2

0 − c2
0) = 0. (4.12)

From m > c1, we easily get b2
0 − c2

0 > 0 and b2
1 − 2b0 − c2

1 = n2 + 2γδ + m2 − c2
1 > 0. So Eq (4.12) has

no positive root. Thus, all roots of Eq (4.9) have negative real parts. The alcohol-free equilibrium P0

is locally asymptotically stable for any τ̃ > 0 with τ3 = 0.
In the following, we prove P0 is globally attractive in Ω for any τ̃ > 0, τ3 = 0. Define Lyapunov

function L2 : C ×C ×C ×C → R:

L2(S t, Et, At,Rt) = At(0) + Rt(0) + β

∫ 0

−τ̃

S t(s)At(s)ds + σβ

∫ 0

−τ̃

Et(s)At(s)ds,

where the notation xt(s) and xt(0) are the same meaning as in L1. The time derivative of L2 along the
solution of system (3.1) with τ1 = τ2 = τ̃ > 0, τ3 = 0 is

dL2

dt
|(3.1) = βS (t − τ̃)A(t − τ̃) + σβE(t − τ̃)A(t − τ̃) + δR(t) + (γ − m)A(t) − nR(t)

+ βS (t)A(t) − βS (t − τ̃)A(t − τ̃) + σβE(t)A(t) − σβE(t − τ̃)A(t − τ̃)

≤
{
β[S (t) + σE(t)] − (µ + a1)

}
A(t).

(4.13)

If (H1) holds, it ensures that dL2

dt |(3.1)≤ 0, and dL2

dt = 0 if and only if A(t) = 0. It can be verified that the
maximal invariant set in

{
dL2

dt |(3.1)= 0
}

is the singleton {P0}. By the LaSalle’s invariance principle, we
can conclude that P0 is globally attractive in Ω. Therefore, we have the following theorem.

Theorem 4.3. In case II, we have
(i) If R0 < 1 and (H1) holds, then the alcohol-free equilibrium P0 is globally asymptotically stable for
any τ̃ > 0, τ3 = 0;
(ii) If R0 > 1, then the alcohol-free equilibrium P0 is unstable for any τ̃ > 0, τ3 = 0.

2) Stability analysis of P∗

Here τ̃ > 0, τ3 = 0, similar to the discussion of part (2) in Case I, the characteristic equation Eq
(4.7) can be simplified to

λ4 + h1λ
3 + h2λ

2 + h3λ + h4 − (r1λ
3 + r2λ

2 + r3λ + r4)e−λτ̃ = 0, (4.14)

where h1 = n1, h2 = n2 − s2, h3 = n3 − s3, h4 = n4 − s4.

(H3): The coefficients of Eq (4.14) satisfy the Routh-Hurwitz criteria when τ̃ = 0.

Theorem 4.4. In case II, if R0 > 1 and (H3) holds, then the alcohol-present equilibrium P∗ is locally
asymptotically stable for any τ̃ > 0.

4.3. Case III: τ1 = τ2 = τ3 = τ > 0

1) Stability analysis of P0

For τ1 = τ2 = τ3 = τ > 0, the characteristic equation of system (3.1) at P0 is given by

λ2 +
[
m + n − β(S 0 + σE0)e−λτ

]
λ + mn −

[
γδ + β(S 0 + σE0)n

]
e−λτ = 0. (4.15)
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First, let λ = iω(ω > 0) be a purely imaginary root of Eq (4.15). We have

−ω2 +
[
m + n − β(S 0 + σE0)e−i(ωτ)

]
iω + mn −

[
γδ + β(S 0 + σE0)n

]
e−i(ωτ) = 0.

Then, we get

−ω2+(m+n)ωi−β(S 0+σE0)
[

cos(ωτ)−i sin(ωτ)
]
iω+mn−

[
γδ+β(S 0+σE0)n

][
cos(ωτ)−i sin(ωτ)

]
= 0.

Separating the real and imaginary parts, we can get the following equations−ω2 + mn = β(S 0 + σE0) sin(ωτ)ω + [γδ + β(S 0 + σE0)n] cos(ωτ),
(m + n)ω = β(S 0 + σE0) cos(ωτ)ω − [γδ + β(S 0 + σE0)n] sin(ωτ).

