
http://www.aimspress.com/journal/MBE

MBE, 18(1): 888–903.
DOI: 10.3934/mbe.2021047
Received: 05 October 2020
Accepted: 13 December 2020
Published: 31 December 2020

Research article

Detecting time-changes in PM10 during Covid pandemic by means of an
Ornstein Uhlenbeck type process

Giuseppina Albano∗

Dipartimento di Studi Politici e Sociali, Università degli Studi di Salerno, Via Giovanni Paolo II,
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Abstract: Particulate matter with 10 micrometers or less in diameter (PM10) from several italian
cities is modeled by means of a non homogeneous Ornstein Uhlenbeck process. Such model includes
two deterministic time dependent functions in the infinitesimal moments to describe the presence of
exogeneous terms in the typical dynamics of the phenomenon. An iterative estimating procedure
combining the maximum likelihood estimation and a generalized method of moments is provided.
A Quandt Likelihood Ratio test for detecting structural breaks in PM10 data, in the period from 1st
January 2020 to 8th July 2020 which includes the first lockdown due to Covid pandemic, confirms the
presence of time-changes. These results show that the lockdown made the air once again cleaner. It is
then shown that our model and the associated estimation procedure, while not explicitly contemplating
the presence of structural breaks in the time series, implicitly incorporates them in the time dependence
of the functions in the infinitesimal moments of the underlying process.

Keywords: non homogeneous Ornstein Uhlenbeck processes; estimating procedure; PM10; structural
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1. Introduction

COVID-19 was initially found in December 2019 in Wuhan (China) and it then spread all over the
world. The World Health Organization declared COVID-19 a Public Health Emergency of
International concern in April 2020. Anyway, the rate of spread is remarkably different in different
countries of the word. Such difference is also evident in regions of the same country. Important
questions related to the influence of atmospheric factors, such as atmospheric pollution, on the spread
of COVID-19 have been then raised.

It has been argued that significantly more infected cases have been observed in more polluted areas
than in areas where the presence of pollutants is lower. Furthermore, the lockdown made us witness a
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situation in which the air has returned to being cleaner (see, for example, [1–3]).
This work does not intend to investigate the cause-effect link between the number of infections and

air quality, but to investigate the trend and variability of one of the significant indexes of air quality
during the pandemic period in Italy. In particular, we want to investigate the presence of time-changes
in the observed time series of the particulate matter with 10 micrometers or less in diameter (PM10),
both as a result of the lockdown and because it is hoped that there has been a greater awareness of the
importance of the environment by the population. The main focus of the paper is to provide an
estimating procedure for the PM10 time series that is able to model also the dynamics when some
change-points are present. Further, a sufficient condition for detecting the presence of structural
breaks is given.

PM10 dynamics has been modeled by means of a non homogeneous Ornstein Uhlenbeck (OU)
process in [4]. Such process, in its homogeneous version, was originally introduced to describe the
velocity of a particle moving in a fluid, and then was generalized to model loan interest rates (see, for
example, [5, 6]). In biological context it is able to model the membrane potential between two
consecutive spikes (see, for example, [7, 8]). The wide applicability of this process can be
documented by the vast literature in this regard (see, for example, [9–12]). In [4], in order to capture
non linear trends in real phenomena, a generalization the OU process was considered and an iterative
procedure for fitting the time dependent functions present in the drift and in the infinitesimal variance
and the constant parameter in the drift term was provided. This approach seemed to work well since
the sample paths obtained by plugging the estimated terms reproduce the observed PM10 time series
quite well.

Here we make use of the non homogeneous OU model to model PM10 time series during Covid-19
pandemic as we argue that the drift and infinitesimal variance of the process depends on time.
Furthermore, we show an iterative procedure along the line of that one proposed in [4] which makes
use of the sample covariance between two consecutive observations instead of the sample variance.
The use of the covariance between two successive observations has the advantage to take into account
the dependence between two subsequent observations in addition to the variability between
observations at the same time instant. The variance and the covariance functions have been compared
in the context of neuronal activity modeling in [13]. There it is shown, by simulations, that the
procedure implementing the sample covariance function, while showing similar performance to the
procedure using the sample variance, better fits the conditional variance of the process. Further,
looking at the PM10 we show that the procedure, while not explicitly contemplating the presence of
structural breaks in the time series, implicitly incorporates them in the time dependence of the
functions in the infinitesimal moments of the underlying process.

