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Abstract: We investigate a non-smooth stochastic epidemic model with consideration of the alerts
from media and social network. Environmental uncertainty and political bias are the stochastic drivers
in our mathematical model. We aim at the interfere measures assuming that a disease has already
invaded into a population. Fundamental findings include that the media alert and social network alert
are able to mitigate an infection. It is also shown that interfere measures and environmental noise can
drive the stochastic trajectories frequently to switch between lower and higher level of infections. By
constructing the confidence ellipse for each endemic equilibrium, we can estimate the tipping value of
the noise intensity that causes the state switching.

Keywords: SIS model; media alert; noise-induced state switching; stochastic sensitivity; confidence
domains

1. Introduction

These days have witnessed the horrible pandemic of COVID-19. As is known to the public, key
characteristic of this killer is its silent spreads. Before we fully understand the virus, it has already
established. In general, what do we do once a disease has invaded into a population? To mitigate
the spread of a disease and eventually get a full control to the disease, the behavior changes at the
population level can bend the infection curve. How to promote a massive behavior change? Two
typical governing systems function differently. A central government can force a mandatory behavior
change without any court challenge, period. If a mandatory preventive measure cannot be exercised
or the administration failed to act following a scientific manner, media and social network are able
to propagate the positive message in order to persuade behavior changes. A behavior change at the
population level is highly media oriented. In fighting COVID-19 pandemic, WHO Director-General
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Tedros Adhanom Ghebreyesus ever mentioned “We’re not just fighting an epidemic; we’re fighting an
infodemic.” For emerging and re-emerging epidemic diseases, research has shown that positive media
coverage is an effective measure to control the diseases [1].

Massive media propagation and social network response to an epidemic take off only after an
outbreak has been observed, so that the initial infection growth is following the regular epidemic
process. The study here focuses on how to mitigate an epidemic through the awareness by media and
social network. Media and social network response to an epidemic have to be based upon the number
of known infected. That is, the pressure from media and social network impose to the population only
until the prevalence reaches certain tipping point. We, therefore, will set up a cutting point for the
number of infections, then let the media or the social network play its role in our model. A quick
searching across the board of relevant literature, this question has been tackled mainly from the view
of deterministic modeling. Scholars have proposed media functions to model the transmission
rates [2–7]. For instance, Cui et al. [3] analyzed a susceptible-exposed-infected model by using
β(1 − e−mI) to characterize the effect of media coverage. Their results showed that weak media effects
may not be helpful because the infections oscillate periodically. Misra et al. [8] formulated an SIS
model to study the impact of awareness programs conducted by a media campaign on the spread of an
infectious disease and showed that the spread of an infectious disease can be controlled by using
awareness programs but the disease remains endemic due to immigration.

Research work in highlighting the role of media coverage and social media network without tipping
point can be read in [2,3,5–7]. In reality, because of time delay and asymptotic infections, we consider
that only when the number of infected individuals reaches a tipping value, the alerts and the pressure
from media and social network can take place [9, 10]. Liu et al. [4] set a base line of infection (the
tipping point) Ic to launch media alert. They consequently proposed a non-smooth but continuous
transmission rate:

β(I) =

β, 0 ≤ I ≤ Ic,

β
(

Ic
I

)p

, I>Ic,
(1)

where nonnegative constant p denotes the intensity of the media coverage. By assuming that the
susceptible individuals follow the logistic growth and newborns directly enter into the susceptible
class, they studied the following model:

dS
dt

= rS
(
1 −

S
a

)
− β(I)IS + γI,

dI
dt

= β(I)IS − (d + ε + γ)I,
(2)

where S (t) and I(t) are the sizes of susceptible and infectious population at time t, respectively. All
parameters are positive. r is the intrinsic growth rate of the susceptible population; a is the carrying
capacity of the community in the absence of infection; d denotes the natural death rate; γ represents the
recovery rate of the infected individuals; ε is the disease-induced death rate. Liu et al. [4] conducted a
rigorous and complete mathematical analysis to model (2).