(4.16)

Squaring and adding both equations of Eq (4.16), it follows that

ω4 +
[
m2 + n2 − β2(S 0 + σE0)2

]
ω2 + (mn)2 −

[
γδ + β(S 0 + σE0)n

]2
= 0. (4.17)

Let u = ω2, then Eq (4.17) becomes

G(u) = u2 +
[
m2 + n2 − β2(S 0 + σE0)2

]
u + (mn)2 −

[
γδ + β(S 0 + σE0)n

]2
= 0. (4.18)

From R0 < 1, we easily obtain m2 + n2 − β2(S 0 +σE0)2 > 0 and (mn)2 −
[
γδ+ β(S 0 +σE0)n

]2
> 0. So,

Eq (4.18) has no positive root. Thus, all roots of Eq (4.15) have negative real parts, and the alcohol-free
equilibrium P0 is locally asymptotically stable for any τ > 0.

Second, we prove P0 is globally attractive in Ω for any τ > 0. To prove this, we consider the
following Lyapunov function L3 : C ×C ×C ×C → R:

L3(S t, Et, At,Rt) = At(0) + Rt(0) + β

∫ 0

−τ

S t(s)At(s)ds + σβ

∫ 0

−τ

Et(s)At(s)ds + δ

∫ 0

−τ

Rt(s)ds,

where the notation xt(s) and xt(0) are the same meaning as in L1. The time derivative of L3 along the
solution of system (3.1) with τi = τ > 0 (i = 1, 2, 3) is

dL3

dt
|(3.1) = −mA(t) + γA(t) − nR(t) + βS (t)A(t) + σβE(t)A(t) + δR(t)

≤
{
β[S (t) + σE(t)] − (µ + a1)

}
A(t).

(4.19)

If (H1) holds, then it ensures that dL3

dt |(3.1)≤ 0, and dL3

dt = 0 if and only if A(t) = 0. It can be verified that
the maximal invariant set in

{
dL3

dt |(3.1)= 0
}

is the singleton {P0}. By the LaSalle’s invariance principle,
we can conclude that P0 is globally attractive in Ω. We claim the following result.

Theorem 4.5. For Case III, we get
(i) If R0 < 1 and (H1) holds, then the alcohol-free equilibrium P0 is globally asymptotically stable for
any τi = τ > 0 (i = 1, 2, 3);
(ii) If R0 > 1, then the alcohol-free equilibrium P0 is unstable for any τi = τ > 0 (i = 1, 2, 3).
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2) Stability analysis of P∗

For R0 > 1, system (3.1) has a unique positive equilibrium P∗(S ∗, E∗, A∗,R∗). In the following, we
will consider the stability of the alcohol-present equilibrium P∗ and concern about the effect of time
delays on the stability of the alcohol-present equilibrium.

Let s(t) = S (t) − S ∗, e(t) = E(t) − E∗, a(t) = A(t) − A∗, r(t) = R(t) − R∗, the linearization of system
(3.1) at P∗ is given by

ds(t)
dt

= −(βA∗ + µ + p)s(t) − βS ∗a(t),

de(t)
dt

= ps(t) − (µ + ε + σβA∗)e(t) − σβE∗a(t),

da(t)
dt

= βA∗s(t − τ) + σβA∗e(t − τ) + (βS ∗ + σβE∗)a(t − τ) + δr(t − τ) − ma(t),

dr(t)
dt

= γa(t) − nr(t).

(4.20)

Further, the Jacobi matrix J at P∗ can be written as

J = J|P∗ =


−(µ + p + βA∗) 0 −βS ∗ 0

p −(µ + ε + σβA∗) −σβE∗ 0
βA∗e−λτ σβA∗e−λτ (βS ∗ + σβE∗)e−λτ − m δe−λτ

0 0 γ −n

 .
By computation, the characteristic equation of system (3.1) at P∗ is given by

λ4 + l1λ
3 + l2λ

2 + l3λ + l4 − (u1λ
3 + u2λ

2 + u3λ + u4)e−λτ = 0, (4.21)

where
l1 = 2µ + p + ε + m + n(σ + 1)βA∗,
l2 = σβ2(A∗)2+[(µ+n)(1+σ)+σp+ε+mσ+1]βA∗+σβ(µ+p)(µ+ε)+n(2µ+p+ε)+m(2µ+p+n+ε),
l3 = (m + n)[σβ2(A∗)2 + (µ+ ε)βA∗ +σ(p + µ)βA∗ + (µ+ p)(µ+ ε)] + mn(σ+ 1)βA∗ + n(2µ+ p + ε),
l4 = mn[σβ2(A∗)2 + βA∗(µ + ε + σp + σµ) + (µ + p)(µ + ε)],
u1 = βS ∗ + σβE∗,
u2 = β2S ∗A∗(σ + 2) + σβ2E∗A∗(2σ + 1) + β(2µ + p + n + ε)(S ∗ + σE∗) + γδ,
u3 = (βS ∗+σβE∗)[σβ2(A∗)2+(σ(µ+ p)+nσ+1)βA∗]+(µ+ p)(µ+ε)+n(2µ+ p+ε)+σ2β2E∗A∗(βA∗+