For our analysis we consider PM10 time series from 3 Italian cities, Milano, Torino and Bologna,
which are among the 10 cities most affected by Covid-19 during the period 1st January 2020 to 8th
July 2020.

The layout of the paper is the following. In Section 2 we introduce the methodology including the
estimating procedure and a brief description of the idea underlying the tests for structural breaks in
regression models and in time series. In Section 3 we describe the data, showing descriptive statistics
and the estimates in the OU-type model. In Section 4 the outbreak detection in PM10 time series is
investigated. Some concluding remarks close the paper.
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2. The modeling strategy

OU process is a time homogeneous diffusion process described by the following stochastic
differential equation:

dX(t) = [−aX(t) + b]dt + σdB(t), X(t0) = x0, (2.1)

where B(t) is a standard Brownian motion. In [4] a generalization of the process (2.1), by including in
the infinitesimal moments suitable deterministic time dependent functions, was considered.

Let {X(t), t ∈ [t0,T ]} be a stochastic process in R described via the SDE:

dX(t) = [−aX(t) + b(t)]dt + σ(t)dB(t), P[X(t0) = x0] = 1 (2.2)

where a ∈ R, b(t) and σ(t) are continuous deterministic functions with σ(t) > 0 for all t ∈ [t0,T ].
The transition probability density function (pdf) of X(t) f (x, t|y, τ) is normal with mean and variance

M(t | y, τ) = ye−a(t−τ) +

∫ t

τ

b(θ)e−a(t−θ)dθ, V(t | τ) =

∫ t

τ

σ2(θ)e−2a(t−θ)dθ, (2.3)

respectively. Further, the covariance function is (see [13]):

c(τ, t) = cov
[
X(τ), X(t)

]
= e−a(t−τ)

∫ τ

0
σ2(ξ)e−2a(τ−ξ)dξ

= e−a(t−τ)V(τ|0), (2.4)

with 0 < τ < t.
From Eqs (2.3) and (2.4), it is easy to see that the functions b(t) and σ2(t) satisfy the following

relations:

b(t) = a M(t | y, τ) +
dM(t | y, τ)

dt
, (2.5)

σ2(t) = e−a(t−τ)
{
a c(τ, t) +

d c(τ, t)
dτ

}
. (2.6)

In a discrete sampling, set τ = t − ∆ in (2.6) and ∆ the step between two consecutive observations, we
obtain:

σ2(t) = e−a∆
{
ac(t − ∆, t) +

d c(τ, t)
dτ

|τ=t−∆

}
. (2.7)

In the following section we provide an estimating procedure for the process X(t) in (2.2) that is able of
simultaneously estimating the parameter a and fitting the functions b(·) and σ2(·). The proposed
procedure is in line with that one proposed in [4]. It uses the sample covariance between two
consecutive observations instead of the sample variance. In this way the procedure has the advantage
of being able to capture the dependence between subsequent observations. The following assumption
has to be required:

Assumption. The functions b(t) and σ2(t) in (2.2) are continuous and bounded in [t0,T ].

Under such assumption, the quantities in (2.5) and (2.6) are well-defined, so we can implement the
sample versions of the functions involved in the estimation procedure.

In order to introduce the procedure in the following section, let us consider a discrete sampling of
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the process (2.2) based on d sample paths for the times t j, with j = 0, 1, . . . , n. Let ∆ be the time
between two consecutive observations, i.e., ∆ = t j − t j−1. Let xi, j be the observed values at times t j,
j = 0, . . . , n and i = 1, . . . , d, i.e., xi, j is the observation of the i−th sample path at the time t j. Clearly,
xi,0 = x0 ∀i = 1, . . . , d.

2.1. The iterative procedure

Given an initial value â0 to the estimate of the parameter a in (2.2), the idea is to estimate the
functions b(·) andσ2(·) by using (2.5) and (2.6) obtaining b̂1(·) and σ̂2

1(·); then, by using these estimates,
we apply the MLE to obtain the estimate â1 and so on until some form of convergence is reached.

