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Abstract: Many chemical and biochemical systems can be intuitively modeled using networks. Due
to the size and complexity of many biochemical networks, we require tools for efficient network
analysis. Of particular interest are techniques that embed network vertices into vector spaces while
preserving important properties of the original graph. In this article, we introduce a new method
for generating low-dimensional node embeddings for directed graphs, using random walk sampling
methods for feature learning on networks. Additionally, we demonstrate the usefulness of this method
for identifying transition states of stochastic chemical reacting systems. Network representations of
chemical systems are typically given by weighted directed graphs, and are often complex and high
dimensional. In order to deal with networks representing these chemical systems, therefore, we
modified objective functions adopted in existing random walk based network embedding methods to
handle directed graphs and neighbors of different degrees. Through optimization via gradient ascent,
we embed the weighted graph vertices into a low-dimensional vector space Rd while preserving the
neighborhood of each node. These embeddings may then be used to detect relationships between
nodes and study the structure of the original network. We then demonstrate the effectiveness of our
method on dimension reduction through several examples regarding identification of transition states
of chemical reactions, especially for entropic systems.
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1. Introduction

Networks provide a natural framework for many chemical and biochemical systems, including
chemical kinetics and dynamical interactions between biomolecules. The possible stages of a
reaction, for example, can be viewed as vertices in a directed graph. Frequently, real-world networks
are high-dimensional and complex in structure, which leads to difficulties in interpretation and
analysis. In order to take full advantage of the structural information contained in such networks,
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efficient and robust methods of effective network analysis are essential to produce low dimensional
representations while retaining key information about the nodes of the graph.

Network analysis is especially useful for understanding behaviors of nonlinear chemical processes
such as biochemical switches. Biochemical switches are systems of chemical reactions with multiple
lower-energy steady states, or metastable states. Without stochastic perturbations, the system will
spend all its time at the metastable states, where energy is minimized, while the presence of stochastic
noise in the dynamics can lead to transitions between metastable states. Difficulties arise in the
simulation of such systems as a result of the multiple time scales at work; transitions between steady
states are typically rare, but occur rapidly.

The different possible states of the reaction, given by the varying concentrations of reactant and
product species, can be viewed as the vertices of a weighted directed graph. For example, we may have
an ‘initial’ state where only reactant species exist, a ‘final’ state where only product species remain, and
any number of transitional states each representing a particular concentration of the different species.
The edge weights of the graph can then be determined from the likelihoods of transitioning between
any given pair of states. The progression of the reaction over time can then be viewed as a Markov
jump process, where the jump probabilities are represented by the weights on the edges between each
pair of nodes. Then, methods for network analysis can be used to identify interactions and pathways
between the components of the biochemical switch. One objective of this paper is to suggest a method
to analyze this Markov process using node embedding techniques. This paper will focus on the A→ B
problem: A and B are taken as the reactant and product states, respectively. The aim of this paper is to
investigate the mechanism by which this transition occurs.

Recently, methods for analyzing networks through feature representation and graph embedding
have received increasing attention. For an overview on this subject, a number of recent review papers
are available [1, 2]. While much of this research has been focused on undirected graphs, the directed
case has also been investigated, for example [3–5]. In particular, several methods have been proposed
that utilize random walks for node embedding.

Node embedding (or feature learning) methods aim to represent each node of a given network as a
vector in a low-dimensional continuous vector space, in such a way that information about the nodes
and relationships between them are retained. Specifically, nodes that are similar to each other according
to some measure in the original graph will also have similar representations in the embedding space.
Usually, this means that the embedding will be chosen in a way that maximizes the inner products
of embedding vectors for embedded nodes that are similar to each other. Compared with the original
complex high-dimensional networks, these low dimensional continuous node representations have the
benefit of being convenient to work with for downstream machine learning techniques.

Compared with alternative methods that embed edges or entire graphs instead of nodes, node
embeddings are more adaptive for numerous tasks, including node classification, clustering, and link
prediction [2]. Node classification is a process by which class labels are assigned to nodes based on a
small sample of labeled nodes, where similar nodes have the same labels. Clustering algorithms group
the representations of similar nodes together in the target vector space. Link prediction seeks to
predict missing edges in an incomplete graph.

The recent interest in feature learning has led to a collection of different node embedding methods,
which can be broadly classified [1] by the analytical and computational techniques employed such as
matrix factorization, random walk sampling, and deep learning network. The matrix factorization
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based methods generate embeddings by first using a matrix to represent the relationships between
nodes, which include the Laplacian matrix as in the Laplacian eigenmaps [6], the adjacency matrix as
in locally linear embedding (LLE) [7] or graph factorization (GF) [8], etc. Though the above methods
focus on the case of undirected methods, similar techniques for the directed case have also been
suggested [3], where the development of the Laplacian matrix, a combinatorial Laplacian matrix, and
Cheeger inequality allow the above approaches to be extended for directed graphs. Factorization
based methods such as eigenvalue decomposition can apply for certain matrices (e.g., positive
semidefinite), and additional difficulties may arise with scaling for large data sets.

