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Abstract: In this paper, considering the proven role of exosomes and the inevitable randomization
within-host, we establish a hepatitis B virus (HBV) model with cell-to-cell transmission and CTL
immune response from a deterministic framework to a stochastic differential equation (SDE). By
introducing the reproduction number R,, we prove that R, can be used to govern the stochastic
dynamics of the SDE HBV model. Under certain assumptions, if Ry < 1, the solution of the SDE model
always fluctuates around the infection-free equilibrium of the deterministic model, which indicates
that the HBV will eventually disappear almost surely; if Ry > 1, under extra conditions, the solution
of the SDE model fluctuates around endemic equilibrium of the corresponding deterministic model,
which leads to the stochastic persistence of the HBV with probability one. One of the most interesting
findings is that the fluctuation amplitude is positively related to the intensity of the white noise, which
can provide us some useful control strategies to regulate HBV infection dynamics.
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1. Introduction

Hepatitis B, including acute and chronic disease, is caused by the hepatitis B virus (HBV) infection
and has become a major global health problem. World Health Organization (WHO) estimates that in
2019, 325 million people globally live with hepatitis B and/or C, while in 2015, 257 million people
were living with chronic hepatitis B infection (defined as hepatitis B surface antigen positive), of them,
887,000 deaths, mostly from cirrhosis and hepatocellular carcinoma (i.e., primary liver cancer) [1].

Generally, cellular immunopathological reaction plays an important role in controlling HBV
infection. For example, cytotoxic T lymphocytes (CTLs) can specifically attack the target infected
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host cells [2], which will induce hepatocyte damage. And more and more attentions have been paid to
the study of virus dynamics within-host, which can provide insights into virus infection and dynamics,
as well as to how an infection can be reduced or even eradicated, see [3—7] and the references therein.

Studies have shown that human immunodeficiency virus (HIV) and hepatitis C virus (HCV) can
spread by two fundamental modes within-host, one by virus-to-cell infection through the extracellular
space and the other by cell-to-cell transfer involving direct cell-to-cell contact [4, 8—16]. Especially,
Sourissea et al. [17] had reported that viral transfer in vitro via cell-to-cell contact is much more rapid
and efficient than infection by free virus because it avoids several biophysical and kinetic barriers.
Monel et al. [18] showed that direct cell-to-cell transmission in vivo is also more potent and more
efficient. And Yang and co-authors [19] showed a previously unappreciated role of exosomes in HBV
transmission and natural killer cells dysfunction during chronic hepatitis B (CHB) infection. These
results showed that cell-to-cell transmission is reasonable apart from virus-to-cell mode in HBV
infection because exosomes can transfer genetic material between cells. Therefore, during HBV
infection, uninfected hepatocytes can be infected not only by newly released free virus, but also by
contacting with infected hepatocytes. Combining with the CTLs population, to describe HBV from a
single patient’s point of view, we first propose the following HBV infection model:

dx

a = A —dyx = B1xv — faxy,

dy

U = B1xv + Boxy — ay — pyz,

dr (1)
k-

cclit y y b

Z

— = A —drz+ qy7,

T 2 22t qyz

where x, y, v and z denote the total numbers of uninfected hepatocytes, infected hepatocytes, free
virus and CTLs, respectively. It is assumed that normal hepatocytes are produced by bone marrow and
other organs at a constant rate of A; and the natural death rate is dyx. 3 is the effective contact rate
between uninfected hepatocytes and virus, 8, stands for the effective contact rate between uninfected
and infected hepatocytes, a represents the natural death rate of the infected hepatocytes. Infected
hepatocytes are eliminated by CTLs at rate pyz, free virus are produced from infected cells at rate ky
and die at rate yv. CTLs are produced at a constant A, from the thymus, and at rate gyz due to the
stimulation of infected cells [20], and die at rate d,z.

Note that there are inevitably random disturbances in the process of HBV infection within-host,
such as temperature fluctuation, mood fluctuation and other physiological rhythm changes, which
may affect the dynamics of HBV infection. Thus, in addition to the traditional ordinary differential
equations (ODEs), such as model (1), more attention has been paid to the stochastic differential
equations (SDEs) which takes Brownian motion into consideration [21-31] and the references
therein). Concretely, [31] was about HIV infection and did not consider cell-to-cell transmission.
Especially, references [5, 26, 32] investigated the stochastic dynamics of HBV infection. After
assuming the total number of hepatocytes is constant, Bertacchi et al. [S5] proposed a stochastic HBV
model for the infection within a patient which was treated with two drugs, either sequentially or
contemporaneously, developed a two-step mutation which was resistant to both drugs, and studied the
deterministic approximation of the stochastic model and gave a biological interpretation of its
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asymptotic behaviour. Luzyanina and Bocharov [26] considered a reduced ODEs model which only
describes the interaction between the HBV and the CTL response, and Xie et al. [32] investigated the
stochastic HBV dynamics. Unfortunately, these studies had not considered the CTL response and
cell-to-cell transmission in their SDE HBV model.

Thanks to the insightful work of Luzyanina and Bocharov [26], we know that the variations can
affect either the replication of the virus or its elimination kinetics, e.g., via parameters [5,, y and d,,
respectively. And we can explore their impacts on the dynamics of HBV infection could be the
extension of the deterministic description of the virus—CTL interaction to include the stochastic
forcing in a multiplicative way.

To investigate the influence of fluctuating (vs. constant) rates 3,, ¥ and d, on the model solutions,
following [26], we randomize these parameters as follows.