Deterministic models always give us a good start to catch certain characteristic of a disease
transmission. Obviously, these mean-field models are based upon the homogeneous population,
uniform individual behavior, and steady environmental settings. In managing to fight an epidemic or
pandemic infections, unexpected random factors also play a significant role. A certain false claims,
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misinformation, conspiracy theories can change the course of epidemic. The rumors such as black
people are immune to COVID-19 and coconut oil kills the virus of COVID-19 have misled some
communities in battling the virus. Spreading false or misleading information may prevent the timely
and effective adoption of appropriate behaviours and of public health recommendations or
measures [11]. Occasional political bias or unusual unscientific statements can even create a temporal
chaos in favor of the disease spread. In the real world, the transmissions of infectious diseases are
inevitably affected by these unexpected factors. The variations of physical environmental factors [12],
such as humidity, temperature, etc. can have a significant impact on the transmission of a disease. A
well-known work was the experimental result of Lowen et al. [13].

The introduction of environmental noise into deterministic setup could exhibit unexpected
behaviors which have no analogue in the deterministic models [14]. In the last few decades,
researchers have done a lot of work regarding to this aspect [14–25]. In [24], a stochastically forced
predator-prey model with environmental toxins was proposed to analyze the dynamical behavior of
noise-induced transitions from coexistence to prey-only extirpation in the bistable zone. Nonlinear
dynamical models can exhibit various new phenomena, such as stochastic resonance [26],
noise-induced transitions [27], noise-induced ordering [28], noise-induced chaos [29], and
noise-induced complexity [30]. Studies of the environmental noise effects on systems with multiple
attractors have been steady growing [31]. Multi-stable systems of deterministic models can exhibit
noise-induced state switching between deterministic attractors [32–35] when a noise is considered.
Using the stochastic sensitivity functions (SSF), Bashkirtseva et al. [36] developed a new technique to
construct the analytical description of stochastically forced equilibria and cycles of discrete-time
models. In the present paper, we will use the SSF technique to explore the noise-induced state
switching between two epidemic equilibria and estimate a threshold value of the noise intensity.

We organize this paper as following. In Section 2, we review the main results of deterministic
model (2) and propose its stochastic counterpart. The studies of noise-induced transitions between
two epidemic equilibria and construction of the confidence ellipses for equilibria will be presented in
Section 3. Finally, we conclude our study by a simple discussion in Section 4.

2. Model formulation and the global existence and uniqueness of the solutions

We first briefly review the main results of deterministic model (2), then we study the corresponding
stochastic counterpart.

2.1. A summary to the deterministic model

Notice that model (2) always exists two equilibria: the origin O(0, 0) and the disease-free
equilibrium E0(a, 0). The basic reproductive number is

R0 =
aβ

d + ε + γ
. (3)

Here, we highlight the interested results from [4], which will be directly used in the subsequent
stochastic analysis.

Lemma 2.1. If R0 < 1, E0(a, 0) is globally asymptotically stable. If R0 > 1 together with certain
extra conditions, in addition to saddles O(0, 0) and E0(a, 0), there exist three endemic equilibria E1,
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E2 and E3, where E1 and E3 are asymptotically stable and E2 is a saddle. The separatrices (the stable
manifolds of the saddle E2) separate the domain of attractions of E1 and E3. Hence, bistable dynamics
could be observed in model (2) if R0 > 1.

In this paper, we pay more attentions to the epidemiological implications. Model (2) was set to
investigate the media effects after the disease has already invaded the population. So the media alert
and the pressure from social network have no impact to the initial growth of the disease. That is why the
basic reproductive number R0 is independent of the media alert parameters Ic and p. The appearance of
the bistable dynamics is the straightforward outcome of the introduction of media impact. A bifurcation
diagram is shown in Figure 1. It can be seen that model (2) undergoes a backward bifurcation at
R0 ≈ 4.8705. There is a window (4.3515, 4.8705) for R0 where model (2) can have two stable equilibria
E1 and E3 and a saddle E2 (see also Figure 2 (a) where β = 0.0139). The appearance of the stable
endemic state competing with the other stable endemic state is known as the bistability phenomenon.
The media is helpful to interfare the infections by forcing (2) to choose smaller endemic E1 as the
attractor.