Random walk methods are often used for large graphs, or graphs that cannot be observed in their
entirety. The general idea involves first simulating random walks on a network, then using the output
to infer relationships between nodes. Random walk methods can be used to study either undirected or
directed graphs, although much of the previous work has focused on the undirected case. For example,
DeepWalk [9] uses short unbiased random walks to find similarities between nodes, with node pairs
that tend to co-occur in the same random walks having higher similarities. This method performs well
for detecting homophily – similarity based on node adjacency and shared neighbors. Similar methods,
such as node2vec [10], use biased random walks to capture similarity based on both homophily and
structural equivalence – similarities in the nodes’ structural roles in the graph. Both of these methods
specifically address undirected graphs. A similar approach designed for the directed case is proposed
in [4], which uses Markov random walks with transition probabilities given by ratios of edge weights to
nodes’ out degrees, together with the stationary distribution of the walks, to measure local relationships
between nodes.

Theoretical frameworks for the study of transition events of biochemical processes include
Transition State Theory (TST), Transition Path Sampling (TPS), Transition Path Theory (TPT) and
Forward Flux Sampling (FFS). The main idea of TST is that in order for the system to move from the
reactant state to the product state, the system must pass through a saddle point on the potential energy
surface, known as a Transition State [11]. The TPS technique uses Monte Carlo sampling of transition
paths to study the full collection of transition paths of a given Markov process [12]. The basic idea,
similar to importance sampling, is to perform a random walk in trajectory space, biased so that
important regions are visited more often. Transition Path Theory (TPT) studies reactive trajectories of
a system by considering statistical properties such as rate functions and probability currents, which
measure the average rates of transitions between states [13]. Forward flux sampling [14], designed
specifically to capture rare switching events in biochemical networks, uses a series of interfaces
between the initial and final states to calculate rate constants and generate transition paths. This
method has the advantage that knowledge of the phase space density is not required. For the purpose
of this paper, we will be using TPT, but other such techniques can fit into the method presented here
as well.

The contributions of this paper are a method of using a random walk network embedding approach
for node classification and clustering on directed graphs, as well as identification of transition states for
the specific case of entropy effects. The method presented reduces the dimension of networks, thereby
allowing analysis and interpretation of the system.

The remainder of this paper will be organized as follows. First, in Section 2 we will introduce
some background regarding feature learning on networks, and provide a brief overview of some basic
principles from TPT. Then Section 3 will introduce a method for node classification for directed graphs,
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based on random walk node embedding. Finally, in Section 4, we will study several examples, showing
the effectiveness of the method on identifying transition states of entropic systems.

2. Background

In this paper, we focus on the mechanism by which a system such as a biochemical switch passes
through its energy landscape following a reactive trajectory. A trajectory is said to be reactive if it
leaves the reactant state A and later arrives at the product state B without first returning to state A. Such
a trajectory can be viewed as a sequence of transitions between metastable states where the energy is
locally minimized. In particular, we treat these sequences as Markov jump processes, and study the
probability space of these reactive trajectories in order to identify and understand the transition events
of the system. Though this paper will be utilizing the techniques of Transition Path Theory for this
purpose, it is also possible to adopt other frameworks, such as Transition Path sampling, Forward Flux
sampling, etc., to investigate the transition events of a system.

Consider a Markov jump process on a countable state space S . Let L represent the infinitesimal
generator of the process, as defined in [18]. In other words, L is an |S | × |S | matrix with entries Luv

such that for u, v ∈ S , u , v, Luv∆t + o(∆t) represents the probability that a process that is in state u at
time t will jump to state v during the time interval [t, t + ∆t]. Then the entries of L are transition rates,
satisfying Luv ≥ 0 ∀ u, v ∈ S , u , v,∑

v∈S Luv = 0, ∀ u ∈ S .
(2.1)

Let {X(t)}t∈R represent an equilibrium sample trajectory of the Markov process, such that {X(t)}t∈R is
right-continuous with left limits. At time t, let the probability distribution of this process be denoted
by µ(t) := (P(X(t) = u))T

u∈S . Then the time evolution of µ(t) follows the forward kolmogorov equation
(or master equation)

dµ
dt

= µT L, t ≥ 0.

Denote the time-reversed process by {X̃(t)}t∈R, and the infinitesimal generator of this process by L̃.
The stationary probability distribution π = (πv)v∈S of both {X(t)}t∈R and {X̃(t)}t∈R is given by the solution
to

0 = πT L .