Let p € [p1, p»] be a parameter being randomized and p, p, are its low and upper bounds. We
assume that p varies randomly according to p(t) = p + o p&(t), where p is the value of p around which
we randomize, £(¢) is a standard Gaussian random variable for each t and op > 0 is the intensity of the
noise. We adopt op as

_ min(p - p1,p> — p)
3
to ensure that p remains in the interval [p;, p,] with probability 0.997. This implies that about 99.7% of
values drawn from a normal distribution are within three standard deviations op away from the mean.
More precisely, let

Bo = Pr+01dBi(t), y—y+02dBy(t), dyr— dyr+ 03dBs(0),

then, corresponding to the deterministic model (1), we can further derive the following SDE HBV
model:
dx = (A — dix = Brxv — Brxy)dt — o1 xyd B, (1),
dy = (B1xv + Boxy — ay — pyz)dt + o1 xyd By (1),
dv = (ky —yv)dt — o,vdB; (1),
dz = (A, — drz + gyz)dt — 032d B;(1),
where o; (i = 1, 2, 3) represent the intensities of the white noises, and B;(¢) (i = 1, 2, 3) are independent
standard Brownian motions.

It is worthy to note that, if the number of individuals in the population gets very large, Kurtz [33,
34] proved that if there is a density-dependent stochastic jump process (such as the number of viral
particles, the infected/uninfected hepatocytes etc..), then the process that we obtain when rescaling by
a constant and large quantity can be approximated by the solution of the corresponding ODE.

The purpose of the present study is to elaborate the virus infection dynamics to random
perturbations in the virus replication and immune responses parameters. In the next section, we give
the global dynamics of the deterministic HBV model (1), including the basic reproduction number
and global stability of infection-free equilibrium and infection equilibrium. In Section 3, we show the
existence and uniqueness of the global positive solutions of the SDE HBV model (2). In Section 4, we
give the asymptotic property of the positive solution of model (2) around infection-free equilibrium.
And in Section 5, the dynamics of the stochastic model around infection equilibrium is obtained. In
Section 6, numerical simulations of model (2) illustrate the correctness of the theoretical results and
the correlation between fluctuation amplitude and intensity of the white noise is further studied. In
Section 7, we discuss our new findings in the view of epidemiological implications.

2)
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2. Global threshold dynamics of the deterministic model (1)

We are interested in the dynamics of viral infection rather than the initial processes of infection.
The initial condition of model (1) is assumed as the form x(0) > 0,y(0) > 0,v(0) > 0 and z(0) > O.
Based on the initial conditions, it is clear that the solutions of model (1) are non-negative and ultimately
bounded.

A

Model (1) always has an infection-free equilibrium Ey = (x,0,0,z9), where xy, = :11—:, 0 =g
According to the definition and algorithm of the basic reproduction number of virus in [35], we can
obtain the basic reproduction number of model (1) as follows:

R Aidy (l% + ,32) 3
" diads + op) ¥
Obviously, Ry increases as 1 and 3, increasing.

After some algebraic operations, it is easy to know that, if Ry > 1, model (1) has an infection
equilibrium E* = (x*, y*,v*, z"), where

/11 " ky* s /l]ﬂ a

&

b

X = , vV = 7= — ,
d, + By* Y pldi+By) p

(Ro — 1)d1).

and y* is the positive root of Eq (4) in (0, 7

aBqy” = [B(p + ady) + q(,B — ady)]y — di(ads + Ap)(Ry — 1). 4)

On the global stability of the equilibria of model (1), we have the following results.

Theorem 2.1. For model (1), if Ry < 1, Ey is globally asymptotically stable. If Ry > 1, E* is globally
asymptotically stable and E is unstable.

Proof. We first prove the global stability of the disease-free equilibrium Ej.

Define a Lyapunov function

X
Ll(x,y,v,z):x—xo—xoln—+y+mv+£(z—z0—zoln£),
X0 q 20

where m will be determined below.

Mathematical Biosciences and Engineering Volume 18, Issue 1, 616-642.



620

Taking the time derivative of L,(x,y, v, z) with respect to the solution of model (1), we can obtain:

Lilgy =<2 —dix = Bixv — Boxy) + Bixv + Boxy — ay — pyz + m(ky — yv)

X

+EE (2, — doz + qy2)

= (= x) (U (L= £) = Brv—Boy) + 2z - 20) (L - 1)

+m(ky —yv) + py(z — z0) + (B1(x — xo)v + Bo(x — Xo)y — py(z — 20)

+(Baxo — a — pzo)y) + Bixov

1 1
:ﬂl(}c—xio)(X—xo)"‘%(Z—Zo)(g—Z—)+(,32xo—a—l?Zo+mk)y
0

+(B1xg — my)v.

When R, < 1, we obtain @ < w, so there exists m satisfying

Bixo <m<? + P20 —,32)60,
Y k
such that
Paxo—a—pzo+mk <0, Bixo—my<0.
Then
/ 1 1 pA2 1 1
Lily <4 (} - g)(x— Xo) + 22z = 20) e

<0.

Let M; = {(x,y,v,2) | L{|1)}. We can know that Li|) = Oif and only if x = x5,y = 0,v =0, z = z.
Hence, M, = {Ey}. Therefore it follows from Lyapunov-Lasalle invariance principle that E is globally
asymptotically stable when Ry < 1.

Next, we prove the global stability of the positive equilibrium E*.