Table 1. Parameter values in numerical simulations for models (2).

Symbol Description Value range Units

r Intrinsic growth rate 1.35 year−1

a Carrying capacity of the community 700 None
d Natural death rate 0.0133 year−1

p Intensity of the media effect on contact infection 3 None
ε The disease-induced death rate 2 year−1

β Transmission rate 0.0087 − 0.0209 year−1

γ Recovered rate 0.0196 year−1

Ic The base line of infection to launch media alert 80 None

2.2. The stochastic model

In this paper we intend to explore the stochastic version of model (2). Stochastic factors such as
the environmental noise, social noise, random misinformation spread though media and social
network and political motivated biased information are not easy to handle with deterministic models.
We integrate all these random factors into the deterministic model (2) to look into the following
stochastic differential equation:

dS =

[
rS

(
1 −

S
a

)
− β(I)IS + γI

]
dt + σS S dB1,

dI =

[
β(I)IS − (d + ε + γ)I

]
dt + σI IdB2,

(4)

where B1 and B2 are standard one-dimensional independent Brownian motions. We use σS and σI to
denote the noise intensities. For the simplicity of discussion in this research, we assume σS = σI = σ.
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Figure 1. Bifurcation diagram when R0 changes. Dashed line indicates unstable and solid
stable. The selected parameter values are tabulated in Table 1.

Because system (4) is piecewise defined, we distinguish the noise intensities by σ = σ1 when I > Ic

and σ = σ2 when I ≤ Ic.

2.3. Global existence and uniqueness of solutions

Since we are more interested in the asymptotic behavior of the model, we first anticipate that all
solutions exist for all forward times. Now we prove the existence and uniqueness of the global positive
solution of stochastic model (4).

Theorem 2.2. For any given positive initial value (S (0), I(0)) ∈ <2
+, model (4) has a unique positive

solution (S (t), I(t)) for t ≥ 0. Moreover, the solution will remain in <2
+ with probability one, namely,

(S (t), I(t)) ∈ <2
+ for all t ≥ 0 almost surely (a.s.).

Proof. Without loss of generality, we assume that I(0) > Ic. Let us introduce the stopping time
sequence {τi}, i = 1, 2, · · · as follows:

τ1 = inf{t ≥ 0, I(t) ≤ Ic}, τ2 = inf{t ≥ τ1, I(t) > Ic}

and
τ2n+1 = inf{t ≥ τ2n, I(t) ≤ Ic}, τ2n+2 = inf{t ≥ τ2n+1, I(t) > Ic}

for n = 1, 2, · · · . Thus when t ∈ [τ2n, τ2n+1), model (4) becomes

dS =

[
rS

(
1 −

S
a

)
− β

( Ic

I

)p

IS + γI
]

dt + σ1S dB1,

dI =

[
β
( Ic

I

)p

IS − (d + ε + γ)I
]
dt + σ1IdB2,

(5)
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and when t ∈ [τ2n+1, τ2n+2), model (4) becomes

dS =

[
rS

(
1 −

S
a

)
− βIS + γI

]
dt + σ2S dB1,

dI =
[
βIS − (d + ε + γ)I

]
dt + σ2IdB2,

(6)

where n = 0, 1, 2, · · · and τ0 = 0. Notice that (5) and (6) both have a unique global positive solution
for any initial value (S (0), I(0)) ∈ <2

+. This implies model (4) has a unique local positive solution
(S (t), I(t)) on [0, τe), where τe is the explosion time. In order to prove the solution is global, we only
need to prove τe = ∞, a.s.

Let k0 > 0 be sufficiently large such that S (0) and I(0) both lie within the interval
[

1
k0
, k0

]
. For all

integer k > k0, we define the stopping time

τ̃k = inf
{

t ∈ [0, τe) : min{S (t), I(t)} ≤
1
k

or max{S (t), I(t)} ≥ k
}
.

