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Abstract: Background: Long non-coding RNAs (lncRNAs) regulate gene expression in concert with 

microRNAs (miRNAs) and mRNAs. This study was designed to explore the potential roles of 

lncRNAs and their related competing endogenous RNA (ceRNA) networks in alopecia areata (AA). 

Methods: This study comprised six participants (three AA patients and three healthy individuals) 

whose serum lncRNA profiles were evaluated by lncRNA sequencing. Following differential 

expression analysis, and function enrichment analysis, a lncRNA-miRNA-mRNA network was then 

constructed using various bioinformatics tools and validated using quantitative reverse-transcription 

PCR (qRT-PCR). Results: We identified 220 mRNAs and 166 lncRNAs that were differentially 

expressed in AA patients. The differentially expressed mRNAs were predominantly associated with 

cytokine-cytokine receptor interactions, MAPK signaling and Ras signaling pathways. The 

differentially expressed lncRNAs were primarily associated with cytokine-cytokine receptor 

interactions, chemokine signaling pathways, axon guidance, and legionellosis. In addition, qRT-PCR 

analyses verified the upregulation of AC005562.1, AF131217.1, and RP11-251G23.5 and 

downregulation of RP11-231E19.1 in AA patients. Conclusion: We constructed a complex ceRNA 

network for AA and discovered that various RP11 lncRNAs including RP11-251G23.5 and 

RP11-231E19 may play a crucial role in the pathogenesis of AA via the regulation of the 

cytokine-cytokine receptor interaction pathway, which could serve as a therapeutic target for alopecia 

areata in clinical interventions. 
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1. Introduction 

Alopecia areata (AA) is an organ-specific autoimmune disease characterized by distinct round 

patches of hair loss. Previous studies have found that the incidence of AA varies geographically, 

affecting approximately 0.1 to 0.2% of the US population [1], 0.3% of the South Korean 

population [2] and 3.8% of the Singaporean population [3]. Clinical studies have shown that AA 

is triggered by a combination of genetic predisposition and environmental factors [4,5], and is 

affected by age and ethnicity. Recent studies have described the wide range of clinical presentations 

of AA. A gene expression study, by Petukhova et al., on scalp sections from 96 patients 

demonstrated that ATG4B and SMARCA2 are involved in autophagy and chromatin remodeling in 

these patients [6]. Using meta-analysis, the rs2476601 polymorphism of the PTPN22 gene was also 

shown to be correlated to AA susceptibility [7]. However, the molecular mechanisms underlying AA 

development still require further investigation. 

Long non-coding RNAs (lncRNAs) are widely produced in mammals and other eukaryotes [8], 

and are much longer than small non-coding RNAs. Almost all aspects of cell biology including 

transcription, posttranscriptional processing and chromosome remodeling involve lncRNAs [9]. The 

levels of lncRNA expression typically correlates with their function, as mature lncRNAs are 

independently functional end products. Non-coding RNAs (ncRNAs) therefore present an intrinsic 

diagnostic advantage over protein-coding RNAs and a recent study by Bao et al. suggested that 

differentially expressed lncRNAs may represent novel therapeutic targets for AA [10]. Additionally, 

Sheng et al. [11] developed an integrative computational method to systematically identify 

genome-wide dysregulated lncRNAs and their related ceRNA network. Their results indicated that 

lncRNAs can function as a part of a ceRNA network, and their differential expression has been 

implicated in the development and progression of AA. However, their results were not validated.  

Thus, in this study, we collected blood samples from three AA patients and three healthy controls 

to generate blood lncRNA expression profiles for both conditions. We went on to develop a 

lncRNA-microRNA (miRNA)-mRNA network (ceRNA network) and validated our microarray data 

using quantitative reverse transcription PCR (qRT-PCR) and the GEO database. We identified more 

than 220 differentially expressed mRNAs and 166 differentially expressed lncRNAs in AA patients. 