In the following âk, b̂k(·) and σ̂2
k(·) are the estimates of a, b(·) and σ2(·), respectively, obtained at

k-th iteration of the procedure. The initial value â0 is fixed as the MLE obtained by the homogeneous
OU process (2.1). Chosen a wanted precision level ε, the procedure works as follows:

• Step 1. From the observed sample {xi, j}, with i = 1, . . . , d, and j = 1, . . . , n, obtain â0 as MLE of
the parameter a in Eq (2.1);
• Step 2. Obtain the sample mean µ j and the sample covariance c j as follows:

µ j =
1
d

d∑
i=1

xi, j, c j =
1

d − 1

d∑
i=1

(xi, j−1 − µ j−1)(xi, j − µ j). (2.8)

• Step 3. Interpolate the values µ j and c j. The obtained functions M̂(t) and V̂(t) provide estimates
of M(t|x0, 0) ≡ M(t) and c(t − ∆, t) ≡ c(t) in (2.3) respectively.
• Step 4. Obtain the derivatives of M̂(t) and ĉ(t).
• Step 5. Set k = 1, C3 = d(n − 1)∆, toll = ε + 1.
• Step 6. while (toll > ε)

– Obtain the estimate of b(t) and σ2(t) as follows:

b̂k(t) = âk−1 M̂(t) +
dM̂(t)

dt
, σ̂2

k(t) = e−̂ak−1∆
{̂
ak−1̂c(t) −

d ĉ(t)
dt

}
. (2.9)

– From {xi j}, with i = 1, ..., d, and j = 1, ..., n, obtain (see [4])

C1k =

d∑
i=1

n∑
j=2

x2
i j

σ̂2
k(t j−1)

, C2k =

d∑
i=1

n∑
j=2

xi jxi j−1 + xi ĵbk(t j−1)∆
σ̂2

k(t j−1)
.

– Calculate

αk =
C2k +

√
C2

2k + 4C1kC3

2C1k
.

– Obtain the estimate of the parameter a as

âk =
lnαk

∆
.

– toll = |̂ak − âk−1|.
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– k = k + 1.

end

We point out that the proposed methodology differs from the methodology in [4] on the choice to
estimate the covariance function c(t − ∆, t) rather than the variance function of the process X(t). As
in [4], the consistency of the estimators derives from the consistency of the ML and GMM estimators
in addition to the uniform convergence of the interpolation method. Further, several simulation
experiments show the consistency of the iterative method, since as the number of observations n and
the number of sample paths d increase, the Mean Absolute Error decrease.

Finally, we point out that in our analysis the interpolation method used in Step 3 of the iterative
procedure is the natural cubic spline interpolation. In such case the interpolating function M̂(t) is:

M̂(t) =


M̂1(t), t0 ≤ t ≤ t1,

M̂2(t), t1 < t ≤ t2,
...

M̂n(t), tn−1 < t ≤ tn.

(2.10)

with M̂ j(t) = α j +β jt +γ jt2 + δ jt3 (δ j , 0), j = 1, . . . , n. The coefficients α j, β j, γ j and δ j for each j are
determined by the following boundary conditions on the functions, their prime and second derivatives:

M̂ j(t j−1) = µ j−1, M̂ j(t j) = µ j, j = 1, . . . , n,
M̂′

j(t j) = M̂′
j+1(t j), j = 1, . . . , n − 1,

M̂′′
j (t j) = M̂′′

j+1(t j), j = 1, . . . , n − 1,

The expression of the interpolating function ĉ(t) can be obtained as M̂(t) in (2.10), interpolating the
points c j, j = 1, . . . , n.

2.2. Testing for structural changes: Quandt Likelihood Ratio test in a nutshell

A structural break is an unexpected change over time in the parameters of regression models.
Preciselly, in the model

yi = xT
i βi + ui, i = 1, 2, . . . , n, (2.11)

where at time i, yi is the observation of the dependent variable, xi = (1, xi2, . . . , xik) is the vector of
observations of the independent variables, ui are iid N(0, σ2) and β j is the k × 1 vector of regression
coefficients, the presence of time-changes can be tested through the hypothesis:

H0 : βi = β0, i = 1, 2, ...n

against the alternative that at least one of the coefficients βi depends on time.
Chow test is the classical test for structural change. Here the alternative is:

H1 : βi =

βA 1 ≤ i ≤ i0,

βB i0 < i ≤ n.
(2.12)
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In it the sample is splitted into two sub-samples, estimates of the parameters are provided for the
two sub-sample, and then a test on the equality of the two parameter vectors is performed (see, for a
review, [14]). Chow test computes the test statistics

Fi0 =
ûT û − êT ê

êT ê/(n − k)
, (2.13)

where ê = (ûA, ûB)T are the residuals under the alternative H1, where the coefficients are estimates
separately in the subsamples, and û are the residuals from the model under H0, where the coefficients
are estimated on the whole sample. If Fi0 is too large, H0 is rejected and the presence of a change
point in i0 is confirmed. The main drawback of the Chow test is that the break-date must be known a
priori, so a candidate break-date is generally fixed by looking at the data. Anyway, the results can be
highly sensitive to these choices. A natural generalization of the Chow test, in which the breakdate is
unknown, is the Quandt Likelihood Ratio (QLR) test. It computes the F statistics (2.13) for all possible
breakdates in a fixed range [τ0, τ1]. Usually, τ0 = b0.15 T c and τ1 = b0.85 T c. Further, to aggregate the
series of F statistics into one, the following test statistics can be considered:

supF = sup
τ0≤i≤τ1

Fi,

aveF =
1

τ1 − τ0 + 1

τ1∑
i=τ0

Fi,

expF = log
( 1
τ1 − τ0 + 1

τ1∑
i=τ0

exp(0.5 Fi)
)
.

The distribution of such statistics is not exact, anyway in [15] a code computing p values for the F
statistics was provided. In this way, under the null hypothesis of no structural change, boundaries can
be computed such that the asymptotic probability that the F test statistics exceeds is α.

In our case, in which we observe PM10 concentrations, structural breaks detection is based on the
Euler’s discretization (2.15) and the regressor is the lag 1-delayed observation.
Preciselly, from (2.2) we have

X(t j) = (1 − a∆)X(t j−1) + b(t j−1)∆ + σ(t j−1)
√

∆ Z j, j = 2, . . . , n. (2.14)

where Z j ∼ N(0, 1). Setting

Y j =
X(t j)

σ(t j−1)
√

∆
,

we can write the Eq (2.14) in the form of a linear regression model as in (2.11), i.e.,

Y j = (1 − a∆)Y j−1 +
b(t j−1)
σ(t j−1)

√
∆ + Z j. (2.15)

We note that the Euler equation (2.15) presents a convergence order 1/2 since the infinitesimal
variance of the process X(t) does not depend on x. Hence the Euler scheme coincides with Milstein
scheme (which is based on the first order approximation of the diffusive term with respect to the
variable x).
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Finally we point out that the null hypothesis of no structural break in the regression (2.15)
corresponds to testing that 1 − a∆ and b(t j−1)

σ(t j−1)

√
∆ are both constant, i.e., a is constant and b(t j−1) and

σ(t j−1) are proportional for all j, or better, the functions b(·) and σ(·) are both constant. Therefore the
condition that at leat one of the functions b(·) and σ(·) is not constant constitutes a sufficient condition
for the presence of structural breaks in the time series.

3. Data collection
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Figure 1. PM10 concentration distribution by station in Bologna, Milano and Torino.

We consider PM10 daily concentrations (in µg/m3) measured from 1 January 2020 to 8 July 2020
in three italian cities severely affected by the pandemic that are Milano, Bologna and Torino. For
them we consider several monitoring stations in the metropolitan areas (190 observations for each
station). We have 7 monitoring stations in Bologna, that are Castelluccio, De Amicis, Giardini
Margherita, Porta San Felice, San Lazzaro, San Pietro Capofiume and Via Chiarini; 4 in Milano, i.e.,
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Verziere, Pascal, Viale Marche and Via Senato; 5 in Torino, that are Consolata, Grassi, Lingotto,
Rebaudengo and Rubino. The data sets were provided by the regional agencies (Emilia-Romagna,
Lombardia and Piemonte). Figure 1 shows the distribution of the PM10 concentration for each of the
considered stations, showing that all the distributions are positively skewed, with many values
exceeding the admitted concentration 50 µg/m3, expecially for Milano and Torino. In particular
Bologna seems the most “virtuous” city since PM10 values above the legal limit of 50 µg/m3 turn out
to be outliers in most cases. Further, the variability of Bologna PM10 data is the lowest among the
three cities. Also for Milan, values exceeding 50 µg/m3 are found only in 25% of the highest values
of the data distribution. There are, however, a few outliers that even exceed 150 µg/m3. Consolata and
Grassi stations in Torino have PM10 values on average higher than the others, also presenting a greater
variability with respect the other monitoring stations. Table 1 shows the descriptive statistics,
included the number of missing values.