µ + p + n)
+ β2S ∗A∗(σβA∗ + µ + ε + n) + γδ[βA∗(1 + σ) + (2µ + p + ε)],

u4 = (βS ∗ +σβE∗)n[σβ2(A∗)2 + βA∗(µ+ ε+σp +σµ) + (µ+ p)(µ+ ε)] + nβ2S ∗A∗(σβA∗ + µ+ ε) +

npσβ2(A∗)2

+ nσ2β2E∗A∗(βA∗ + µ + p) + γδ[σβ2(A∗)2 + βA∗(µ + ε + σµ + σp) + (µ + p)(µ + ε)].
For τ > 0, we assume that Eq (4.21) have root λ(τ) = ξ(τ) + iζ(τ), where ξ(τ), ζ(τ) ∈ R. Set τ∗ be

such that ξ(τ∗) = 0, ζ(τ∗) = ζ∗. Substituting λ(τ∗) into Eq (4.21) and separating the real and imaginary
parts, we can get the following equationsζ4

∗ − l2ζ
2
∗ + l4 = (u4 − u2ζ

2
∗ ) cos(ζ∗τ∗) + (u3ζ∗ − u1ζ

3
∗ ) sin(ζ∗τ∗),

−l1ζ
3
∗ + l3ζ∗ = (u3ζ∗ − u1ζ

3
∗ ) cos(ζ∗τ∗) + (u2ζ

2
∗ − u4) sin(ζ∗τ∗).

(4.22)
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Taking squares and adding the above equations of Eq (4.22), we get

ζ8
∗ + ρ1ζ

6
∗ + ρ2ζ

4
∗ + ρ3ζ

2
∗ + ρ4 = 0, (4.23)

where ρ1 = l2
1 − 2l2 − u2

1, ρ2 = l2
2 − u2

2 − 2l1l3 + 2l4 + 2u1u3, ρ3 = l2
3 − u2

3 − 2l2l4 + 2u2u4, ρ4 = l2
4 − u2

4.

(H4): Equation (4.23) has at least one simple positive root.

Theorem 4.6. For Case III, if (H4) does not hold, then the alcohol-present equilibrium P∗ is locally
asymptotically stable for any τi = τ > 0 (i = 1, 2, 3).

Remark 4.1. If (H4) holds and set ζ∗ is the last such root. We will assert that there exists a τ∗ > 0
such that ξ(τ∗) = 0, ζ(τ∗) = ζ∗. System (3.1) may exhibit a Hopf bifurcation at P∗ as τ passes upwards
through τ∗ = ζ−1(ζ∗) > 0 with dξ

dτ |τ=τ∗, 0.

Considering the delay of temporarily recovered people is likely to be different from the delay of
two classes of susceptible populations, we assume that τ1 = τ2 = τ̃ , τ3 and show the stability in the
following case.

4.4. Case IV: τ1 = τ2 = τ̃ > 0, τ3 > 0

In this case, we only study the stability analysis of P0. From the discussion of part (1) in Case I, the
characteristic equation Eq (4.1) can be rewritten as

F(τ̃, τ3, λ) =
[
λ+m−β(S 0+σE0)e−λτ̃

]
(λ+n)−γδe−λτ3 = λ2+ f1λ+ f0−(g1λ+g0)e−λτ̃−γδe−λτ3 = 0, (4.24)

where f1 = m + n > 0, f0 = mn > 0 and g1 = β(S 0 + σE0) > 0, g0 = ng1 > 0. Let λ = iω3(ω3 > 0) be a
purely imaginary root of Eq (4.24). It satisfies

−ω2
3+i f1ω3+ f0−ig1ω3 cos(ω3τ̃)−g0 cos(ω3τ̃)−g1ω3 sin(ω3τ̃)+ig0 sin(ω3τ̃)−h0 cos(ω3τ3)+ih0 sin(ω3τ3) = 0.