2.1. Network embedding for directed graphs

Networks can have large numbers of vertices and complex structures, which can lead to challenges
in network analysis. To overcome these difficulties and improve understanding of these networks, the
nodes of a given network can be embedded into a low-dimensional vector space, a process called
feature learning. The techniques used in this paper to investigate transition states and pathways
combine neural network-based and random walk-based methods for learning latent representations of
a network’s nodes, as discussed in [4, 9, 10]. The idea behind these methods is that the nodes in a
given network G = G(V, E) can be embedded into a low-dimensional vector space in such a way that
nodes similar to each other according to some measure in the original graph will also have
embeddings similar to each other in the embedding space.
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Feature learning, or node embedding, requires three main components: an encoder function, a
definition of node similarity and a loss function. The encoder function is the function that maps each
node to a vector in the embedding space. To find the optimal embeddings, the encoder function can be
chosen by minimizing the loss function so that the similarity between nodes in the original network
corresponds as closely as possible to the similarity between their vector representations in the
continuous space. Node similarity can have different interpretations, depending on the network and
the task to be accomplished. For example, nodes that are connected, share neighbors, or share a
common structural role in the original graph can be claimed to be similar, and to be embedded in the
vector space by representations of close similarity. For the embedded vectors, a common approach is
to use inner products as the similarity measure in the feature space–that is, if u and v are two nodes in
a graph with representations e(u) and e(v) in a low-dimensional vector space, then e(u)T e(v) should
approximate the similarity between representations e(u) and e(v).

2.1.1. Random walk approaches

One technique for finding node embeddings is through the use of random walks. This technique
has been applied to undirected graphs in methods such as DeepWalk and node2vec [9, 10]. In these
methods, the general approach is to use short random walks to determine similarities for each pair of
nodes. The notion of node similarity is co-occurence within a random walk; two nodes are similar if
there is a higher probability that a walk containing one node will also contain the other. The various
methods using this approach differ in the implementation of this general idea: DeepWalk, for example,
uses straightforward unbiased walks, while node2vec uses adjustable parameters to bias random walks
toward breadth-first or depth-first sampling for a more flexible notion of similarity.

The first stage in the feature learning process is to simulate a certain number of random walks
starting from each vertex. Using the results of these random walks, the neighbors of each node can be
determined. The objective is to maximize the probability of observing the neighborhood of each node,
conditioned on the vector representation of the node. In several of the random walk-based feature
representation methods for undirected graphs, this is achieved through optimization of a Loss function
of the form:

max
e

J(e) =
∑
u∈V

log Pr(NS (u)|e(u)), (2.2)

where V is the set of all vertices in the graph, NS (u) is the neighborhood of the node u, and e(u) is the
encoder function representing the embedded vector. If we assume that the probabilities of observing a
particular neighbor are independent, we can have

Pr(NS (u)|e(u)) =
∏

ni∈NS (u)

Pr(ni|e(u)). (2.3)

Since these methods typically aim to maximize the inner products for neighboring nodes, they often
utilize a softmax function to model each conditional probability:

Pr(ni|e(u)) =
exp

(
e(ni) · e(u)

)∑
v∈V exp

(
e(v) · e(u)

) .
Mathematical Biosciences and Engineering Volume 18, Issue 1, 868–887.
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For networks where |V | is large, techniques such as hierarchical softmax [9] or negative sampling [16]
can be used to increase efficiency. To determine the optimal embedding function e(u), the Loss function
can be optimized using gradient descent with respect to the parameters of e(u).

In [4], a random walk-based method specifically intended for directed graphs is proposed. The
function to be optimized in this method, when embedding into R1, is

I =
∑

u

πu

∑
v,u→v

p(u, v)(yu − yv)2,

where yu is the one-dimensional embedding of u, πu is the stationary probability for the node u and
p(u, v) represents the random walk’s transition probability from u to v. The transition probabilities are
calculated according to

p(u, v) = w(u, v)/
∑

k,u→k

w(u, k),

where w(u, v) is the weight on the edge (u, v). Note that this method, though it uses transition
probabilities of a random walk, does not actually require simulation of random walks, since all the
summations can be done deterministically.

According to the spectral graph theory [3], a circulation on a directed graph is a function F such
that, for each u ∈ V ,

∑
u,u→v F(u, v) =

∑
w,v→w F(v,w). The Laplacian of a directed graph is therefore

defined as

L = I −
Φ1/2PΦ−1/2 +Φ−1/2PΦ1/2

2
,

where Φ is a diagonal matrix with diagonal entries given by Φv,v = φ(v) =
∑

u,u→v F(u, v) for some
circulation function F. The following definition of the combinatorial Laplacian is also due to
Chung [3]:

L = Φ −
ΦP + PTΦ

2
,

where P is the transition matrix, i.e., its elements are given by Puv = p(u, v), and Φ is the diagonal
matrix of the stationary distribution, i.e., Φ = diag(π1, . . . , πn). Note that the combinatorial Laplacian
is symmetric and semi-positive definite. It is shown in [4] that∑

u

πu

∑
v,u→v

p(u, v)(yu − yv)2 = 2yTLy

where y = (y1, y2, . . . , yn)T . This result demonstrates that this method is analogous to the Laplacian-
based methods for undirected graphs, e.g., Laplacian eigenmaps [1].