Clearly, τ̃k is an increasing function as k → ∞. Let τ̃∞ = limk→∞ τ̃k, whence τ̃∞ ≤ τe, a.s. If we can
prove τ̃∞ = ∞, then τe = ∞, and (S (t), I(t)) ∈ <2

+ for all t ≥ 0, a.s. Hence, we only need to show
that τ̃∞ = ∞, a.s. We prove this by contradiction. If this assertion is false, then there exists a pair of
constants T > 0 and ε ∈ (0, 1) such that P{τ̃∞ ≤ T } > ε, hence there exists k1 > k0 such that

P{τ̃k ≤ T } ≥ ε (7)

for all k ≥ k1. Define a nonnegative C2-function V : <2
+ →<+ by

V(S , I) = S − m − m ln
S
m

+ I − 1 − ln I,

where m = d+ε
β

. Applying Itô’s formula, we obtain respectively from (5) and (6) that for t ∈ [τ2n, τ2n+1),

dV(S , I) = LV(S , I)dt + σ1(S − m)dB1 + σ1(I − 1)dB2,

where

LV(S , I) =

(
1 −

m
S

) [
rS

(
1 −

S
a

)
− β

( Ic

I

)p

IS + γI
]

+

(
1 −

1
I

) [
β
( Ic

I

)p

IS − (d + ε + γ)I
]

+
1
2

mσ2
1 +

1
2
σ2

1

≤r
(
1 +

m
a

)
S −

r
a

S 2 + (mβ − d − ε)I + (d + ε + γ) +
1
2

mσ2
1 +

1
2
σ2

1

≤r
(
1 +

m
a

)
S −

r
a

S 2 + (d + ε + γ) +
1
2

mσ2
1 +

1
2
σ2

1 < M1,

and that for t ∈ [τ2n+1, τ2n+2),

dV(S , I) = LV(S , I)dt + σ2(S − m)dB1 + σ2(I − 1)dB2,
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where

LV(S , I) =

(
1 −

m
S

) [
rS

(
1 −

S
a

)
− βIS + γI

]
+

(
1 −

1
I

) [
βIS − (d + ε + γ)I

]
+

1
2

mσ2
2 +

1
2
σ2

2

≤r
(
1 +

m
a

)
S −

r
a

S 2 + (d + ε + γ) +
1
2

mσ2
2 +

1
2
σ2

2 < M2,

where M1 and M2 are two positive numbers. Therefore, we have that for t ∈ [τ2n, τ2n+1),

dV(S , I) ≤ M1dt + σ1(S − m)dB1 + σ1(I − 1)dB2 (8)

and that for t ∈ [τ2n+1, τ2n+2),

dV(S , I) ≤ M2dt + σ2(S − m)dB1 + σ2(I − 1)dB2. (9)

Without loss of generality, we assume that (τ̃k ∧ T ) ∈ [τ2m, τ2m+1) for some n = m (same logic follows
when (τ̃k ∧ T ) ∈ [τ2m+1, τ2m+2)). This together with (8) and (9) yields

V(S (τ̃k ∧ T ), I(τ̃k ∧ T ))

≤V(S (0), I(0)) +

m−1∑
n=0

(∫ τ2n+1

τ2n

M1dt +

∫ τ2n+1

τ2n

σ1(S − m)dB1 +

∫ τ2n+1

τ2n

σ1(I − 1)dB2

)

+

m−1∑
n=0

(∫ τ2n+2

τ2n+1

M2dt +

∫ τ2n+2

τ2n+1

σ2(S − m)dB1 +

∫ τ2n+2

τ2n+1

σ2(I − 1)dB2

)
+

∫ τ̃k∧T

τ2m

M1dt +

∫ τ̃k∧T

τ2m

σ1(S − m)dB1 +

∫ τ̃k∧T

τ2m

σ1(I − 1)dB2.