(4.25)
Separating the real and imaginary parts, we obtainA sin(ω3τ̃) + B cos(ω3τ̃) = C,

A cos(ω3τ̃) − B sin(ω3τ̃) = D,
(4.26)

where A = g1ω3, B = g0 and C = f0 − ω
2
3 − h0 cos(ω3τ3),D = f1ω3 + h0 sin(ω3τ3). Then, we obtain

C2 + D2 − A2 − B2 = 0.

Set
G(ω3) = C2 + D2 − A2 − B2 = ω4

3 + m1ω
3
3 + m2ω

2
3 + m3ω3 + m4 = 0. (4.27)

where m1 = 0,m2 = f 2
1 − g2

1 − 2 f0 + 2h0 cos(ω3τ3),m3 = 2 f1h0 sin(ω3τ3),m4 = f 2
0 − 2 f0h0 cos(ω3τ3) +

h2
0 − g2

0.
We have

G′(ω3) = 4ω3
3 + 2m2ω3 + m3.

Set
ω3

3 +
m2

2
ω3 +

m3

4
= ω3

3 + p1ω3 + q1 = 0,
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where p1 = m2
2 , q1 = m3

4 . Notice that there is no square term in the above equation. In order to analyze
the roots of Eq (4.27), we cite the results in [55] about the existence of positive roots of the fourth
degree polynomial equation. Define

∆ = (
q1

2
)2 + (

p1

3
)3, η =

−1 +
√

3i
2

,

ω(1)
3 =

3

√
−

q1

2
+
√

∆ +
3

√
−

q1

2
−
√

∆,

ω(2)
3 =

3

√
−

q1

2
+
√

∆η +
3

√
−

q1

2
−
√

∆η2,

ω(3)
3 =

3

√
−

q1

2
+
√

∆η2 +
3

√
−

q1

2
−
√

∆η.

Then, we need the following lemma.

Lemma 4.2. (See [55]) Suppose that m4 ≥ 0.
(i) If ∆ ≥ 0, then Eq (4.27) has positive roots if and only if ω(1)

3 > 0 and G(ω(1)
3 ) < 0;

(ii) If ∆ < 0, then Eq (4.27) has positive root if and only if there exists at least one ω∗ ∈ {ω(1)
3 , ω(2)

3 , ω(3)
3 },

such that ω∗ > 0 and G(ω∗) ≤ 0.

Notice that R0 = nc1
mn−γδ < 1 (mn > γδ), we can get

G(0) = m4 = f 2
0 − 2 f0h0 cos(ωτ3) + h2

0 − g2
0 ≥ f 2

0 − 2 f0h0 + h2
0 − g2

0

= ( f0 − h0 + g0)( f0 − h0 − g0) = (mn − γδ + nc1)(mn − γδ − nc1) > 0.

Supposing that condition (i) or (ii) of Lemma 4.2 is satisfied, then Eq (4.27) has finite positive
roots ω31, ..., ω3k, k ≤ 4, and for every fixed ω3i, i = 1, ..., k, k ≤ 4, there exists a sequence {τ j

3i | i =

1, ..., k, k ≤ 4, j = 0, 1, ...} such that Eq (4.25) holds. Let

τ∗3(τ̃) = min{τ0
3i | i = 1, ..., k},

and ω∗ = ω3i, here i corresponding to the minimum value. Then Eq (4.24) has a pair of purely
imaginary roots ±iω∗ when τ = τ∗3(τ̃), τ̃ ∈ [0,+∞).

Theorem 4.7. In Case IV, set τ̃ ∈ [0,+∞). If the condition (i) or (ii) of Lemma 4.2 is satisfied, then the
alcohol-free equilibrium P0 is asymptotically stable when τ3 ∈

[
0, τ∗3(τ̃)

]
.

Similarly, we can have the following results.

Theorem 4.8. In Case IV, set τ3 ∈ [0,+∞). If exists

{τ̃
j
i | i = 1, ..., k, k ≤ 4, j = 0, 1, ...}

such that Eq (4.25) holds, then the alcohol-free equilibrium P0 is asymptotically stable when τ̃ ∈[
0, τ̃∗(τ3)

]
.
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Remark 4.2. We will leave the following studies as open problems:
1) The above research shows that delays do not destroy the globally asymptotical stability of

alcohol-free equilibrium P0. However, delays can destroy the stability of alcohol-prsent equilibrium
P∗. We assert that there may arise a Hopf bifurcation at P∗ by increasing the value of one or more
delays.

2) The study of other situations is also very valuable. For example: τi > 0, i = 1, 2, 3 and τ1 ,

τ2 , τ3. However, it is well known that the analysis of the characteristic equation is a formidable and
challenging task.