Moreover, these differentially expressed lncRNAs were primarily associated with cytokine-cytokine 

receptor interactions, chemokine signaling pathways, axon guidance, and legionellosis. Taken 

together, our findings may help to reveal the underlying molecular mechanisms of AA pathogenesis 

and may provide a theoretical framework for developing novel clinical interventions. 

2. Material and methods 

2.1. Data processing 

2.1.1. Sample source 

The samples, obtained from the blood of healthy controls and AA patients, were divided into two 

groups with three samples in each group: a healthy control group (Normal, W40, W42 and W43) and 

an AA patient group (AA, A33, A34, and A35). 

2.1.2. Total RNA extraction, library construction and sequencing 
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Total RNA was extracted using TRIzol (Invitrogen, Carlsbad, CA, USA) according to the 

manufacturer’s instructions. The integrity and purity of the RNA samples were monitored using by 

gel electrophoresis and at absorbance ratios off or A260/A280 described by the using Nanodrop. 

After using the removal of rRNA Ribo-Zero™ kit to remove the rRNA, the remaining RNA was 

randomly digested to produce cut into short fragments. Then first-strand of cDNA was synthesized 

using these fragments and random hexamers; the second-strand of cDNA was then synthesized by 

mixing the first-strand cDNA with buffer, dNTPs, RNase H and DNA polymerase I. This cDNA was 

purified and degraded by uracil-N-glycosylase. The RNA fragments were separated by agarose gel 

electrophoresis. These, and fragments were expanded using with PCR and these. The PCR products 

were sequenced using an Illumina HiSeq™ 2000 instrument (Illumina, Inc., San Diego, CA, USA). 

The sequencing data were deposited in the NCBI SRA dataset 

(https://www.ncbi.nlm.nih.gov/Traces/study/?acc=PRJNA663747), with the accession number of 

PRJNA663747. 

2.1.3. Quality control of sequencing data 

Both low-quality reads and incorrectly sequenced bases were observed in our sequencing data. 

In order to filter out unreliable bases and reads we evaluated and cleaned the data as follows: First, 

the sequencing tape joints were removed; then, when the number of N (a base that cannot be 

recognized by the instrument) bases in any of the sequencing reads exceeded 10% of the number of 

read bases, or the number of low-quality (Q ≤ 5) bases in any of the sequencing reads exceeded 50% 

of the total, the paired reads were removed. Finally, clean data from all six samples were then 

subjected to further analyses. 

2.1.4. Mapping of clean reads to the reference genome 

Top-Hat software (v2.1.0) was used to map clean reads to the human reference genome 

(GENCODE download, GRCh38) [12] using the default parameters. 

2.1.5. mRNA and lncRNA annotation 

Feature-Counts software (v1.6.0) was used to obtain the read-count information for each gene 

alignment based on the human gene annotation information (Release 25) provided by 

GENCODE [12,13]. Genes annotated as "protein_coding" were categorized as mRNAs. Genes 

annotated as "antisense", "sense_intronic", "lincRNA", "sense_overlapping", "processed_transcript", 

"3prime_overlapping_ncRNA", or "non_coding" were categorized as lncRNAs.  

2.2. Transcriptional profiling and principal component analysis (PCA) 

The correlation of gene expression levels between samples is an important indicator of the 

reliability of the experiment and whether the sample selection is reasonable. Therefore, we evaluated 

the correlation of this data as follows: the Pearson correlation coefficient was calculated for every 

pair of samples using the “cor” function in R3.4.1 (https://stat.ethz.ch/R-manual/R-devel/ 

Library/stats/html/cor.html). A Pearson correlation coefficient that approaches 1 indicates highly 

correlated expression patterns between samples. 