Random walk methods have been shown to perform well compared to other methods, and can
be useful for a variety of different notions of node similarity. Previous work has shown them to be
robust, efficient, and capable of completing a diverse range of tasks, including node classification, link
prediction, clustering, and more [1, 2, 9, 10]. Because they do not examine the entire graph at once,
these methods are also useful for very large networks and networks that cannot be observed in their
entirety.
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2.1.2. Neural network approaches

A third class of graph embedding methods involves the use of deep learning techniques, including
neural networks [1, 2], e.g., Graph Neural Network (GNN) [2, 17]. Such methods have been shown
to perform well, particularly for dimension reduction and identifying nonlinear relationships among
data. Random walk based methods, such as DeepWalk, can incorporate deep learning algorithms like
SkipGram for graph embedding, where random walks serve to provide neighborhood information as
input.

In general, neural network methods typically work by assigning a weight to each node
representation, and then combining those terms via a transfer function. This result is then used as the
input for an activation function, such as a sigmoid function, i.e., σ(x) = 1/(1 + exp(−x)). This process
may then repeat for multiple layers. In a neural network method, the parameters to be optimized are
the weights, which are updated after each layer, typically by gradient descent. In the GNN [17], the
objective function to be minimized is of the form

W =
∑

i

∑
j

(ti, j − ϕw(Gi, ni, j))2,

where Gi is the learning set, the ni, j and ti, j are the nodes and target outputs, and the goal is to choose
the parameter w in such a way that ϕ closely approximates the target outputs. This optimization occurs
through gradient descent, where the gradient is computed with respect to the weights w.

2.2. Transition path theory

In order to identify the transition paths of a given Markov process, we will adopt the framework of
Transition Path Theory (TPT). The following notations are mostly from [18]. Consider a state space S ,
for an initial state A ∈ S and final state B ∈ S , a trajectory X(t) is said to be reactive if it begins from
state A and reaches state B before returning to state A.

To determine whether a given reaction path is reactive, we will need the following forward and
backward committor functions. For each i ∈ S , the forward committor q+

i is the probability that a
process initially at state i will reach state B before it reaches state A. Similarly, the discrete backward
committor q−i denotes the probability that a process arriving at state i was more recently in state A
rather than in state B. The forward committors satisfy the following Dirichlet equation

∑
j∈S

Li jq+
j = 0 ∀i ∈ (A ∪ B)C

q+
i = 0 ∀i ∈ A

q+
i = 1 ∀i ∈ B,

and similar equations are satisfied by backward committors.
The probability current, or flux, of reactive trajectories gives the average rate at which reactive paths

transition from state to state. For trajectories from A to B, the probability current is defined for all i , j
such that

f AB
i j = lim

s→0+

1
s

lim
T→∞

1
2T

∫ T

−T
1{i}(X(t))1{ j}(X(t + s)) ×

∑
n∈Z

1(−∞,tB
n ](t)1[tA

n ,∞)(t + s)dt
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= f AB
i j ,

where 1(a,b) denotes the indicator function on the interval (a, b). Also, for all i ∈ S , f AB
ii = 0. It can be

shown that

f AB
i j =

{
πiq−i Li jq+

j , if i , j
0 if i = j.

Since we are primarily interested in the flow from A to B, and the process can move in either
direction between two adjacent nodes on the path, the following effective current accounts for the net
average number of reactive paths that jump from i to j per time unit:

f +
i j = max( f AB

i j − f AB
ji , 0).

We can also define the total effective current for a node i:

C+
i =

∑
j:(i, j)∈E

f +
i j .

In [21], the effective current is generalized to a connected subnetwork of nodes Ω such that

C+(Ω) =
∑
i∈∂Ω

C+
i ,

which leads to the following definition of transition states of a time reversible process as subsets of the
state space:

TS = lim
σ→0

argmax
Ω

{C+(Ω) exp
(
−(q+ − 0.5)2/σ2

)
}

For the non-time reversible case, transition states can be identified similarly, replacing the exponential
argument

(
−(q+ − 0.5)2/σ2

)
with (−(q+ − 0.5)2 + (q− − 0.5)2)/σ2. The above definition gives the

flexibility of identifying transition states as subsets of the state space, which will be very useful when
dealing with complex dynamics such as entropy effects.

3. Identifying transition states using network embedding

We now introduce a method to identify transition states and paths of Markov processes, by random
walk based network embedding techniques for directed networks. Consider a Markov jump process
in a countable state space S . Using the infinitesimal generator L for the process, we can calculate
the stationary probability distribution π and the forward and backward committors, based on which
probability current and effective currents f AB

i j and f +
i j can then be computed. Once these quantities have

been obtained, the discretized state space can be viewed as a weighted, directed graph G(V, E). The
nodes v ∈ V are the grid points representing states of the system, and each pair of adjacent nodes are
connected by an edge (u, v) ∈ E with weights given by the effective probability current, such that the
direction of the edge will be determined by the sign of the effective current.