5. Impacts of public health education and delays on alcohol control

In the process of establishing the model, the public health education and three delay factors are
introduced. In this section, the impact of these factors on the number of alcoholics will be discussed in
detail.

First of all, we choose a set of values of parameters (parameter values are mainly taken from [5, 41]):
µ = 0.25, β = 0.8, a1 = 0.01, a2 = 0.01, q = 0.6, Λ = 30.496, ε = 0.2, δ = 0.1, γ = 0.7,
ξ = 0.04, p = 0.1, τ1 = τ2 = τ3 = 0.5.

Due to the greater the positive impact of media reporting measures on the population, the smaller
the value of σ is. Figure 2 shows the number of alcoholics A(t) decreased with the decrease of the
value of the media coverage impact factor σ. So, it is clear to see that the public health education
(media reporting measure) is beneficial to control the spread of alcohol problems.

0 10 20 30 40

Time t

0

2

4

6

8

10

12

A
(t

)

σ=0.02 σ=0.08 σ=0.2 σ=0.8

Figure 2. The impact of public health education σ on the number of alcoholics A(t).

Next, the simulation results for different time delays are shown in Figure 3. Let σ = 0.2, τi =

0.01, 1, 2, 3(i = 1, 2, 3). We can see that the change trend of alcoholics A(t) for different values of τ1 in
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Figure 3(a). That is, as the value of τ1 increases, the value of A(t) increases rapidly in a short time. But
the smaller the value of τ1 is, the smaller the corresponding peak value of A(t) is. Moreover, the larger
the value of τ1, the longer it takes for the value of A(t) to reach the highest peak. This indicates that
the higher the value of τ1, the more unfavorable it is to control the problem of drinking. From Figure
3(b), as the value of τ2 increases, the value of A(t) decreases rapidly in a short time. This shows that
the higher the value of τ2, the more favorable the control of alcohol problem. From Figure 3(c), in the
long term, as the value of τ3 increases, the value of A(t) decreases. This shows that the higher the value
of τ3, the more favorable the control of alcohol problem.

6. Sensitivity analysis

In this section, we will use the Latin hypercube sampling method in [56–58] and Partial rank
correlation coefficients method to study the sensitivity analysis of each parameter on the basic
reproduction number R0 and the number of alcoholics A(t). By discussing the sensitivity analysis of
each parameter, we can control the key parameters and take corresponding measures to control
alcohol problems.

First, we will explore the effect of various parameters on the basic reproduction number R0, see
Figure 4. Parameter values are mainly taken from [5, 41] and given by Table 1.

Table 1. Model parameters and values.

Parameter Value Source
µ : Natural death rate 0.25 [42]
β : Rate of susceptible individuals turn to drink 0.1 [5]
a1, a2 : Death rates due to excessive drinking 0.01 [42]
q : Proportion of these individuals is assumed to be uneducated 0.6 [42]
Λ : New recruits enter the population 0.8 [5]
σ : Overall effectiveness of the public health educational campaigns 0.2 [42]
ε : Rate of transfer from educated individuals to quit drinkers 0.2 [42]
δ : Rate of temporarily recovered drinkers enter into alcoholics compartment 0.1 [42]
γ : Rate of transfer from alcoholics to temporarily recovered drinkers 0.5 [5]
ξ : Rate of transfer from temporarily recovered drinkers to quit drinkers 0.4 [42]
p : Rate of uneducated individuals enter into educated individuals 0.1 [Assumed]

It is assumed that the parameters of the system obey normal distribution, and 2000 samples are taken
within the 95% confidence interval (taking the upper and lower as 0.02). In what follows, we perform
the numerical study. Namely, the PRCC-values of R0 with respect to each parameter of the system are
given. According to the order of parameters µ, β, a1, a2, q,Λ, σ, ε, δ, γ, ξ, p, the corresponding PRCC-
values are:

−0.4996, 0.9968,−0.1318,−0.0254, 0.8398, 0.8220,

0.6064,−0.3579, 0.7078,−0.8267,−0.1571,−0.9330.

Similarly, the P-values of R0 with respect to each parameter of the system are as follows. According
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to the order of parameters µ, β, a1, a2, q,Λ, σ, ε, δ, γ, ξ, p, the corresponding P-values are:

4.6463 × 10−126, 0, 3.6031 × 10−9, 0.2584, 0, 0, 4.4486 × 10−200,

3.6482 × 10−61, 2.9255 × 10−302, 0, 1.8615 × 10−12, 0.