After PCA, the first two principal components were selected, and the distribution of the samples 

https://www.ncbi.nlm.nih.gov/Traces/study/?acc=PRJNA663747
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in a two-dimensional plane was drawn based on their principal component score. Prcomp 

(https://stat.ethz.ch/R-manual/R-devel/library/stats/html/prcomp.html) was used to reduce the data, 

and the ggfortify package (Version: 0.4.5, https:/ 

/mirrors.tuna.tsinghua.edu.cn/CRAN/bin/windows/contrib/3.4/ggfortify_0.4.5.zip) was used to draw 

the PCA diagrams. 

2.3. Screening of differentially expressed mRNAs and lncRNAs 

First, the TMM algorithm in the edgeR package (Version: 3.4, 

http://www.bioconductor.org/packages/release/bioc/html/edgeR.html) was used to standardize the 

raw count from the sequencing data and then convert this value to a logCPM value [14,15]. 

Differential expression analysis was performed by comparing the mRNAs/lncRNAs expression in 

the AA group to their expression in the control group. All mRNAs/lncRNAs were analyzed to obtain 

corresponding p and logFC values. A p-value of < 0.05 and a |logFC| value of > 1 were used as the 

cutoff values to establish differential expression. 

2.4. Functional enrichment and pathway analysis of differentially expressed mRNAs 

Gene Ontology analysis of the differentially expressed mRNAs was performed using the R 

package cluster Profiler (version: 3.8.1, 

http://bioconductor.org/packages/release/bioc/html/clusterProfiler.html) [16,17], and included 

annotations of the Biological processes (BP), molecular function (MF), cell fraction (CC), and Kyoto 

encyclopedia of genes and genomes (KEGG) pathway enrichment analysis [18]. A p-value of < 0.05 

was used as the cutoff for determining statistical significance. 

2.5. lncRNA and mRNA co-expression analysis and predicting lncRNA function 

The Pearson correlation coefficients of differentially expressed mRNAs and lncRNAs were 

calculated based on matched mRNA and lncRNA data. Meanwhile, correlation tests were also 

performed to screen the pairs (|r| > 0.95 and p < 0.05). Co-expression network maps were constructed 

using Cytoscape software (version 3.4.0, http://chianti.ucsd.edu/cytoscape-3.4.0/) [19] and the top 30 

lncRNAs were selected based on the number of their target genes. KEGG pathway enrichment 

analysis was performed on the mRNAs corresponding to each lncRNA using the R package 

clusterProfiler. A p-value of < 0.05 was used as the cutoff for determining statistical significance. 

2.6. miRNA and ceRNA network predictions 

We developed the ceRNA network based on the evaluation of the positively correlated 

lncRNA-mRNA pairs (r > 0.95 and p < 0.05). We then used the miRWalk2.0 

(http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/) tool to select six commonly studied 

miRNA-mRNA pairs from the transcripts identified in our lncRNA-mRNA correlation analysis [20]. 

In addition, if the predicted miRNA-mRNA relationship appeared in the predictive databases 

(miRWalk, Microt4, miRanda, miRDB, RNA22 and Targetscan), we concluded that the miRNA 

regulates the target gene, and these hits were used to confirm our miRNA-mRNA pairs. The online 

lnCeDB database was used to identify any lncRNA targets of these miRNAs [21], and the 

lncRNA-miRNA pairs with at least one binding site were selected for further evaluation. 
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A lncRNA-miRNA-mRNA relationship network (ceRNA) was then constructed based on the 

positive correlations between the differentially expressed mRNAs and lncRNAs (r > 0.95). lncRNAs 

and mRNAs in the ceRNA network that are regulated by the same miRNA were regarded as ceRNAs. 

Finally, the Cytoscape plug-in CytoNCA (Version 2.1.6, http://apps.cytoscape.org/apps/cytonca) was 

used to analyze the degree of node connection [22] using the “without weight” parameter. A higher 

connection suggests greater importance of nodes in the network. 

2.7. Verification analysis in clinic samples and public databases 

2.7.1. qRT-PCR evaluation of lncRNAs 

A total of 5 mL of blood was obtained from three healthy controls and three AA patients. 