Once G is constructed, we can apply feature learning techniques for node classification to identify
transition states. Random walk trials for similarities between nodes will start from each node in the
space, using the edge weights as transition probabilities. The outputs of the random walks can then
be used to compute experimental “neighbor probabilities”, i.e., the probability that a random walk of
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length d starting at node u will contain node v. If the neighbor probability for a node pair (u, v) is
sufficiently high, then the node v is claimed as a neighbor of u. Note that this is a directed process; v
can be a neighbor of u even if u is not a neighbor of v.

After finding these conditional probabilities and identifying the neighborhoods of each node, the
next step is to maximize an objective function in order to solve for the node embeddings. As in the
node2vec and DeepWalk methods for the undirected case, the conditional probabilities are modeled
using softmax functions. In order to adapt this technique for the case of directed graphs, we will use a
modified version of the objective function:

V[e] =
∑

u

πu

∑
v∈N(u)

Pr(v|e(u)). (3.1)

Optimizing this function will give the encoder function eopt that maximizes the probability of the
neighborhood of each node, with the most relevant nodes having the most influence on the feature
representations.

In the original form of the objective function (3.1) for the undirected graph methods described
above, the softmax functions depend only on whether nodes are neighbors, and is independent of the
probability (frequency) that a particular neighbor will show up in a random walk trial. In other words,
all neighbors are treated equally, while in reality some node pairs are more likely to co-occur than
others. To address this, the objective function used here incorporates the neighboring probabilities,
denoted NP(·, ·) such that

Pr(n|e(u)) =
exp(e(n) · e(u))NP(n, u)∑

v∈V exp(e(v) · e(u))NP(v, u)
.

Algorithm 1 A random walk simulation method for directed graphs, given the transition matrix t.
for u ∈ V do

walk(1) = u
for step = 1 : walklength do

for k = 2 : d do
total =

∑
v,walk(k−1)→v t(walk(k − 1), v)

for v : walk(k − 1)→ v do
P(walk(k − 1), v) = t(walk(k − 1), v)/total

end for
Use probability P(walk(k − 1), ·) to choose walk(k) = v for some neighbor of walk(k − 1).
Set counter(walk(k), u) = counter(walk(k), u) + 1.

end for
end for

end for
for u, v ∈ V do

neighborprobability(u, v) = counter(u, v)/
∑

k counter(u, k)
end for

Assuming e(u) = E2u, for E2 being a 2 × d matrix, the objective defined above can then be
maximized using gradient ascent to obtain the matrix E2

opt and therefore the feature embeddings. In
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practice, the linear assumption on the map from nodes to embeddings appears to be insufficiently
flexible, particularly for higher-dimensional problems. To improve upon this, a neural network can be
incorporated into the feature learning process, with the sigmoid function σ(u) = 1/(1 + exp(−e(u)))
where e(u) is the representation in the embedding space of the node u. The current algorithm uses a
relatively small number of layers; raising this number results in node representations that are clustered
more closely to their neighbors.

To obtain transition states for a particular process, we will examine the similarities between the node
representations of each state and the representation of metastable state A. Here, by “similarities” we
mean the conditional probabilities given by the softmax units discussed previously. By construction,
these values will naturally be small for nodes that are further from node A, due to hopping distances
that are longer than the length of the random walks. So, to find the transition states, we combine
similarities of node pairs with shorter hopping distances via matrix propagation, e.g.,

sim(A, u) =
∑

A→v,v→u

sim(A, v)sim(v, u). (3.2)

Note that a node u for which this value is high is a higher-order neighbor of the reactant node A;
therefore, such a node will have a higher probability of lying along a transition path. We then define
transition states as nodes with high probability of lying on a transition path, which are not direct
neighbors of the reactant or product states.

4. Examples and results

Next, we will illustrate the suggested method on several simple examples. In the examples presented
here, we have used 100 random walk trials, each of length 9 steps. Smaller numbers of trials increase
the impact of noise in the results. Due to the matrix propagation technique described above, changes
to the walk length parameter do not have a noticeable affect.

4.1. Diffusion process with energy barrier

First we will consider a two-dimensional diffusion process (x(t), y(t)) representing the position of a
particle traversing a potential field with potential V . This process follows the SDE

dx
dt

= −
dV
dx

+
dW1(t)

dt
,

dy
dt

= −
dV
dy

+
dW2(t)

dt
,

where V is the potential

V = (x2 − 1)2 + εy4, (4.1)

and W1(t) and W2(t) are independent Brownian motion processes.
This potential V has two local minima at (-1,0) and (1,0), as well as a saddle point at the origin.