Parameters with the highest (or lowest) PRCC values have the largest positive (or negative) impact
on R0. On the contrary, R0 is more sensitive to the parameter with smaller P-value. Figure 4(a),(b)
depict the parameters that have the most positive influence on R0 are β, q, Λ, σ and δ. While the
parameters with the most negative impact on R0 are µ, a1, a2, ε, γ, ξ and p. It can be seen that
alcohol transfer rate β has the greatest positive correlation with R0, and population transfer rate caused
by media reports p has the greatest negative correlation with R0. Moreover, the sensitivity of a2 is
the weakest among all parameters. Practical significance: by strengthening the news real-time report
and cumulative report on alcohol related hazards, we can reduce the value of σ and δ, and increase
the values of ε, ξ and p to make the value of R0 decreases to R0 < 1. so as to control the number of
alcoholics in the population. Second, we study the sensitivity analysis of parameters to A(t). Focusing
on the impact of media reporting measures on alcoholism. Therefore, the following mainly considers
several parameters that are directly affected by media reports as shown in Figure 5. Figure 5(a) shows
the influence of parameters µ and a1 on A(t) is always negatively correlated. And, the influence of
parameter a2 on A(t) is positively correlated at first, and as time goes by, the influence of a2 on A(t)
becomes negatively correlated because the relapsed person drinks again. However, the influence of
parameter ε on A(t) is negatively. Because with the passage of time, the influence of media reports on
people will weaken or even disappear, which also shows that it is necessary to carry out regular reports
on the dangers of alcoholism to strengthen people’s health awareness. In particular, Figure 5(b) shows
the PRCC-values of parameter σ or p will be reduced to zero in the later stage, with slight positive and
negative fluctuations. Research shows that the influence of media reports has saturation effect. This
is also consistent with the reality. Regular media coverage of the dangers of alcoholism can control
alcoholism in the community.
Remark 6.1. Among the abundant literature on sensitivity measures, the Sobols indices have received
much attention since they provide accurate information for most models. Polynomial chaos-based
Sobols indices are used in [60–62]. Recently, using deterministic, frequentist and Bayesian approaches,
Calatayud et al. [63] studied the effect of social behavior on the increase of the obesity epidemic.
And several sensitivity analyses are also conducted. These approaches are interesting alternatives for
sensitivity analyses. We will leave these interesting work for the future.

7. Numerical simulations

In this section, some numerical results of system (3.1) are provided to substantiate the analytic
results obtained in this paper.

In the following, we fix parameters:
µ = 0.25, β = 0.1, a1 = 0.01, a2 = 0.01, p = 0.1, q = 0.6, Λ = 3.496,
σ = 0.2, ε = 0.2, δ = 0.1,γ = 0.5, ξ = 0.4,
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Figure 3. The impact of delay values of τ1, τ2, τ3 on the A(t) with σ = 0.2.
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Figure 4. (a) The PRCC-values of R0 with respect to each parameter. (b) The P-values of R0

with respect to each parameter.

7.1. For case I: τ1 = τ2 = 0, τ3 > 0

Choose τ1 = τ2 = 0, τ3 = 0.5, we have R0 = 0.2478 < 1 and meet the previous conditions. Thus
the alcohol-free equilibrium

P0 = (1.4983, 1.1098, 0, 0, 0.8879)

is globally asymptotically stable. The solutions of P0 are shown in Figure 6(a).
Other parameters remain unchanged and let β = 0.8, γ = 0.7, we have R0 = 1.7531 > 1, then the

alcohol-free equilibrium P0 is unstable and the alcohol-present equilibrium

P∗ = (0.8122, 0.8462, 0.3697, 0.6467, 0.9357)

is locally asymptotically stable. The solutions of P∗ are shown in Figure 6(b).

7.2. For case II: τ1 = τ2 > 0, τ3 = 0

Choose µ = 0.7, τ1 = τ2 = 0.7, τ3 = 0, we have R0 = 0.1792 < 1 and the alcohol-free equilibrium

P0 = (1.8354, 1.2916, 0, 0, 0.3690)

is globally asymptotically stable. The solutions of P0 are shown in Figure 7(a).
Choose µ = 0.3, β = 0.8, we get R0 = 1.9437 > 1 and the alcohol-present equilibrium

P∗ = (1.0589, 0.2687, 0.4905, 0.4039, 0.6721)

is locally asymptotically stable. The solutions of P∗ are shown in Figure 7(b).
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Figure 5. The PRCC-values of A(t) with respect to several parameters of the system.
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Figure 6. For case I, set τ1 = τ2 = 0, τ3 = 0.5: (a) Dynamic behavior of P0 with R0 =

0.2478 < 1. (b) Dynamic behavior of P∗ with R0 = 1.7531 > 1.
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Figure 7. For case II, set τ1 = τ2 = 0.7, τ3 = 0: (a) Dynamic behavior of P0 with R0 =

0.1792 < 1. (b) Dynamic behavior of P∗ with R0 = 1.9437 > 1.