Table 1. Descriptive statistics on PM10 time series data.

Station Min Q1 Median Mean Q3 Max NA’s
Bologna

Castelluccio 0.00 6.00 9.00 10.86 14.00 136.00 13
De Amicis 2.00 13.00 20.00 25.34 30.75 112.00 4
Giardini Margherita 2.00 11.00 16.00 22.73 28.50 98.00 7
Porta San Felice 4.00 12.00 20.00 26.70 35.00 118.00 10
San Lazzaro 3.00 14.00 22.00 26.81 34.00 105.00 6
San Pietro Capofiume 2.00 13.00 21.00 27.51 36.50 102.00 7
Via Chiarini 3.00 11.00 17.00 22.02 28.00 96.00 12

Milano
Verziere 9.00 18.00 26.00 34.18 45.00 179.00 6
Pascal 4.00 14.00 22.00 31.96 43.25 154.00 5
Viale Marche 7.00 18.00 26.00 35.96 49.00 179.00 0
Via Senato 6.00 17.50 27.00 36.93 51.50 180.00 6

Torino
Consolata 5.00 17.00 27.00 39.85 62.75 105.00 64
Grassi 5.00 21.00 30.00 42.58 63.00 121.00 29
Lingotto 2.00 14.00 21.00 32.15 48.00 106.00 11
Rebaudengo 6.00 17.00 27.00 38.75 57.00 108.00 15
Rubino 5.00 13.00 20.00 31.45 40.25 106.00 14

Here, the missing values imputation is made by means of the procedure in [16], by looking at the
geographical distances between the monitoring stations.
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Figure 2. Fitted function of b(t) (left) and of σ2(t) (right) for PM10 data in Bologna (top),
Milano (middle) and Torino (bottom) along with their regular versions (dashed red line).
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In the following analysis, we consider, for each city, each PM10 time series in that city as a sample
path of a same diffusion diffusion process. Essentially, we consider three OU-type process, XB, XM

and XT , where B,M and T stands for Bologna, Milano and Torino and we observe 7 sample paths for
XB(t), 4 for XM(t) and 5 for XT (t). The application of the iterative procedure provides the following
estimates of the parameter a: aB = 0.6491973 for the process XB(t); aM = 0.3301912 for XM(t) and
aT = 0.3873125 for XT (t). The fitted functions b̂(t) and σ̂2(t) are shown in Figure 2 along with their
regular versions (in red). In all the cases, the fitted functions b̂(t) and σ̂2(t) are far from constant in
the period before April, about a month after the start of the lockdown due to the Covid pandemic.
This observation leads to argue that the observed time series present some strucural breaks, since the
lockdown period has somehow “regularized” both the trend and the variability of the process describing
the PM10 dynamics. We point out that the constancy of the functions b(t) and σ(t) can be verified by
means of a bootstrap test, in line with [17]. In our case, all the tests provide p−values of order of 10−16,
so the functions b(t) and σ(t) are not constant.

In the following section we test the null hypotesis of constant parameters in Eq (2.15).

4. PM10 outbreak detection

This section investigates the presence of structural breaks in the considered PM10 time series by
means a well know fluctuation test, i.e., the QLR test. The linear regression on which the test is based
is the Euler discretization (2.15). In terms of the model, if H0 is not reject, PM10 time series can be
modeled by means of an homogeneous OU process with Eq (2.1).

Table 2. Results of QLR estimates test on PM10 time series data.