Peripheral blood mononuclear cells (PBMCs) were separated from the whole blood using human 

peripheral blood mononuclear cell separation fluid (Solarbio, Beijing, China). CD4+T cells were 

separated from 1 mL of PBMCs using the Magnetic Bead CD4+ T-Cell Kit following the 

manufacturer’s instructions. Trizol reagent (Invitrogen) was used to extract total RNA. RNA quality 

and purity were then quantified using a Bioanalyzer 2100 and RNA 6000 Nano LabChip Kit (Agilent, 

CA, USA). Reverse transcription was performed using a PrimeScript™RT Master Mix for qPCR 

(TAKARA, Beijing, China) according to the manufacturer’s instruction and cDNA was obtained 

after the reverse transcription reaction (37 °C for 60 min and 85 °C for 5 s). The expression levels of 

AC005562.1, AF131217.1, RP11-251G23.5, RP11-231E19.1, and RP11-295G20.2 mRNAs were 

detected by qRT-PCR analysis. The qRT-PCR primers used in this study were as follows: 

AC005562.1 (AC005562.1-F: 5-CATATGGCCTGCTGCCTCT-3; AC005562.1-R: 

5-GCTGTTAGACATGCAGTGTTGC-3), AF131217.1 (AF131217.1-F: 

5-GGACACAGAGAAAGCACCATC-3; AF131217.1-R: 5-GGACACAGAGAAAGCACCATC-3), 

RP11-251G23.5 (RP11-251G23.5-F: 5-GTGGTGGGAATGCCAGATA-3; RP11-251G23.5-R: 

5-CAAGACCAGCCTGAGCAAC-3), RP11-231E19.1 (RP11-231E19.1-F: 

5-AAGGGTGGAGTTGGGAGAAAC-3; RP11-231E19.1-R: 5-GCTGTCAGATGGAGTGGGCT-3), 

and RP11-295G20.2 (RP11-295G20.2-F: 5-GGCATGTTCTGCTCTGGCAC-3; RP11-295G20.2-R: 

5-TGGGTTGACTGGATGGATCC-3). The qRT-PCR cycling conditions were as follows: 50 °C for 

3 min and then pre-incubation at 95 °C for 3 min, followed by 40 cycles at 95 °C for 15 s and 60 °C 

for 30 s. Melt curves were generated from 60 °C to 95 °C at increments of 0.5 °C for 10 s. 

2.7.2. Source of validation dataset and differential expression analysis 

The validation dataset used in this study was retrieved from the Gene Expression Omnibus 

(GEO, http://www.ncbi.nlm.nih.gov/geo/) database from NCBI [23]. After careful review, the gene 

expression profiles from the GSE68801 dataset (122 samples), obtained using the GPL570 

[HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array were used as our validators. 

These data are freely available online.  

Genes that were differentially expressed in the AA and control groups were analyzed using 

GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r) with the following thresholds: p < 0.05 and 

|logFC| > 0.585 (|fold change| > 1.5). Briefly, based on the probe sequence comments from the chip 

platform file, the human reference genome (GRCh38) was downloaded from the GENCODE 

database (https://www.gencodegenes.org/releases/current.html). Next, all probe sequences were 

aligned to the reference genome to annotate the corresponding gene for each probe using seqmap 

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/geo2r
https://www.gencodegenes.org/releases/current.html
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software and any probes annotated as "protein_coding" were considered to be mRNA probes and 

those annotated as "antisense", "sense_intronic", "lncRNA", "sense_overlapping" or 

"processed_transcript" were considered to be lncRNA probes. In addition, overlapping mRNAs and 

lncRNAs were visualized using Draw Venn Diagram software 

(http://bioinformatics.psb.ugent.be/webtools/Venn/). 

2.8. Statistical analysis 

The data are presented as the mean ± standard deviation (SD) for three replicates. All statistical 

analyses were performed using GraphPad Prism 5 (GraphPad Software, San Diego, CA) and a 

p-value of < 0.05 was determined to be statistically significant. 