7.3. For case III: τ1 = τ2 = τ3 > 0

Choose µ = 0.25, β = 0.05, τ1 = τ2 = τ3 = 0.5, we have R0 = 0.1239 < 1 and the alcohol-free
equilibrium

P0 = (1.4983, 1.1098, 0, 0, 0.8879)

is globally asymptotically stable. The solutions of P0 are shown in Figure 8(a).
Choose µ = 0.25, β = 0.7, we get R0 = 1.7363 > 1 and the alcohol-present equilibrium

P∗ = (1.0001, 0.8793, 0.3205, 0.1527, 0.7644)

is locally asymptotically stable. The solutions of P∗ are shown in Figure 8(b).

7.4. For case IV: τ1 = τ2 > 0, τ3 > 0

Choose τ1 = τ2 = 0.1, τ3 = 0.9, we have R0 = 0.0423 < 1 and the alcohol-free equilibrium

P0 = (1.4983, 1.1098, 0, 0, 0.8879)

is asymptotically stable. The solutions are shown in Figure 9(a).
Choose another set of values τ1 = τ2 = 0.2, τ3 = 0.8, we get R0 = 0.1025 < 1 and the alcohol-free

equilibrium
P0 = (0.6992, 1.5538, 0, 0, 1.2430)

is also asymptotically stable. The solutions are shown in Figure 9(b).
Through the above theoretical analysis and numerical simulation, it can be seen that different time

delays have little effect on the global asymptotic behavior of the alcohol-free equilibrium point P0, but
have a greater impact on the dynamic behavior of the alcoholic equilibrium point P∗.

Mathematical Biosciences and Engineering Volume 18, Issue 1, 904–932.



926

0 10 20 30 40 50

time t

-1

0

1

2

3

4

5

N
u

m
b

er
 o

f 
p

eo
p

le

S

E

A

R

Q

(a)

0 10 20 30 40 50

time t

0

1

2

3

4

5

N
u

m
b

er
 o

f 
p

eo
p

le

S

E

A

R

Q

(b)

Figure 8. For case III, set τ1 = τ2 = τ3 = 0.5: (a) Dynamic behavior of P0 with R0 =

0.1239 < 1. (b) Dynamic behavior of P∗ with R0 = 1.7363 > 1.
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Figure 9. For case IV, the global dynamic behavior of P0. (a) τ1 = τ2 = 0.1, τ3 = 0.9,
R0 = 0.0423 < 1. (b) τ1 = τ2 = 0.2, τ3 = 0.8, R0 = 0.1025 < 1.
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8. Conclusions and discussions

There is a large literature (see [15, 16, 18–27] and [28–43] ) that has been used for studying alcohol
problems and describing the effects of awareness programs by media on the infectious disease or
alcohol consumption behavior. From [41], we know that the global stability of system (2.1) without
delays has been proved by using the Lyapunov function. That is, if R0 < 1, all solutions converge to
the alcohol-free equilibrium P0, and the alcohol problems disappear eventually; if R0 > 1, the alcohol-
present equilibrium P∗ is globally stable, i.e., the alcohol problems will persist in the population and
the number of problem drinkers tends to a positive constant. However, most of these models are ODE
models and do not incorporate the effects of the time delay. Recently, Huo et al. [49] and Ma et al.
[50] incorporated one delay into alcoholism model and studied it’s stability via the delay differential
equations. Their results showed that the stability of system be destroyed by the delay and the system
occurs a Hopf bifurcation at the alcohol-present equilibrium under certain conditions.

Compared to previous models, this paper considered an alcoholism model with health education and
three delays. The main goal is to analyze the global dynamics of the model and discuss the impacts
of health education and three delays on the alcohol consumption behavior. A key novelty of our
model is that we do not only consider the impact of health education but also introduce three delays
which describe the time needed that a susceptible or temporarily individual becomes an infectious
alcohol user. It is necessary and practical significance to consider the dynamic behavior about delayed
alcoholism model. A question is how the three delays affect the dynamics of the system (3.1). This is
the main purpose of this paper.