Station Breakdates supF p-value
Bologna

Castelluccio 2020-04-05 27.041 0.000043
De Amicis 2020-02-03 15.490 0.009413
Giardini Margherita 2020-02-26 16.774 0.005224
Porta San Felice 2020-02-20 27.058 0.000042
San Lazzaro 2020-02-25 29.641 0.000012
San Pietro Capofiume 2020-01-30 19.450 0.001542
Via Chiarini 2020-02-19 20.418 0.000996

Milano
Verziere - 10.659 0.072890
Pascal 2020-04-27 17.001 0.004673
Viale Marche 2020-03-23 17.193 0.004283
Via Senato 2020-03-23 18.554 0.002304

Torino
Consolata 2020-01-21 22.381 0.000511
Grassi 2020-01-21 15.593 0.011340
Lingotto 2020-01-21 18.914 0.002548
Rebaudengo 2020-01-21 20.366 0.001307
Rubino 2020-01-21 20.366 0.001307
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Figure 3. Process of F-statistics in the QLR test applied to the Euler discretization by
considering data from the monitoring stations in Bologna. Horizontal red line is the
corresponding boundary. The test reject the null hypothesis of no breaks for all the
monitoring stations.
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Figure 5. Process of F-statistics in the QLR test applied to the Euler discretization
by considering data from the monitoring stations in Torino. Horizontal red line is the
corresponding boundary. The test does not reject the null hypothesis of no breaks for Verziere
monitoring station and reject it for the others.
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Figure 6. PM10 time series in Bologna from 1st January 2020 to 8th July 2020. Vertical red
line indicates the break date identified by the QLR test.

In Figures 3–5 the processes of F-statistics, along with the corresponding boundaries at level
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α = 0.05, are shown for all the considered stations in Bologna, Milano and Torino, respectively. For
this analysis the R-package strucchange has been used. It is evident that in almost all the cases the
process exceeds the boundary with significance 0.05, so there is statistical evidence of a structural
break in the considered period. It is also interesting to observe that the processes present very similar
shapes for stations in the same town. In Table 2 the breakdates detected by the QLR test are shown for
all the stations. The values of the test statistics supF and the corresponding p-values are reported.
Only for Milano Verziere station there is no evidence of a break change point, although the process
shows a shape that is very to the other stations in Milano, still remaining below the boundary.
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Figure 7. PM10 time series in Milano from 1st January 2020 to 8th July 2020. Vertical red
line indicates the break date identified by the QLR test.
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Figure 8. PM10 time series in Torino from 1st January 2020 to 8th July 2020. Vertical red
line indicates the break date identified by the QLR test.
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In Figures 6–8 the observed time series are shown along with the detected change points. We can
see that, in all the stations, PM10 observations are characterized by a “flattening” of both the values
and their variability, probably due to the new environmental conditions in the lockdown period.

In the following we use the estimates of a, b(t) and σ2(t) provided by the proposed procedure and
simulate 500 sample- paths of the process (2.2) in which such estimates are plugged in. In Figure 9
the observed sample-paths of XB(t), XM(t) and XT (t) are compared with the mean of the corresponding
simulated sample-paths. The results show that the fitted processes via the proposed procedure are
quite close to the real ones and they satisfactory capture the trend of the PM10 concentrations in the
three analized cities. So the model (2.2), and consequently the estimating procedure, even if it does not
explicitely include the presence of time-change points in the observed time series, is able to incorporate
it in the dependece on time of the infinitesimal moments.
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Figure 9. PM10 daily concentration in the metropolitan area in several monitoring stations in
Bologna (top), Milano (middle) and Torino (bottom) (red lines) and the corresponding fitted
values via the iterative procedure (blue line).

5. Conclusions

We modeled PM10 data from three italian cities by means of a non homogeneous OU process.
An iterative estimatimg procedure combining the maximum likelihood estimation and a generalized
method of moments is provided. Such procedure is able to fit the involved functions taking into account
relations between subsequent observations and between observations at the same time.

QLR test for the considered time series during Covid pandemic show the presence of structural
breaks during the period 1st January 2020–8th July 2020. In particular all the observed time series
show a ”flattening” of the PM10 values in terms of mean and variability. This is probably due to the
lockdown imposed by the government or, we hope, to citizens’ awareness of the environmental issue.
This hope will be able to be verified in a later period and, in any case, when our life can return to how,
and better, than before. Anyhow, the model, and consequently the proposed iterative procedure, is able
to fit data in the whole considered period. Indeed, the non-constancy of the terms in the infinitesimal
moments is a sufficient condition for detecting the presence of structural breaks in the data. Further,
the time dependence of the involved functions is able to implicitly include time-changes in the data, so
to model phenomena in which external conditions change the internal structure of the data.
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