As a result, the diffusion process (x(t), y(t)) will have metastable states at these energy minima. Here
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Figure 1. Diffusion process with energy barrier: plot assigning colors to each node in the
discretized domain Ω, according to each node’s similarity to the starting node A. Higher
similarity values correspond to higher dot products between the two-dimensional embeddings
of the nodes. The left plot corresponds to a parameter value of ε = 0.01, while the right plot
corresponds to ε = 1.

I will take (−1,0) to be the reactant state A, and (1,0) to be the product state B. The diffusion process
can be approximated using a Markov (birth-death) jump process on a discrete state space. For this
example, we will study the diffusion process on the domain Ω = [−1, 1] × [−0.75, 0.75] by examining
the Markov jump process on a grid D = ((−1 + hZ) × (−0.75 + hZ)) ∩Ω, with h = 0.05.

In order to examine the behavior of this Markov process, we should first compute the probability
currents for the process. The infinitesimal transition matrix L can be found by using the jump rates for
the birth-death process Luv for each pair of adjacent nodes u, v [19]. We define the following constants
for a state (x, y) with x ∈ (−1, 1):

k+
x (x, y) =

1
2h2 −

1
2h

dV
dx

(x − h),

k−x (x, y) =
1

2h2 +
1

2h
dV
dx

(x + h),

k+
y (x, y) =

1
2h2 −

1
2h

dV
dy

(y − h),

k−y (x, y) =
1

2h2 +
1

2h
dV
dy

(y + h).

Also let k+
x (x + h, y) = 1/h if x = −1, k+

x (x + h, y) = 0 if x = 1, and k−x (x − h, y) = 0, k−x (x − h, y) = 1/h
if x = −1 or x = 1 respectively, and similarly for k+

y and k−y . Then the infinitesimal generator can be
expressed in terms of its action on a test function f such that

(L f )(x, y) =k+
x (x + h, y)( f (x + h, y) − f (x, y)) + k−x (x − h, y)( f (x − h, y) − f (x, y))
+ k+

y (x, y + h)( f (x, y + h) − f (x, y)) + k−y (x, y − h)( f (x, y − h) − f (x, y)).

Figure 1 assigns each point in the grid a color based on its similarity to the node of A = (−1, 0),
for epsilon values ε = .01 and ε = 1 in Eq (4.1), respectively. To account for the fact that nodes with
greater hopping distances from A will have lower similarities to this node, we propagate the similarity
matrix according to (3.2) in order to assign similarities to more distant nodes. The red area passing
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Figure 2. Feature representations of nodes with high similarity to the reactant state A for the
2D diffusion process with energy barrier, with ε = 0.01.

from A to B represents the region that reactive trajectories will pass through with the highest probability
for each value of epsilon.

In Figure 2, the node embeddings (u, v) = eopt(x, y) corresponding to a subset of nodes with higher
similarity values to A are shown, for the case where ε = 0.01, where eopt is the optimal linear encoding.
Notice that in this figure, the embeddings for nodes with the highest probability of occurring in a
reactive trajectory are clustered together, while nodes with lower probabilities tend to be grouped with
other nodes with similar probabilities; more specifically, nodes with similarity values in the range
0.5 − 0.6 have embeddings clustered near the upper left or lower right of the figure, while nodes with
values from 0.7–0.8 will have embeddings which appear in one of the two orange clusters.

In the context of the diffusion process with the potential V , the entropy effect refers to changes in the
system’s observed dynamics in response to the change of the parameter ε. That is, as ε is decreased,
dV/dy shrinks and therefore the negative term of dy/dt becomes small. As a result, the shape and size
of the saddle point located at the origin is altered, and we can expect the y-coordinate to take on a
greater variety of values with higher probabilities in this case. In particular, around the origin, smaller
values of ε should result in higher similarities between the nodes above and below the origin, since in
this case the process is more likely to move up and down. For larger values of ε, the process is expected
to move straight forward from A to B, with a smaller probability of moving up or down.

4.2. Diffusion process with barriers

Next we consider a pure diffusion process (V(x, y) = 0) on the domain Ω = [−1, 1] × [−1, 1] with
two barriers as depicted in Figure 3. This example was also discussed in [20]. Here we take the node
at (0.6, 0.6) to be the initial state A, and (−0.6,−0.6) as the final state B. The particle spends most of its
time between the reactant and product states, in the region between the barriers ([−1, 1] × [−0.4, 0.4]).
The only factor affecting the probability that the particle will reach B before returning to A is its current
distance to B, since there are no energetic obstacles to overcome. In order to travel from A to B, the
process must find its way past the obstacles by chance, thereby overcoming an entropic barrier.
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Figure 3. Diffusion process with entropic bottleneck: surface plot of the similarity function
between the reactant state A and nodes in Ω. Here, the discretization with h = 0.1 is used.