Taking the expectations on both sides of the above inequality leads to

EV(S (τ̃k ∧ T ), I(τ̃k ∧ T )) ≤ V(S (0), I(0)) + ME(τ̃k ∧ T ),

where M = max{M1,M2}. Thus

EV(S (τ̃k ∧ T ), I(τ̃k ∧ T )) ≤ V(S (0), I(0)) + MT. (10)

Let Ωk = {ω ∈ Ω : τ̃k = τ̃k(ω) ≤ T } for k ≥ k1 and, by (7), P{Ωk} ≥ ε. Note that for every ω ∈ Ωk,
we have either S (τ̃k, ω) or I(τ̃k, ω) equals either k or 1

k . Hence V(S (τ̃k, ω), I(τ̃k, ω)) is no less than either(
k − m − m ln

k
m

)
∧ (k − 1 − ln k) or

(
1
k
− m + m ln km

)
∧

(
1
k
− 1 + ln k

)
,

where “a ∧ b” means “the smaller one of a and b”. It then follows from (10) that

V(S (0), I(0)) + MT

≥E[IΩkV(S (τ̃k, ω), I(τ̃k, ω))]
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≥ε

[(
k − m − m ln

k
m

)
∧ (k − 1 − ln k) ∧

(
1
k
− m + m ln km

)
∧

(
1
k
− 1 + ln k

)]
,

where IΩk is the indicator function of Ωk. Letting k → ∞ we have

∞ > V(S (0), I(0)) + MT = ∞,

a contradiction. So we must have τ∞ = ∞, a.s. This completes the proof. �

In the following, we study the phenomenon of noise-induced transitions between two stochastic
attractors for stochastic model (4).

3. Analysis of noise-induced transitions

In this section, the phenomenon of noise-induced transitions between two endemic equilibria is
studied by constructing confidence ellipses with the technique of stochastic sensitivity functions (SSF).

We take the parameter values in Table 1 and set Ic = 80. The three endemic equilibria for model
(2) are E1 = (146.2542, 77.3821), E2 = (159.3644, 82.3223), E3 = (413.8380, 113.1525). In Figure
2, phase plane of the deterministic model with parameters in Table 1 is shown, where the red-dotted
curve Γ (the stable manifold of E2) is the separatrix of two basins of attraction and the gray one (I = Ic)
is the separatrix of two subsystems. As one can see, for the deterministic model, the trajectories with
initial value inside of Γ tend to E1, and the trajectories with initial value outside of Γ approach E3.
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Figure 2. Phase plane (a) of the non-smooth model (2) with parameters in Table 1. (b) is a
local enlarged view of (a).

For the stochastic model, we take endemic equilibria E3 as an example. It is worth noting that
endemic equilibria E3 is located above the threshold Ic. When the noise intensity is small, here, we
take σ1 = 0.1, the stochastic trajectories with initial value near E3 will hover around it (see Figure 3).
However, as the noise intensity increases (σ1 = 0.25), the steady state switches from high epidemic
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E3 to low epidemic E1 (see Figure 4). It is also observed that the noise-induced transitions from low
epidemic E1 to high epidemic E3.
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Figure 3. Time series (a) of S (t) and I(t); Phase trajectory (b) for stochastic model (4) with
initial value (413, 113) and noise intensity σ1 = 0.1.
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Figure 4. Time series (a) of S (t) and I(t); Phase trajectory (b) for stochastic model (4) with
initial value (413, 113) and noise intensity σ1 = 0.25.

3.1. Noise-induced state frequent switching

In the following, we construct confidence ellipses for stochastic model (4) by applying the stochastic
sensitivity function technique (see the Appendix in [37]). We then further estimate the critical value of
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the noise intensity that causes state switching.

For an endemic equilibrium Ē = (S̄ , Ī) of deterministic model (2), let F =

(
f11 f12

f21 f22

)
be the

Jacobian matrix of ( f , g) with respect to (S , I) at Ē, where

f11 = r(1 −
2
a

S̄ ) − β(Ī)Ī,

f12 = −β
′

(Ī)S̄ Ī − β(Ī)S̄ + γ,

f21 = β(Ī)Ī,

f22 = β
′

(Ī)S̄ Ī + β(Ī)S̄ − (d + ε + γ),

We define g11 = S̄ , g22 = Ī, and G =

(
g11 0
0 g22

)
. After solving the following system of linear

equations for wi j, i, j = 1, 2, 
2 f11w11 + f12w12 + f12w21 = −g2

11,

f21w11 + ( f11 + f22)w12 + f12w22 = 0,
f21w11 + ( f11 + f22)w21 + f12w22 = 0,
f21w12 + f21w21 + 2 f22w22 = −g2