Consider the following Lyapunov function:

Ly(x,y,v,2) = x—x*— In (y—y* —y*ln—y)
x* y*
Brxv*

+
ky*

(V—v*—v*lnl)+1—)(z—z*—z*lni).
V¥ *

At the infection equilibrium E*, we can get:

XV ky* A .
il = =2y 5)

Al =di X"+ B1xXV + Brx’y, a=
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Taking the time derivation of L,(x, y, v, z) along with the solution of model (1), and considering Eq (5),
we can obtain:

Loy = (1 - X;) (=di(x = x*) = Bi(xv = XV°) = Ba(xy — X*y"))

xv o X
y

+o =y (,6’1 ( o ) +o(x = x7) = p(z - z*))

+ﬁ1x:v* =) (X _ y_) +P-z (/12 (l - l) +q(y - y*))-
y v oV q ¢ 2

X 1% <

Let X1 = —, Y1 = —y Vi = —,31 = —,then
% 5 % %
X y v <

1 1
L’2|(1) = —dlx*(xl - 1) (1 - x—) —ﬁlx*v*(xlvl - 1)(1 - —)

1 X1

1
—Box"y* (x1y1 — 1)( )+,31X*V*()’1 -1 (% - 1)

1-—
X1

+B1x Vv (vy — 1)(3}]—1 - 1) +Bex’y (1 — D(xy — 1)

- 1)(l - 1)
q

<
1 A 1
= (Box"y" + dlx*)(Z i —) + P2 (2 -1 — —)
X1 q 21
1
B (3 SLoaw y_l).
X1 M V1

Since the arithmetical mean “5* of m and n is greater than or equal to their geometrical mean +/mn,
it follows that L|) < 0. Let M* = {(x,y,v,2) | Lyl = 0}. We note that Lj| 1, = 0 if and only if x, = 1,

. 1% . .
yi=v, 21 = 1,1e., x = x7, LA —, z = 7". Easy to know, y = y*, v = v*. So the largest invariant set
v*

of model (1) on the set M* is the singleton {E£*}. By the Lasalle principle, when Ry > 1, the infection
equilibrium E™ is globally asymptotically stable.
The proof is completed. O

Remark 1. From Theorem 2.1, we know that Ry can be used to govern the threshold dynamics of
deterministic HBV model (1). That is, if Ry < 1, the HBV infection will go to extinction; while if
Ry > 1, the HBV infection will persist.

3. The existence and uniqueness of the solution of the SDE model (2)

Theorem 3.1. For any initial value X(0) = (x(0), y(0), v(0), z(0)) € Rﬁ, there exist positive constants
Ny and N, such that the set Q is almost surely positively invariant of the SDE HBV model (2), where

Q= {X(t) R0 < x()+y(1) < A0 < v(t) <Ny, 0 < x(1) + y() + gz(t) < Nz}
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and

A
A= ——
min{a, d;}

Proof. 1t is clear that all solutions of model (2) starting from Ri = {(x,y,v,2) : x(0) > 0,y(0) >
0,v(0) > 0,z(0) > 0} are non-negative. From the first two equations of model (2), we have

d(x +) < (A, —dyx — ay)dt < (4, — min{a, d; }(x + y))dt,

which implies

lim sup(x(?) + y(£)) < L

00 min{a, d,}
From the third equation of model (2), we have
dv < (kA — yv)dt — opvd By ().

It follows that

w(t) < kA + (V(O) - &)e-ﬂ -0, f e " y(5)dBy(s) = X, (1),
Y Y 0
where .
Xi(1) =v(0) + Ay (1) = C1(t) + M(1),
and

A(n) = kA (1-¢7),
Y

Ci() =v(0) (1 —e™),

M(t) = -0y f e 7 (5)dBy(s).
0

Clearly, A;(¢) and C(¢) are continuous adapted increasing process on ¢ > 0 with A;(0) = C;(0) = 0.
By [36, Theorem 1.3.9, p.14], we can obtain

lim X;(t) < o0 a.s.
t—+oc0
That is, lim v(f) < oo a.s., which means that there is a positive constant N; such that
—+00

v(t) < N, Vt>0 a.s.

From the first two and the fourth equations, we have

A d
d(x+y+ EZ) = (/11 —dix—ay+ P _ Qz)dz— &Zng([)
q q q q

B
< (/11 + P2 _ minfa,d,, dy) (x by Bz)) dr — 223 4By o).
q q q
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It follows that

N+y(t)+ Zz2(f) < ———L— +|x(0) + y(0) + £2(0) - ———L—— |~ minladi ol
x(1) + y(1) qZ() minta.d,. da] [X() y(0) qz() minta.d. da] e
!
SR [ emminted b (5)dBy(5) 1= X0,
q Jo
where »
Xa(t) = x(0) + y(0) + az(O) + Ay (1) — Co (1) + My (),
and .
ﬂ] + i)
A-(1) = q 1 - —minf{a,d,,d>}t ,
) min{a,dl,dz}( ¢ )

Ca(t) = (x«)) +3(0) + gz(O)) (1 - e-mintacraeir)

!
— o .
Mz(t) = — p—q 3 e min{a.d, ’dz}(t_s)Z(S)dB3 (S)

0
Clearly, A,(¢) and C,(¢) are continuous adapted increasing process on ¢ > 0 with A,(0) = C,(0) = 0.
By [36, Theorem 1.3.9, p.14], we can obtain

lim X,(¥) < o0 a.s.
t—+00
That is, lim (x(t) + y(t) + Bz(t)) < 0o a.s., which means that there is a positive constant N, such that
t—+00 q

xX(0) + (1) + gz(t) <N, V120 as.

Summarize the discussions above, we can conclude that the invariant set of model (2) is given as
follows:

Q= {X(t) ERY:0 < x()+y(t) <A, 0 <) < Ni,0 < x(2) +y(t) + gz(t) < Nz} . 6)

The proof is completed. O

Theorem 3.2. For any initial value X(0) = (x(0), y(0), v(0), z(0)) € R%, model (2) has a unique globally
positive solution X(t) = (x(t), y(¢), v(?), z(t)), t > 0, and the solution will remain in Ri with probability
one.

Proof. It is obvious that the coefficients of model (2) satisfy the local Lipschitz conditions. Then, there
is a unique local solution X(f) on (¢ € [0,7,)) for any given initial value X(0) € R?, where 7, is the
explosion time. In order to show this solution is global, we next prove 7, = oo a.s.