3. Results 

3.1. Summary of sequencing data quality 

A total of 89.36 Gb of raw data were obtained, and 86.35 Gb of filtered clean data remained. The 

quality of the sequencing output for each sample is shown in Table S1. 

Table S1. The output quality of the sequencing data. 

Sample 
Raw 

Reads 

Clean 

Reads 

Raw 

Base(G) 

Clean 

Base(G) 

Effective 

Rate (%) 

Error 

Rate 

(%) 

Q20 

(%) 

Q30 

(%) 

GC 

Content 

(%) 

A33 55,318,245 52,775,447 16.6 15.83 95.4 0.01 95.88 90.37 46.63 

A34 43,631,112 41,961,832 13.09 12.59 96.17 0.01 95.9 90.44 45.66 

A35 47,502,747 46,203,539 14.25 13.86 97.26 0.01 96.62 92.05 44.84 

W40 49,906,830 48,066,446 14.97 14.42 96.31 0.01 96.41 91.57 46.41 

W42 47,013,507 45,773,807 14.1 13.73 97.36 0.01 96.61 92.02 46.36 

w43 54,505,394 53,051,128 16.35 15.92 97.33 0.01 96.3 91.35 46.25 

3.2. Data alignment and transcript notes 

Top-Hat software (v2.1.0) was used to map clean reads to the human reference genome 

(GENCODE download, GRCh38) and the comparison results are summarized in Table S2. 

Table S2. Top-Hat align summary. 

 A33 A34 A35 W40 W42 W43 

Left 

reads 

input 

52775447 41961832 46203539 48066446 45773807 53051128 
Left 

reads 

Mapped 

48647769 38671490 41883361 43089099 41596215 47561326 
Left 

reads 

mapping 

rate 

92.2% 92.2% 90.6% 89.6% 90.9% 89.7% 

Right 

reads 

input 

52775447 41961832 46203539 48066446 45773807 53051128 

Right 

reads 

mapped 

43891896 35122585 38248521 38922731 38046922 42852427 

Right 

reads 

mapping 

rate 

83.2% 83.7%  82.8% 81.0% 83.1% 80.8% 

overall 

read 

mapping 

rate 

87.7% 87.9% 86.7% 85.3% 87.0% 85.2% 

Aligned 

pairs 

42493745 33942403 36673635  

37413344 

36506591 41122249 
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Then, the read information for each mRNA/lncRNA alignment was obtained and 

lowly-expressed mRNAs/lncRNAs were filtered out. Finally, mRNAs/lncRNAs with expression 

values > 0 in all six samples were retained, producing an expression matrix of 14,418 mRNAs and 

5,239 lncRNAs. 

3.3. Inter-sample correlation analysis and PCA 

The correlation coefficient value (P)between samples ranged from 0.845 to 1 (Figure 1). The 

average correlation of the samples within a group was 0.971, and the average correlation of samples 

between groups was 0.939. The intra-group correlation was higher than that of inter-group 

correlation indicating that the patient group was clearly separated from the control group. 

 

Figure 1. Heatmap of the correlation between two pairs based on transcript abundance 

and PCA value. A. Heatmap of the correlation between pairs based on transcript 

abundance. B. PCA. 

3.4. Basic statistics of the differential expression analysis 

The mRNA and lncRNA differential expression analyses were performed using the edgeR 

package, and a total of 220 differentially expressed mRNAs (including 108 upregulated and 112 

downregulated mRNAs) and 166 differentially expressed lncRNAs (including 66 upregulated and 

100 downregulated lncRNAs) were identified. Bidirectional hierarchical clustering and volcano plots 

of the differentially expressed mRNAs and lncRNAs are shown in Figure 2. Differentially expressed 

mRNAs and lncRNAs could be easily distinguished between the AA and control groups. 
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Figure 2. Heatmaps and volcano plots depicting differential mRNA and lncRNA 

expression. A. mRNA expression heatmap. B. lncRNA expression heatmap. The top 

orange bar indicates the patient sample and the purple bar indicates the control sample. C. 