22,

we obtain the stochastic sensitivity matrix W =

(
w11 w12

w21 w22

)
. Given that a noise intensity σ̄ and

a fiducial probability P, then applying the formula A.3 from [37] we obtain the confidence ellipse
equation for the equilibrium Ē = (S̄ , Ī)〈

(S − S̄ , I − Ī)T ,W−1((S − S̄ , I − Ī)T )
〉

= 2σ̄2 ln
1

1 − P
. (11)

Applying (11) to E3 = (413.8380, 113.1525), the corresponding stochastic sensitivity matrix and its
inverse are

W =

(
194704.7876 17235.9757
17235.9757 2620.5725

)
and W−1 =

(
0.000012 −0.000081
−0.000081 0.0009134

)
.

The confidence ellipse equation of E3 is

1.2·10−5·(S−413.838)2−1.6·10−4·(S−413.838)(I−113.1525)+9.1·10−4·(I−113.1525)2 = 2σ2
1 ln

1
1 − P

.

Fixing fiducial probability P = 0.95, we next observe how different intensity noise affects the
confidence ellipse. When σ1 = 0.1, the corresponding stochastic states and confidence ellipses of
subsystem (5) are shown in Figure 5. As shown in the figure, the random states of the stochastic model
are distributed around the deterministic endemic equilibrium E3, and located inside of the confidence
ellipses with probability 0.95.

We then take two larger noise intensities σ1 = 0.24 and σ1 = 0.28, the corresponding confidence
ellipses are shown in Figure 6. As the noise intensity increases, the confidence ellipse is growing. It
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crosses separatrix Γ (the stable manifold of E2) and ultimately arrives at the domain of attraction of
the low endemic equilibrium E1. The noise intensity value that corresponds to the confidence ellipse
intercepts with Γ can be regarded as the critical noise intensity σ̂1. Here σ̂1 ≈ 0.24. A typical example
that the trajectory of stochastic model (4) starting near the endemic equilibrium E3 converges to the
other endemic equilibrium E1 is shown in Figure 4 in which σ1 = 0.25 > σ̂1.
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S

I

Figure 5. Random states (blue) of stochastic model (5) and confidence ellipse (green) for
σ1 = 0.1.

Next we construct the confidence ellipse for E1. The corresponding stochastic sensitivity matrix
and its inverse of endemic equilibrium E1 are

W =

(
55873.2322 −2783.5288
−2783.5288 30253.2528

)
and W−1 =

(
0.000018 0.0000017
0.0000017 0.000033

)
.

The corresponding equation of the confidence ellipse for E1 is

1.8·10−5·(S−146.2542)2+3.3·10−6·(S−146.2542)(I−77.3821)+3.3·10−5·(I−77.3821)2 = 2σ2
2 ln

1
1 − P

.

Putting the confidence ellipses for E1 and E3 together can give us a better looking of the whole
system. For weaker noise (σ1 = 0.1, σ2 = 0.02), confidence ellipses of both E1 (green) and E3 (blue)
are located inside their own attraction basin. They are distinctly separated by the separatrix Γ (in red)
(see Figure 7 (a)). The random trajectories starting from inside of the separatrix will fluctuate around
the endemic equilibrium E1, and the ones starting from outside of the separatrix will fluctuate around
the endemic equilibrium E3. The random trajectories leaving the unforced deterministic attractors
concentrate in their small neighborhoods (see Figure 7 (c)). One can see the weaker noise does not
affect the dynamics of the stochastic model (4).
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Figure 6. Separatrix (red dashed) and confidence ellipses (blue solid) for σ1 = 0.1 (small),
σ1 = 0.24 (middle), σ1 = 0.28 (large).
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Figure 7. Confidence ellipses (a), time series (b), and random trajectories (c) for stochastic
model (4) when σ1 = 0.1 and σ2 = 0.02.
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We fix σ2 = 0.02 and increase σ1 to 0.28, then the confidence ellipse (blue) of E3 crosses the
separatrix (see Figure 8 (a)). The stochastic trajectories starting within the attraction basin of E3 will
cross the separatrix and approach E1 with high probability (see Figure 8 (c)). This is also shown by the
time series (see Figure 8 (b)): the number of infected cases ultimately is stabilized around I1 (a smaller
value). To better understand this, we numerically obtain the stationary probability density (SPD) of
model (4). In Figure 8 (d), we can see that the SPD for stochastic model (4) has a maximum value at
I1, which implies that the sample trajectory will stay for a longer time in the neighborhood of I1. In
other words, I1 is stable in the meaning of probability (with a bigger probability). This illustrates that
the phenomenon of noise-induced transition occurs as the noise intensity σ1 increases.
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Figure 8. Confidence ellipses (a), time series (b), random trajectory (c), and stationary
probability density (d) for stochastic model (4) with initial value (413, 113) and noise
intensity σ1 = 0.28, σ2 = 0.02.