Set ny > 0 large enough for any initial value (x(0), y(0), v(0), z(0)) lying within the interval [%, no].
Define the following stopping time

7 = 1inf{r € [0,7,) : x(t) & (1/n,n),y(1) & (1/n,n),v(t) & (1/n,n),2(t) ¢ (1/n,n)},
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where n > ny. Set inf ¢ = oo, clearly, when n — oo, 7 is increasing. Let 7., = lim 7, we can get
k—o0

T < T, a.s. If there is 7o, = oo a.s., we can complete the proof at 7, = oo a.s. Let us put it in another
way, we can prove (x(t), y(t), v(t), z(t)) € Ri, (r>0)a.s.

Suppose there are constants 7 > 0 and € € (0, 1) such that P{t, < T} > &. So, if n; > ny exists,
when n > ny, we have P{r,, < T} > ¢.

Define a C?-function V: RY — R,:

Vix,y,v,2) = (x—a1 —-a lnﬁ)+ (y—az —azln%)+c1(v— 1—1nv)
+c2(z— 1 —Ing),

where ay, ay, ¢y, ¢, are positive constants to be determined.
Using the 1t6’s formula, we get:

dV(x,y,v,z) = LV(x,y,v,z)dt —oy(x —a;)dB;(t) + o1 x(y — a)dB; ()
—c102(v = 1)dBy (1) — c203(z — 1)dB3(2),

where

LV(x,y,v,2) =(1—%)Ma—%x—ﬁmv—ﬁﬂw+(ﬂ-%)$MV+ﬁﬂy

1 1, 1,
—ay —pyz) +c |1 - " (ky —yv) + 50301 + 5032

1 1 1
+e2 (1 - z) (A2 — drz + qyz) + E(T%alyz + EO'%azxz

Cl]/l]
= A1 —dix —Bi1xv —Brxy — —~ +aydy + a\fv + afoy

af1xv

+61xv + Boxy —ay — pyz — — Ay x + aay + aypz + crky

c1k oA
—Cc1yv — lTy + 1y + Ay — crdrz + Crqyz — % + cody — coqy

1 1 1
+—O'%C1 + —O%Cz + —G%alyz + —O'%Clzxz

2 2 2 2

1 2 1 2
<|A4+ a1d1 +aay +cyy + Ccrdy + Czdz + EO-ZC1 + 50'3C2
al/ll
+(=d) — axBr)x — — (@12 — a + c1k — c2q)y

Ay

a1 xv ciky
P i = e L (aap - ooy - 22

1 1
+(C2q - P)J’Z + 50’%&1/\2 + 50’%(12]\2.

_ (atp)y _d _ l(a+p)Bi

Choose ay = ;"% a0 = .01 = g

and ¢, = ’—q’ such that

aifrp—a+ck—cgq=0, afi—-cy=0, ap-cd, =0, cq—p=0.
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Then,
1 1
LV(x,y,v,7) < (/11 +aydy +aay + ¢y + cady + cady + Eo%cl + 50‘%@
1 1 A
+=2aA? + 2N | = (d) + axfa)x — an
2 2 X
@mPixv  ctky  cds
y % Z

1 1
<A +aydy +aay + ey + cady + cody + Eo%cl + Eo%cz

1 1
+§O'%611A2 + 50’%02/\2

<K'

where K’ is a positive constant. Therefore, we have
dV(x,y,v,z7) < K'dt —o1y(x — a1)dB;(t) + o1 x(y — a2)dB, (1)
—c10o(v = 1)dB,(t) — cro3(z — 1)dBs(7).

Thus,

T, AT T, AT T, AT
f dV(x,y,v,z) < f K'dt - f o y(x —ay)dB; (1)
0 0 0

T AT T AT
. f o1 x(y — ax)dBy (1) — f ¢105(v = 1dBs (1)
0 0

T, AT
—f cr03(z — 1)dB;(1).
0

Then taking the expectation on both sides, we obtain

E[V (x(t, AT),y(t, AT),v(t, AT),2(t, AT))] < V(x(0),y(0),v(0),2(0)) + K'E(t, AT)
< V(x(0),y(0),v(0),2(0)) + K'T.

Let Q, = {r, < T}, where n > ny, then P(Q),) > . Note that Yw € €),. By the definition of stopping

time, there is at least one of (x(7,,, w), y(7,, w), v(1,, w) and z(7,, w)) equal to n or —. Therefore,
n

1
V (X(Ty ), V(T ), V(Ty ), (T, ) > (n —a;-aln i) A (— —a +a 1n<a1n>)
a n

1
A (n —a,—aln i) A (— —ar)+a ln(azn))
ay n

1
Aci(n—1—1nn) A ¢; (— -1 +lnn)
n

1
Acy(n—1—=1Inn) A c, (— -1+ lnn) = h(n).
n

Mathematical Biosciences and Engineering Volume 18, Issue 1, 616-642.



626

It then follows that
V(x(0),y(0),v(0),2(0)) + K'T > E[V (x(ty AT), y(tu AT),9(tu AT),2(t, AT))]
> E[lo,@V (x(tn), y(T0), v(T0), 2(70))]
> gh(n),

where 1q,, is the indicator function of €,. Letting n — oo leads to the contradiction
oo > V(x(0),y(0),v(0),z(0)) + K'T = oo, so we can conclude that 7,, = oo, which completes the
proof. O

4. Stochastic extinction of the HBYV infection

In this section, in order to investigate whether the HBV infection is stochastically extinct, we study
the dynamics around E|.