Figure 4 shows the node embeddings for a subset of nodes with high similarity values to reactant
A. Note that the color scheme used in this figure corresponds to the color scheme in Figure 3; node
embeddings that are colored red in the scatter plot correspond to red areas in the surface plot. In
Figure 4, node embeddings again tend to be grouped by the corresponding values of the similarity
function: nodes that are very similar to the initial state A (similarity function value > 0.9) appear in
the red cluster toward the lower right. Other clusters of different colors correspond to groups of nodes
with lower probabilities of appearing in a reactive trajectory. The yellow cluster contains embeddings
of nodes with similarity function values approximately 0.7–0.8, while the blue cluster corresponds to
nodes with similarity values near 0.5–0.6.

4.3. Three-dimensional toggle switch

Now we will consider a higher-dimension example, a stochastic model of a 3D genetic toggle switch
consisting of three genes that each inhibit the others’ expression [21]. We consider the production and
degradation of the three gene products, S 1, S 2, and S 3:

∗
α1


α4

S 1, ∗
α2


α5

S 2, ∗
α3


α6

S 3,

where the parameters αi are defined:

α1 =
c11

(65 + x2
2)(65 + x2

3)
, α2 =

c12

(65 + x2
1)(65 + x2

3)
,

α3 =
c13

(65 + x2
1)(65 + x2

2)
, α4 = c4x1 ,

α5 = c5x2, α6 = c6x3,

with c11 = 2112.5, c12 = 845, c13 = 4225, c4 = 0.0125, c5 = 0.005, and c6 = 0.025. From the
stationary probability distribution, it can be seen that this model has three metastable states:

A = {x ∈ S |35 ≤ x1 ≤ 45, 0 ≤ x2 ≤ 4, 0 ≤ x3 ≤ 4},
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Figure 4. Feature representations of nodes with high similarity to the reactant state A for the
entropic diffusion process.

B = {x ∈ S |35 ≤ x2 ≤ 45, 0 ≤ x1 ≤ 4, 0 ≤ x3 ≤ 4},
C = {x ∈ S |35 ≤ x3 ≤ 45, 0 ≤ x2 ≤ 4, 0 ≤ x1 ≤ 4}.

Here we will choose A to be the reactant state and B to be the product state.
Figure 5 assigns colors to each node in Ω = {ih, jh, kh|i, j, k ∈ Z} ∩ [0, 45] × [0, 45] × [0, 45]

based on their similarity to nodes in A, propagating the similarity matrix for nodes with larger hopping
distance from A as described previously. This figure shows two potential transition states for this
system. A reactive trajectory from A to B will be most likely to pass directly from A to B along the
higher-probability trajectory, represented in red. However, such a trajectory may instead reach B after
travelling through state C, as indicated by the fainter region connecting A and B via C.

Below, Figure 6 shows the two-dimensional node embeddings in R2, with the embeddings of nodes
with zero similarity to A omitted for clarity. There are several distinct clusters present in Figure 6, each
representing a cluster of similar nodes. The nodes with the highest similarities to A after propagation
of the similarity matrix (represented in red) are shown in the cluster to the lower left of the figure.
Hence, the nodes in this cluster represent the nodes expected to appear in the transition path.

4.4. Stochastic virus model

Now we will consider a higher-dimension example, a 3D stochastic model for virus propagation
consisting of three species which are necessary for virus production [22]. The three species involved
in this system are the template (tem), viral genome (gen), and structural (struct) proteins of the virus.

The cellular concentrations of these proteins are controlled by six reactions: producing tem from
gen, using tem as a catalyst to produce struct and gen, degradation of tem and struct, and propagation
of the virus using struct and gen such that

[gen]
k1
−→ [tem] , [tem]

k2
−→ ∅,

[tem]
k3
−→ [gen] , [gen] + [struct]

k4
−→ ∅,
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Figure 5. Surface plot of the similarities to A of grid points in the domain Ω for the 3-D
Toggle switch model. Results are for a 15 × 15 × 15 discretization (h = 3).

[tem]
k5
−→ [struct] , [struct]

k6
−→ ∅,

where we adopt k1 = 0.25, k2 = 0.25, k3 = 1.0, k4 = 7.5×10−6, k5 = 1000, and k6 = 1.99. From [22] we
know there are two steady states for this system: an unstable trivial solution at tem = gen = struct = 0,
and a stable steady state, which with the given parameter values is tem = 30, gen = 100, struct =

12000. Ignoring the stochastic effects, as a macro scale limit, this system can be modeled by the
ODEs:

d[tem]
dt

= k1[gen] − k2[tem],

d[gen]
dt

= k3[tem] − k4[gen][struct] − k1[gen],

d[struct]
dt

= k5[tem] − k6[struct] − k4[gen][struct].

For a stochastic perspective, we model the system by a Markov process, where we follow the First
Reactions method of the Gillespie algorithm [23], which at each time step assumes that the reaction
that could take place in the shortest amount of time will occur next.