We also obtain a symmetric result by fixing σ1 = 0.1 and increasing σ2 to 0.04 (see Figure 9). In
this scenario, the confidence ellipse of E1 crosses the separatrix Γ. That is, the number of infected
cases ultimately maybe jump to I3 (a bigger value), thus making the infections worse.

Finally, we let both intensities change, increasing σ1 to 0.28 and σ2 to 0.04. As expected that the
phenomenon of frequent random hopping occur between two attractors E1 and E3 is observed. We
can see from Figure 10 (a) that both the two confidence ellipses of E1 and E3 cross the separatrix Γ,
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Figure 9. Confidence ellipses (a), time series (b), random trajectory (c), and stationary
probability density (d) for stochastic model (4) with initial value (146, 77) and noise intensity
σ1 = 0.1, σ2 = 0.04.
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and the region that the two confidence ellipses intersect builds a “transition bridge” between basins of
attraction. In this overlapped region, noise-induced transitions can occur with greater probability (see
Figure 10 (b) and (c) ). In addition, we can also see from Figure 10 (d) that the SPD for stochastic
model (4) has two maximum value at I1 and I3. In this case, stochastic force can worse the picture of
infection, it can also mitigate an infection.
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Figure 10. Confidence ellipses (a), time series (b), random trajectory (c), and stationary
probability density (d) for stochastic model (4) with initial value (146, 77) and noise intensity
σ1 = 0.28, σ2 = 0.04.

4. Discussion

What do we do “if the horse has left the barn”? We are still optimistic. Never too late to take an
action. Scientific oriented media alert and positive energy spread over the social network are able to
guide us walking out of the woods. For epidemics associated with emerging and re-emerging infectious
diseases, we can bend the infection curve if we are oriented scientifically. We can smartly use the media
coverage and social network to help us to fight an epidemic. Using mathematical model we have shown
that alerts from media and/or social network play an important role in the battle of fighting the disease
spread.
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The final size of the epidemic depends on the media and social network coverage parameters p and
Ic. A clear monotonic patten of the final size can be seen shown in Figure 11 (a). Under the same noise
intensity (we set σ1 = 0.005), the greater the media and social network coverage, the smaller the final
size. The same monotonic patten is observed in Figure 11 (b), the final infection scale decreases when
the threshold Ic decreases. This suggests that the decision makers should set appropriate threshold Ic

to minimise the infection scale.
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Figure 11. Time series of I(t) for stochastic model (4) with same noise intensity σ1 = 0.005
and different (a) intensity of media coverage p, (b) threshold number of infected Ic.

Since the alerts from media social network are triggered only after an initial epidemic, it does reduce
the magnitude of the infection. However, one cannot overstate its role in containing an epidemic,
mainly because these alerts do not modify the basic reproductive number. It is out of the reach of these
alerts to bring the basic reproductive number less than one.

The magnitude of a confidence ellipse is proportional to the intensity of the noise. The bigger the
noise, the bigger the corresponding confidence ellipse. Then we are sure that intensifying the noise
will raise the likelihood of endemic state shift. However, in terms steady state mobile attributed to the
noise, current model cannot distinguish whether it bring the epidemic downward or upward.
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