Volcano plot of mRNA expression. D. Volcano plot of lncRNA expression. Red dots 

represent upregulation, blue dots represent downregulation and gray dots represent no 

significant difference. 

3.5. Functional enrichment and pathway analysis of differentially expressed mRNAs 

GO functional enrichment analysis and KEGG pathway enrichment analysis were performed on 

the differentially expressed mRNA transcripts. A total of 165 biological processes including 

leukocyte aggregation, peptidyl-tyrosine phosphorylation, and cell chemotaxis, 11 cell components, 

including side of membrane, receptor complex, and cytoplasmic region, and 27 molecular functions, 

including guanyl-nucleotide exchange factor activity, protein tyrosine kinase activity, and growth 

factor binding were shown to be enriched in this dataset. Moreover, 13 KEGG pathways including 

cytokine-cytokine receptor interaction, MAPK signaling pathway, and Ras signaling pathway were 

found to be enriched, and the top 10 enriched functions are shown in Figure 3. 

3.6. Correlation between mRNA and lncRNA expression and predicting lncRNA function 

Correlation analysis of the above differentially expressed mRNAs and lncRNAs was performed. 

In total, 3,356 significantly correlated pairs (1,415 negatively correlated pairs and 1,941 positively 

correlated pairs), including 217 mRNAs and 161 lncRNAs were screened. The top 9 pairs are 

described in Table 1A. Co-expression networks are shown in Figure 4A. 
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Figure 3. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) 

pathway enrichment analysis. The black line indicates the -log10 (p-value), the green 

bars indicate enriched biological process GO terms, the yellow bars indicate enriched cell 

fraction GO terms, the light purple bars represent enriched molecular function GO terms 

and the red bars indicate enriched KEGG pathway terms. In each case the length of the 

bar indicates the number of genes in each enriched term. 

 

Based on known lncRNA-mRNA relationships, the mRNA transcripts were treated as the 

designated targets of the lncRNA transcripts. Moreover, KEGG pathway enrichment analysis was 

performed on the top 30 lncRNAs to predict their function. As shown in Figure 4B, a total of 12 

lncRNAs were enriched in various pathways including cytokine-cytokine receptor interactions, 

chemokine signaling pathways, axon guidance, and legionellosis. 

3.7. miRNA prediction and ceRNA network construction 

First, 1,941 positively correlated lncRNA-mRNA pairs were screened, including 202 mRNAs 

and 152 lncRNAs. Second 773 miRNA-mRNA pairs were identified including 84 mRNAs and 486 

miRNAs, using miRWalk and then, 5,265 miRNA-lncRNA pairs, including 1,612 miRNAs and 113 

lncRNAs, were identified using lnCeDB. Next, positively correlated lncRNA-mRNA pairs regulated 

by the same miRNA were identified and the other data eliminated. This left us with 82 

lncRNA-miRNA-mRNA regulatory relationships, including 48 miRNAs, 33 lncRNAs, and 28 

mRNAs. The ceRNA network is shown in Figure 5. A total of 77 miRNA-lncRNA pairs are shown in 

the network, including 57 miRNA-mRNA pairs, and 55 lncRNA-mRNA pairs. 
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Figure 4. lncRNA-mRNA co-expression network and lncRNA pathway analysis. A. 

lncRNA-mRNA co-expression network. Red circles represent upregulated mRNAs, 

green circles indicate downregulated mRNAs, pink squares indicate upregulated 

lncRNAs, dark blue squares indicate downregulated lncRNAs, green dotted lines indicate 

positive correlations, and gray dotted lines indicate negative correlations. B. lncRNA 

pathway analysis. The color indicates decreasing p-value (blue to red), and the bubble 

size indicates the weight of each enriched gene. 