From the upper left to the lower right, these clusters contain the representations for nodes near
approximately (15, 0, 1000), (30, 66.7, 4000) and (30, 100, 8000). Direct simulations confirm that
these are transition states: reactive trajectories will tend to pass through nodes in each of these
clusters. Applying the feature learning method to this system produces a two-dimensional feature
representation for each three-dimensional node (tem, gen, struct). Here, we take state A to be the
origin and B = (30, 100, 12000). Figure 7 plots the two-dimensional feature representations for this
system. In this figure, the nodes with higher similarities to the initial state (represented in red) and
those with lower such similarities (represented in blue) appear in separate clusters. Figure 8 plots
these feature representations with a logarithmic scale on the x-axis to better display the clusters.

Five distinct clusters are discernible in Figure 8: the red node in the top left is the feature
representation for the reactant state, the red node at the bottom right is the representation of the
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Figure 6. Feature representations of nodes with high similarity to the reactant state A for the
3D toggle switch.
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Figure 7. Feature representations of nodes with high similarity to the initial state A = (0, 0, 0)
for the virus propagation example.

product state, and the three clusters between each represent a transition state that reactive trajectories
pass through while traveling from A to B. From the upper left to the lower right, these three clusters
contain the representations for nodes near approximately (15, 0, 1000), (30, 66.7, 4000) and
(30, 100, 8000). Direct simulations confirm that these are transition states: reactive trajectories will
tend to pass through nodes in each of these clusters.

4.5. E. Coli σ-32 heat response circuit

Finally we will address a higher-dimension example, to illustrate the effectiveness of the method on
reducing the dimension of a graph. Consider the E. coli σ-32 stress circuit, a network of regulatory
pathways controlling the σ-32 protein, which is essential in the E. coli response to heat shock [24].
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Figure 8. Feature representations for the virus propagation example, with a logarithmic scale
on the x-axis.

The systems consists of 10 processes:

FtsH
k1
−→ ∅, Eσ32 k2

−→ FtsH,

GroEL
k3
−→ ∅, Eσ32 k4

−→ GroEL,

σ32 + Jcomp
k5
−→ σ32-Jcomp, σ32-Jcomp

k6
−→ Jcomp + σ32,

σ32-Jcomp
k7
−→ FtsH, ∅

k8
−→ σ32,

E + σ32 k9
−→ E-σ32, E-σ32 k10

−−→ E + σ32.

In this context, FtsH and GroEL are stress response proteins, E is a holoenzyme, and Jcomp (or J-
complex) represents several chaperone proteins that are lumped as a simplification. Then E-σ32 denotes
the protein complex formed when E binds to σ32, which catalyzes downstream synthesis reactions. σ32

is a product of translation, which we assume to occur at a rate corresponding to k8 = 0.007. It can also
associate and dissociate of the J-complex. In accordance with [24] the other rate constants are taken
to be: k1 = 7.4 × 10−11, k2 = 4.41 × 106, k3 = 1.80 × 10−8, k4 = 5.69 × 106, k5 = 3.27 × 105, k6 =

4.4 × 10−4, k7 = 1.28 × 103, k9 = 0.7, and k10 = 0.13.
For the above reaction rates, this system has a metastable state where the concentrations of FtsH,

GroEL, σ32, and Jcomp are approximately 600, and the concentrations of the other three species are
approximately 1500. Another metastable state occurs when the concentrations of FtsH, GroEL,σ32,
and Jcomp are approximately 800. Here we take the former to be initial state A and the latter to be
the product state B. Following a procedure similar to that in the above virus propagation example,
three-dimensional representations are generated for each node. The plot of these node representations
is given in Figure 9. The color scale in this figure is determined by the value of the similarity function
between each node and the node A, with the most similar nodes shown in red. Nodes with lower
similarities have been omitted for clarity. Four distinct clusters can be seen in Figure 9.
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Figure 9. Feature representations of nodes with high similarity to the initial state, when
initial state is taken to be A = (600, 600, 600, 600, 1500, 1500, 1500), for the E. Coli heat
response circuit model.

5. Conclusions

In this paper, we presented a method for analyzing metastable chemical reaction systems via feature
learning on directed networks using random walk sampling. We have shown how this method may be
used to identify transition states of Markov jump processes by interpreting such processes in terms of
directed networks and taking advantage of Transition Path Theory. We have illustrated the efficacy
of this method through several low-dimensional examples involving various energetic and entropic
barriers. As noted above, for more complex, realistic examples, the method can be used for dimensional
reduction, enabling the extraction and analysis of high-dimensional graph information. Further work
will be necessary to fully understand this approach from a probabilistic standpoint. Another direction
for future work is improving efficiency and development of faster algorithms. However, this method
still forms the groundwork for a potential new way of analyzing directed networks and jump processes,
particularly in the context of chemical kinetics.
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