Theorem 4.1. Fgr any given initial value X(0) = (x(0),y(0),v(0),z(0)) € Q, if
o1 < 7w (d ! 1)(1 - ), 03 < 2y, 03 < dy, and Ry < 1, then the solution of model (2) has the
TR +
following propert&z: 1
1 ! /11 2 /12 ? Ml
lim su —Ef (x——) +y +v +(z——) dr < —, 7
t—>+oop 1 0 ( dl y d2 § ( )
where
420N 200507 1 (d 1 1 (d 1
M, = 121 + 3222P+ S 2,11+—2—1+—A2 2/1%’
d; q*d; 2d, /11 A 2d; A
' N2 (d, 1 A a
&= mm{zd1 —( > l(ﬂ_i + —)(1 di)+40'2A2) - k2(2y o2), 8)

2p°
—(dr - §)} :
q°
A A
Proof. Setw = x— —, Q = 7z — —, then model (2) can be rewritten as:

d’ dy’

dw = ( diw —ﬂlv(w + 2—1) ,BZy(a) + :Zl—]))dt— 0'1y(a) + ;ll—)dBl(t)

d;
dv = (ky — yv)dt — o,vdB,(1),

(ﬁlv((u + /l—) + By (a) + 2—) —ay—py (Q + /l—)) dt + o1y (a) + 2—1) dB (1), ©

dQ = ( d2Q+qy(Q+ /l—))dl‘—O'g (Q+ /l—)dB3(t)
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Let

2
Vl(w’y,va Q) = ((U"'y"' %V"‘ gQ) .

By the 1t6’s formula, we get:

LV, = 2(w+y+ %v+ gQ)(—dlw—,Blv(w+ﬁ)—,82y(w+ ﬁ)

d d,
A A A
+,81v(a)+d—:)+,82y(w+d—:)—ay—py(Q+d—z)+ay—%v
pda A aos ,  plo; A\
-—Q0+ + =+ —="vV+—= |0+ —
p Q py(Q dz)) 2Vt Q 4

4\
+20'%y2(a)+d—1)
d a*o?
<2fw+y+ 2v+Lo|[-diw -2y - P2 0]+ =242
k' q k q

+p—23 (Q2 + d—zQ + d—;) + 203> (aﬂ + d—lw + d—;)
q 2 5 1
2 2 a20.2 20_2
_ a27V2+ > 2+p23Q2+—2
k k q drq
4N2 Q02 2A2A2
S T 2A20'%w2 + : Lo+ 12 0'%
q d2 d] dl
2 2,02 p?
a o 2 293P
E(O'Z - 2’}’)\/‘ + TQZ

2
< (202A? - 2d)w? + %(0’% —2d) 0% +

U%pz/lg N 4A2/110'% 2/1%A2 5
o5,

w +
g>d? d, i

Noting that

4o A A 250N
d—lw = 40'%[\2((1) : d_l) < ZO'%CL)ZAZ + T
20'3/12[)2 _ 20'§p2 A 0'§p2 5 /lgo%pz

(Q-—)< ;
dq? q* d> 7> q*d;

2

then we can obtain:

2 2 22EP AR

2p a
242 2 2 2 2 2
LV, <(40iA° -2d))w” + 7 (05— dr)O + k2(0'2—27)v + qu% + df

Consider a new Lyapunov function

d 1
VZ(w5y9v9 Q) =w +y+nv+ 2—/{1(,()2 + ﬂyz’
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where 7 is positive constant, we compute
A A A
LV, =-dw —ﬁlv(w + d_:) —ﬂzy(a) + d—j) + (ﬂlv(w + d—:)
A A
+Boy|w+ 5| —ay = py[Q+ X || + n(ky — y»)
d dy
diw A 4
+ -dyw — + — |- + —
1 ( 1w ,Blv(w dl) B2y (w d; ))

+% (Blv(a)+ 2—1)+,82y(a)+ ZZI—I)—ay—py(Q+ 2—2))
1

When Ry < 1, we get

B d 4
dl’)/ k
We choose n satisfying
Bl d di
dyy k
Then,
LV, < —% 2 %(% + A)A%’%wz 3 (% + %)Azoﬁ/llaﬂ
1 1 1 1
. (% . X)Aza% 3 (% . A)A2 2.

Define V = V| + V,, then

d 1), , A 242 2 2p? 2 2
LV S(E(/l_]-l-X)A O'l(1+d—)+40'1/\ —2d1 w +?(O' —dg)Q

I
a, 420N @2 20345 p*

—— VPt ————+ — (0 -2y +
A i k22 q*d3
1 (d 1 1 (di 1
+t—|— + - |AF + — | — + — | AP
2d, (al A) i 2df(/ll A) 71

Let

1=

43707 205507 1 (4 1 1 (d 1
+— +— =+ —|A’ + — | + — | APl
& Pd T 2d; (al A) a1 2d§(41 A) 714
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Consequently,

0 <EV (@), y®),v(0), Q1)) <V (w(0),y(0),v(0), 0(0)) + E fo (— %yz

L{d 1)\,,, A 22 2 2p° 2 2
+(2(/11 X)A 0'1(1+d—1)+40'1A —2d; |w +?(0'3—d2)Q
2

+Z—2(0'§ - 290 + M, )dr.

0 <Ef 2d, — IR YETEY PRRETR IRPRESEL | D
= Jo 241 A ! d !

2p?
Ay + — 2 (2)/ 0'2)V + q_ (d2 — (73) Q2) dr

< V(w(0),¥(0),v(0), Q(0)) + M,z.

e i A 3w

o Gy =o)X - o) 2o

< M,.

Then

So we obtain

Considering the definition of € in Eq (8), we obtain the conclusion (7). This ends the proof. O

Remark 2. From Theorem 4.1, we know that, when Ry < 1, if the white noise intensity is small and

satisfies
2d,

o} <
d 1 a\’
W G (5 a) (e i)
the solution of the stochastic model (2) is fluctuating around the disease-free equilibrium point E, of
model (1). Epidemiologically speaking, the HBV infection dies out with probability one.