 

Figure 5. ceRNA network. Red circles represent upregulated mRNAs, green circles 

represent downregulated mRNAs, yellow triangles represent miRNAs, dark blue squares 

indicate downregulated lncRNAs, and pink squares indicate upregulated lncRNAs. The 

purple T-shaped arrow indicate competitive binding between the lncRNAs and miRNAs, 

the yellow arrow represents the miRNA-mRNA regulatory relationship and the green 

dotted line indicates a positive relationship between lncRNA and mRNA expression. 

Finally, the node and font size indicate the degree of connectivity. 
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Table 1. Correlation analyses for differentially expressed mRNAs and lncRNAs and a 

summary of the node ranking in the ceRNA network. 

A. Correlation statistics for differentially expressed mRNA/ lncRNA pairs. 

lncRNA mRNA r p-value 

RP11-67C2.2 WNT5B 0.99925121 8.41E-07 

RP11-443B7.1 WNT5B 0.999239433 8.67E-07 

RP11-231E19.1 FPR2 0.999206747 9.44E-07 

RP11-443B7.3 AP3M2 -0.999129738 1.14E-06 

RP11-443B7.3 PLAT -0.998759399 2.31E-06 

CTD-2516F10.2 PNPLA1 0.998687993 2.58E-06 

RP11-231E19.1 S100A12 0.99849922 3.38E-06 

RP11-398A8.4 S100A12 0.998475218 3.49E-06 

RP1-197B17.3 PGM5 0.998334638 4.16E-06 

B. Ranking of each node in the ceRNA network. 

node degree type 

hsa-miR-485-5p 13 miRNA 

hsa-miR-326 8 miRNA 

hsa-miR-3125 5 miRNA 

hsa-miR-1297 4 miRNA 

hsa-miR-301b 4 miRNA 

hsa-miR-3666 4 miRNA 

hsa-miR-3680-3p 4 miRNA 

hsa-miR-380-3p 4 miRNA 

hsa-miR-3916 4 miRNA 

AC005562.1 14 lnc_up 

DLGAP1-AS2 13 lnc_up 

AF131217.1 7 lnc_up 

RP11-251G23.5 7 lnc_up 

TEX41 7 lnc_down 

AC093627.10 6 lnc_down 

LINC00877 6 lnc_down 

AC011899.9 5 lnc_down 

RP11-231E19.1 5 lnc_down 

RP11-295G20.2 5 lnc_down 

TREML2 14 m_down 

KLF6 8 m_down 

AP3M2 7 m_up 

CX3CR1 7 m_down 

IQSEC3 7 m_up 

STEAP4 7 m_down 

CCR6 5 m_up 

MYBL1 5 m_up 

VASN 5 m_up 
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Figure 6. The relative expression of differentially expressed AC005562.1, AF131217.1, 

RP11-251G23.5, RP11-231E19.1 and RP11-295G20.2 lncRNAs in both groups. **p < 

0.01, ***p < 0.001 compared with control. AA: alopecia areata. 

Connectivity analysis was performed on each node of the above network, and several mRNAs 

(TREML2, KLF6, and AP3M2) miRNAs (hsa-miR-485-5p, hsa-miR-326, and hsa-miR-3125) and 

lncRNAs (AC005562.1, AF131217.1, RP11-251G23.5, RP11-231E19.1, and RP11-295G20.2) with 

high degrees of connectivity were identified and are summarized in Table 1B. 



708 

Mathematical Biosciences and Engineering  Volume 18, Issue 1, 696–711. 

3.8. Verification analysis 

The qRT-PCR analysis confirmed the original bioinformatic predictions for lncRNAs 

AC005562.1, AF131217.1, RP11-251G23.5, which were significantly upregulated in the disease 

group (p < 0.01) and RP11-231E19.1, which was significantly downregulated in the disease group (p 

< 0.01). However, no significant differences in the expression levels of RP11-295G20.2 were found 

between the control and disease groups (p > 0.05) (Figure 6). 