Specifically, we discussed a FDE system (3.1) in four different cases respectively. If R0 < 1,
our results showed that the alcohol-free P0 is still globally asymptotically stable after incorporating
time delays, which dose not change the dynamic of P0. However, if R0 > 1, our results shows that
incorporation of three delays will change the stability of the alcohol-present equilibrium P∗. This
means that difference of the time delay between two classes of susceptible populations and temporarily
recovered people can affect the spread and control of alcohol problems greatly. The higher the value of
τ2 or τ3, the more conducive to the prevention and control of alcoholism. On the contrary, the higher
the value of τ1, the more unfavorable the prevention and control of alcoholism. Under the point of view
of the alcohol control, our results show that time delays have important influence in controlling alcohol
problem. For condition (H1), that is, the transmission rate β plays an essential role in our study. Public
health education can reduce the transmission rate β. Our model improves and generalizes the existing
results.

In this article, we only considered several special cases. For the alcohol-present equilibrium P∗,
we assert that there may arise a Hopf bifurcation at P∗ by increasing the value of delay. The study of
other situations is more conform to reality the actual phenomenon. However, it is well known that the
analysis of the characteristic equation is a formidable and challenging task. We will leave these studies
as open problems.

For simplicity, the random variability is normally distributed in this paper. In fact, the value of the
model key parameters can be obtained by using statistic data will make our paper more perfect. From
Brauer [59], we know that a example (The Great Plague in Eyam): the village of Eyam near Sheffield,
England suffered an outbreak of bubonic plague in 1665–1666. The actual data for the Eyam epidemic
are remarkably close to the predictions of the model. Our model coefficients should be fixed from
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medical reports and the delays in model may have an estimation. At present, we lack statistical data on
alcohol abuse. So that the parameters are given some values to test the theoretical results in Sections 5
and 7.

In Section 6, we use the Latin hypercube sampling method and Partial rank correlation coefficients
method to study the sensitivity analysis. We know that the Sobol’s index is a sensitivity grading
method based on the proportion of parameters contribution to output variance. Among the abundant
literature on sensitivity measures, the Sobol’s indices have received much attention since they provide
accurate information for most models. Polynomial chaos-based Sobol’s indices are used in [60–62].
By deterministic, frequentist and Bayesian approaches, several sensitivity analyses are also conducted
in [63]. These alternative methods of sensitivity analysis is effective. At the same time, compared with
ordinary differential equation model, stochastic functional differential equation model (see [64–67])
will be more suitable for the actual situation. We will leave these interesting work for the future.
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expansions and the random variable transformation technique to approximate the density function
of stochastic problems, including some epidemiological models, Symmetry, 11 (2019), 43.

62 F. Santonja, B. M. Chen-Charpentier, Uncertainty quantification in simulations of epidemics using
polynomial chaos, Comput. Math. Methods Med., 2012 2012.

63 J. Calatayud, M. Jornet, Mathematical modeling of adulthood obesity epidemic in Spain using
deterministic, frequentist and Bayesian approaches, Chaos, Solitons Fractals, 140 (2020), 110179.

64 F. A. Dorini, R. Sampaio, Some results on the random wear coefficient of the archard model, J.
Appl. Mech. 79 (2012), 051008.

65 F. J. Santonja, L. Shaikhet, Analysing social epidemics by delayed stochastic models, Discrete
Dyn. Nat. Soc., 13 (2012), 1–13.

66 L. Shaikhet, Stability of some social mathematical models with delay under stochastic
perturbations, Lyapunov Functionals and Stability of Stochastic Functional Differential Equations,
Springer, Heidelberg, 2013, 297–323.

67 F. J. Santonja, L. Shaikhet, Probabilistic stability analysis of social obesity epidemic by a delayed
stochastic model, Nonlinear Anal.: Real World Appl., 17 (2014), 114–125.

c© 2021 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 18, Issue 1, 904–932.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Model formulation
	Positivity and ultimate boundedness
	Equilibria and stability
	Case I: 1=2==0, 3>0
	Case II: 1=2=>0, 3=0
	Case III: 1=2=3=>0
	Case IV: 1=2=>0, 3>0

	Impacts of public health education and delays on alcohol control
	Sensitivity analysis
	Numerical simulations
	For case I: 1=2=0, 3>0
	For case II: 1=2>0, 3=0
	For case III: 1=2=3>0
	For case IV: 1=2>0, 3>0

	 Conclusions and discussions