0'% <2y, O'% < ds,

5. Stochastic persistence of the HBV infection

In this section, we discuss the stochastic dynamics around the positive equilibrium E* of the ODE
HBYV model (1) when Ry > 1.

d
Theorem 5.1. For any given initial value X(0) = (x(0),y(0),v(0),z(0)) € Q, if o2 < 2—[iz, o<y,

d
0'% < 32 and Ry > 1, then the solution of model (2) has the following property:

1 ! M
lim sup ;Ef ((x X+ =YY+ =)+ (z- z*)z) ds < =2,
0

t—+00 T}
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where
. a(y - 3) (a+dy) ,
M, = zaf(x-)ZA%T o3V + _03( 2P+ PZTZZ o
1 1 U-ﬁlx v oapz
+h[=02x* A2 + 02y AL + 2 +
(2‘” 27 2y 2 )
poo A (a+d)) N (di + dp)
©d a 2d, ’
252
n.—mln{dl 20 A 54—W,? E— ; .
Proof. Let
1 +d
Vi(x,y,v,2) = = (x X +y-— y+q(z )) +M(z—z* 4

By using 1t6’s formula, we can obtain:

2 .2

LV, :(x—x*+y—y*+§(z—z*))(/11—dlx—ay+p—h—p—‘bz)+p2—(jf22

+d A +
+P(a ») _ 29 (_2 —dy +qy ) pla +dy) *0'§ +0'2x2y2
z

q2 (Z 2 2

:(x—x*+y—y*+g(z—z*))(dlx*+ay +p7dz *—dl)C—ay—pszZ)

252 (a +d ) 1 1
e P (L) ),
q zZ Z

+O_2x2y2

= (k= +y =y + L= ) (- - x) —aly = y) - B2z - )

i Y pla+ dz)/l2 (2 z ) P(a +d>)
2q *
q> Z Z
p(a +d,)

2 . Z*0_§+0_2 2y2

< —di(x -V —ay -y - LR - — (@ +d)(x - x)y - y)

~2(d) + do)x — x)z— ) + BB + 7

Consider the following Lyapunov function

1
Va(x,y,v,2) = 5(v = v
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pla+d,
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By It6’s formula, when o’% < v, we can obtain:

1
LV, =@W-=v)(ky—vyv)+ 50‘%\12

1
=W =v)ky—yv—ky* +yv*) + 50‘%1/2

< =) kG~ ") =y = V) + 030 =) + o20)

2 2
Y0, ~2 k 2 2 "2 2
< VYt —— (=) = (y— —v)? +
SV Sy P = (= =YY+ 030)
2 2
Y — 05
< e (v—=V")2 = _ *2+ 2
< S —ap 0 Y Ty )
a(y - 03)
Define W, = V; + TVQ, then
aly — 02)? 2d
Lwls—mu—ff—mwwv——1@fLw—wf—%;@—ff

7000 = @+ d)(x =) =y + =m0
2 +d
—B(dl +dy)(x — XNz - 2°) + on_ 2+ pla _ 2) 0'3 + 0'2x2y2
q 2q 2q
aly - o3)° p dz
< —d 2 )2 2 #\2
S—di(x-x) —aly =y - — (v =v) (z -2
+ d, +
+Z0- 2 @rd) —XP 4 S0 (1 Gt ey
a 2d2
2
pd, w2, 40— 0-)2 2, P 20 pla+dy) ., 55,
+2q2(Z—Z) o V)T 2q2 O3 T Oy Oy
+d))?  (d) +dy)? 2
< (Cl 1) +( 1 2) _dl (x X)Z——(y y)z p 0'32
a 2d2
a(y—o%)z #\2 pd2 #\2 a(y_o-é) 2 *2 p(a+d2) * 2
—4—k2(V—V) 2q2(Z_Z) +TO'2(V) 2—q2 03
+o 222y,
Consider a new Lyapunov function
X ,81x V" v
Vi, y,v,2) =x—x"—x'In—+|y—-y -y ln (v—v*—v*ln—)
x* y* ky* V*

+£(z—z*—z*lné).
q 4
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Applying It6’s formula, we get:

dVi(x,y,v,2) = LV3(x,y,v,2)dt — o y(x — x*)dB(t) + o1x(y — y*)dB,(¥)

_M(V —v)dBy() - Z2 (2 - 2)dBs ),
ky* q

where

k

LV, = (1 - x—)(a1 —dlx—ﬁlxv—ﬁzxy)+(1 X
X y

= )(lev + Baxy — ay — pyz)
REEN (1 - v*)(ky )+ 5(1

Z*
- Z) (A — daz + qy2)

ky* v
2 %70 k2 2 %
o5 B1x (V) o3Pz I ., 1 5.,
+ +——+=C + =0
2ky* 2q 20Ny oA
2 *

) (1 S ) (i = 2 = B — v = By — ) + B
X 2q

>k

xXv*

ﬁl”(v—v*)(X—y—*)w—y*)(ﬁl(ﬂ— *)+,32(X—X*)
v y oy

+

ok

2 00 %\2 1 1
—P(Z—Z*))+M+B(z—z*) L= -=]+q0-y)
2ky q zZ z

1 1
2. %02 20542
+oo XY+ oYX

2 2
=-dix"|—+ -2+ —12-———|-BxY|—+=-2
X X q Z X
* * * 0.2 (v 2 0_2 Z*
+B1x V(3 - — - Yy YW, P + 3P
B Vi VR o V8 2ky* 2q