Furthermore, when we evaluated the validation data (GSE68801 dataset) a total of 11 lncRNAs 

and 70 mRNAs were found to overlap with our experimental dataset (Figure 7).  

 

Figure 7. Venn diagram describing the overlapping lncRNAs (A) and mRNAs (B) 

between the experimental and verification datasets. Blue represents the lncRNAs and 

mRNAs in the experimental dataset and the light red represents the lncRNAs and 

mRNAs in the verification dataset. 

4. Discussion 

ncRNAs have recently been linked to the development and progression of various autoimmune 

diseases [24], including AA [11]. Sheng et al. [11] reported that NONHSAT062906 and 

NONHSAT011665 may be associated with the development of AA, but their results were not 

validated in cell culture or using tissue samples. Thus, studies are still needed to verify the role of 

these lncRNAs in AA pathogenesis and expand our understanding of AA [25]. Six samples from 

three AA patients and three healthy controls were obtained for this study and used to complete 
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transcriptional profiling and construct a lncRNA-miRNA-mRNA regulatory network (ceRNA 

network) for AA. We uncovered 220 differentially expressed mRNAs and 166 differentially 

expressed lncRNAs associated with AA and demonstrated that these differentially expressed mRNAs 

were mainly associated with cytokine−cytokine receptor interactions, MAPK signaling pathways, 

and Ras signaling pathways. While the differentially expressed lncRNAs were predominantly linked 

to cytokine-cytokine receptor interactions, chemokine signaling pathways, axon guidance, and 

legionellosis. qRT-PCR verified the upregulation of AC005562.1, AF131217.1, and RP11-251G23.5 

and the downregulation of RP11-231E19.1 in the disease group. 

Previous studies have identified an imbalance in the PBMC immune system in AA patients. 

Specifically, the levels of T helper 17 cells were negatively correlated with disease duration, and 

Treg levels were higher in severe AA patients[26]. Meanwhile, cytokines such as interleukin-2 and 

interleukin-8, and Janus kinase and their related pathways play significant roles in the development 

of AA [27,28]. In this study, differentially expressed mRNAs demonstrated significant enrichment 

for pathways involved with cytokine-cytokine receptor interactions however, the role of these 

interactions in AA pathogenesis remain unknown. 

More importantly, we used known lncRNA-mRNA relationships and KEGG pathway 

enrichment analysis to identify 12 lncRNAs enriched in cytokine-cytokine receptor interactions, 

chemokine signaling pathways, axon guidance, and legionellosis which may help to advance our 

understanding of AA pathogenesis. Among these pathways, cytokine-cytokine receptor interactions 

were the most widely enriched pathway and included lncRNAs RP11-231E19.1, RP11-443B7.3, 

RP11-218F10.3, RP11-295G20.2, RP11-398A8.4 and RP11-67C2.2. Previous studies have shown a 

link between lncRNA RP11 and the development of various cancers including colorectal cancer, 

papillary thyroid cancer, and pancreatic cancer [29–31]. However, a link between lncRNA RP11 and 

the pathogenesis or progression of AA has not been reported till now. Here we describe the 

differential expression of several RP11 transcripts including the upregulation of RP11-251G23.5 and 

downregulation of RP11-231E19.1. All of which suggests that the RP11 lncRNAs are involved in the 

development of AA and may facilitate their effect through the cytokine-cytokine receptor interaction 

signaling pathway. 

5. Conclusion 

In summary, we constructed a complex ceRNA network for AA, and suggest that RP11 lncRNAs, 

including RP11-251G23.5 and RP11-231E19, might play a critical role in the pathogenesis of AA via 

their regulation of the cytokine-cytokine receptor interaction signaling pathway, which could serve as 

a novel therapeutic target for AA clinical interventions. In addition, this study identified several 

novel lncRNAs that may help to uncover the regulatory mechanisms of and biomarkers in AA. 

However, further clinical studies are still needed to confirm their function in AA. 
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