1 1
+50'%x*y2 + Eoﬁy*xz
* pl * 0.2 (v 2 0_2 Z*
<—d1x*(x_+ﬁ_2)_Q(£+Z__2)+ SB1x" (V") , T3P
X x* q z* z 2ky* 2q
1 1
+50'fx*y2 + Eoﬁy*xQ
< _é(x —x*)* + TP + T la-zx*AZ + 10-2 *A2
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Define W, = W; + hVj3, then

a+d)? (d+d)?* dih a
LW, s(( - ), ¢ 120,22) —%—dl)(x—x")z—E(y—y"‘)2
aly - 03)? . 2d L aly—o3) P’
SE = B S0 4 5 o
1 1 X (v oipz p(a+dz)
+h_2*A2+_2*A2+2 +3 + * 2
(2“” 27 2y 2 27 003
+o2a2y?,
Choosing
po A (a+dy)? N (di + db)’
- d, a 2d,
+d)? (d+d dih
such that (atd) +( 12d 2 = * we have:
a 2
* a * a(fy—o'z)Z * 2d *
LW2 S—a’l(x—x)2—E(y—y)z—TZZ(V—V)Z—I;q22(Z—Z)2
a(y o5 P’ pla+dy) .
—2k 2( )+ 0'3Z +0'2A2x2 —2q2 2 %

1 1 oBx (v o3pt
+h|=02x" A2 + Z02y* A2 + + .
(2”1)C 271 2ky' 2q

Because a® < 2(a — b)* + 2b*, we can get:

aly — o

— (v —v")?

ay — o3)
2k?

1 1 0_2 (v 2 0.2 Z*
+h(50'%x*A2+—0'%y*A2+ P + 3P )

LW; < QoA —di)(x—x*) - g(y -y -

pz
> 0'%(1/*)2 + ?O%(Z*)Z

2 d
+Z_2( 2 _ —2)(Z—z*)2+20'%(x*)2A2+

2 2ky* 2q
(Cl+d2) 7 o2
27 0%
Let
. a(y — 07) pla+d,) |,
M, :20’%(}6)2/\24-7 2( )2+—0'3( )2 2—(1220%
1 1 0',31x v oipz
+h[=02x* A2 + 02y A2 + 2 + =,
(2‘71’“ 27 2y 2
and we can derive that
aly — 02)?
LW, < Q02A?—dy)(x— x) — g(y P (74—]{22)@ _ Y2

2 d
+;i2( %—f)(z—z*)2+M2.
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As aresult,
p . P W=D
AWz < LWodt = =[x = x" 4y = y" + (2= 2 | 032dBs (1) = —— 5= (v = v))oovdBa(0)
q q
P 3 st - e 2B - W(Z — 2)dBs(0)

—h(x — x")o1ydB(t) + h(y — y*)o1xdB(t).
By integrating both sides from O to 7 and then taking the expectation on both sides, it yields
0 <EW(x(@®), y(®), (1), 2(1)))
!
a
< W2 (x(0), ¥(0), (0, 2(0) + E f (<2a%A2 —d)(x—x) = S0 =y’
0
aly-=o3* ., P’ d .
—Tf(v—v )2+% o3 - 52 (z -2+ M, ds.

Then, we can get

a(y — 03)? .
((d1 202 A (x — x)? + (y V)2 + Tzz(v —v*)?
14
+?(3—0-3)(Z Z)2)ds
< W1 (x(0), ¥(0), v(0), z(0)) + M>t.
And hence, there is

, 1_ (" ., a Ly aly —o3)? .
h,rgfol:p ;Ej(; ((dl — 207 A%)(x — x*)* + E(y —y*)? T(V —v)?

> (d
+% (32 - 0'5) (z— z*)z) ds < M.

Let

2\2
7 = min {dl 20 A 2 4—k2’ q2 2 0'3 ,

1 ! M
lim sup ;Ef ((x Y+ =YY =)+ (2 Z*)z) ds < —2.
0

—+00 77

then

O
Remark 3. From Theorem 5.1, we know that, when Ry > 1, if the noise intensity is small and satisfies

,  di ,

oy < m, 0'% <y, 03< 3, (10)

then the solution of the stochastic model (2) fluctuates around the infection equilibrium E* of the
deterministic model (1). Epidemiologically, the HBV infection persist with probability one.
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6. Numerical simulations

In this section, we continue to study the SDE model (2) through a numerical approach. We aim to
investigate how environmental fluctuations affect disease spreading on the HBV dynamics.

We employ the Milstein’s method [37] to simulate the SDE model (2), whose numerical scheme for
the SDE model (2) is given by

2
Xie1 = X+ (A1 — dix; = Bix; — Paxiy) At — o1 xpy: VAIG — Fxiyi(Ats? — A,
0_2
Yist = Vi + (Brxivi + Baxiy; — ay; — pyiz)At + o1 xy; VAts; + Sxyi(Atg? — Ab),
2
Vier = vi + (kyi = yv) At = v VAL — Fvil At} - Av),

(7'2 2
Zin1 = 7+ (A — dozi + qyiz) At — 37 VALY, — 5 zi(Ard; — Ab),

where ¢;, {;,9;,i = 1,2, ...,n are Gaussian random variables. We choose Ar = 0.01.

As an example, the parameters are taken as follows:

A1 =03,d; =0.25,8 =04,a=02,p =02k = 0.06,
(1)
y=0.1,¢g=0.15,d» = 0.1,8, = 0.3, 4, = 0.2.

Then we obtain

A1dy (k%l + /32)
0=———FT""""T""]—¢= 1.08 > 1,

di(ad; + A2p)
and the corresponding deterministic model (1) has a disease-free equilibrium Ey = (1.2,0,0,2.0) and a
unique epidemic equilibrium E* = (1.140, 0.025, 0.015, 2.077), which is globally asymptotically stable
according to Theorem 2.1.

Next, we use different values of (i = 1,2, 3) to understand the role of the noise strength in the
resulting HBV dynamics for the SDE model (2).

Example 1: We adopt (071, 05,03) = (0.15,0.08,0.1) and (0.2,0.1, 0.15), respectively, then simple
computations show that o5 < 0.056,03 < 0.100,03 < 0.050, hence the conditions in Theorem 5.1
hold. From Theorem 5.1, we know that the HBV persist with probability one. The numerical results
are shown in Figures 1 and 2, we know that, after some initial transients the solutions x(¢), y(t), v(¢), z(t)
of the SDE model (2) fluctuation around the endemic equilibrium E* = (1.140, 0.025,0.015,2.077) of
the deterministic model (1). Comparing Figures 1 and 2, we can see that, if the noise is lower, the
amplitude of fluctuation is small (Figure 1); while if the noise is higher, the amplitude of fluctuation is

big (Figure 2).
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Figure 1. The paths of x(7), y(¢), v(¢), z(¢) for the stochastic model (2) when oy = 0.15, 0, =
0.08,03 = 0.1 and Ry > 1.

For the sake of learning the impact of random perturbation on the HBV disease dynamics, we have
repeated the simulation 10000 times keeping all parameters fixed and never observed any extinction
scenario up to r = 100. And we give the histogram of the approximate stationary distributions of x(z)
(a), y(t) (b), v(¢) (c) and z(¢) (d) at t = 100 for the stochastic model (2) with oy = 0.15,0, = 0.08
and o3 = 0.1 (Figure 3) and oy = 0.2,0, = 0.1 and 03 = 0.15 (Figure 4), respectively (the numerical
method can be found in [23]). One can find that x(¢), y(¢), v(¢) and z(¢) distributes normally, and also
the solution to the SDE model (2) suggests for lower o;(i = 1,2,3), the amplitude of fluctuation is
slight and the oscillations are more symmetrically distributed (Figure 3); while for higher o; that the
amplitude of fluctuation is remarkable and the distribution of the solution is skewed (Figure 4).

Example 2: If we adopt (07, 02, 03) = (0.8,0.65,0.6), then o2 > 0.056, 05 > 0.100, 03 > 0.050,
obviously, the conditions of Theorem 5.1 are not satisfied. The numerical results are shown in Figure 5,
which suggest that the HBV infection dies out with probability one. That is, in the case of Ry > 1, if
the environmental forcing intensity o;(i = 1,2, 3) is so large that the conditions of Theorem 5.1 are not
satisfied, the HBV could die out with probability one. Obviously, the extinction of the HBV is induced
by the noise.

Form Example 2, we know that in the case of Ry > 1, there exists extinction of the HBV infection in
the SDE model (2). Next, we will focus on the extinction time of the HBV infection in the stochastic
model (2).

Example 3: We adopt (03,03) = (0.65,0.6), then o — y = 032, 02 — £ = 0.31. Obviously,

the conditions of Theorem 5.1 are not satisfied. And we repeat 10,000 simulations with the same
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Figure 2. The paths of x(7), y(¢), v(¢), z(¢) for the stochastic model (2) when oy = 0.2,0, =
0.1,03 =0.15and Ry > 1.

(a) (b) (© (d)

Figure 3. Histogram of the probability density function for x(¢) (a), y(¢) (b), v(¢) (c) and z(¢)
(d) population at # = 100 for the stochastic model (2) with oy = 0.15,0, = 0.08, 03 = 0.1.

() (b) (©) (d)

Figure 4. Histogram of the probability density function for x(¢) (a), y(¢) (b), v(¢) (c) and z(¢)
(d) population at ¢t = 100 for the stochastic model (2) with oy = 0.2,0, = 0.1,05 = 0.15.
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Figure 5. The paths of x(t), y(t), v(¢), z(¢) for the stochastic model (2) when oy = 0.8,0; =
0.65,03 = 0.6 and Ry > 1.

parameters as in Figure 5, we can calculate the average extinction time of y(f) with oy, and the results
are shown in Figure 6. For example, when oy = 0.4, the average extinction time for y(¢) is 196.6; when
o1 = 0.8, it is 79.6. We can conclude that the average extinction time decreases with the increase of
noise intensity .

250

200 [ O

150

100 O

Average extinction time

OOO
O o0
50 - b

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

71

Figure 6. The average extinction time for y(¢) in the SDE model (2) with respect to 0.
Finally, we will investigate the effect of the effective contact rate 8, on the HBV dynamics of the
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SDE HBV model (2) with fixed forcing intensity.
Example 4: We fix (01,05,03) = (0.1,0.1,0.1), and choose 8, = 0.15, 0.2,0.25,0.35, 0.4,0.45,

other parameters are taken as in parameter set (11). In this case, we can obtain

2d
o} — =-0.03 <0,
05-2y=-019<0, o3-dr=-0.09<0,

dl d2
U%—m:—0.05<0, 0'%_7:_0-09<0a 05_32_0'04<0

and the values of R, are given in Table 1. Obviously, the cases of 8, = 0.15,0.2,0.25 satisfy the
conditions of Theorem 4.1, and the cases of 8, = 0.35, 0.4, 0.45 satisty the conditions of Theorem 5.1.
The numerical results of the stochastic extinction and persistence of model (2) are shown in Figure 7.

Table 1. The values of R, with different values of ;.

parameter values
B> 0.15 0.2 0.25 0.35 0.4 0.45
Ry 0.78 0.88 0.98 1.18 1.28 1.38

y()

@) B> = 0.15 (b) B =02 ©) B =025

(d) B, =0.35 (e) B =04 (f) B, =045

Figure 7. The path of y(¢) for the stochastic model (2) when oy = 0.1,0, = 0.1,03 = 0.1.

7. Conclusions

For the study of an HBV infection model, much attention is usually paid to the persistence and
extinction of HBV infection. In the deterministic HBV model, the value of the basic reproductive
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number is usually the key to determining the persistent and extinction of the HBV. When R < 1, the
HBYV will die out; when Ry, > 1, the HBV will persist (see Theorem 2.1). But the SDE HBV model,
such as model (2), does not have any equilibrium, so we have to study the asymptotic behavior of the
solution of the SDE model around the equilibrium of the deterministic HBV model to reflect the trend
of the HBV infection to some extent.

In the present paper, we investigate the stochastic dynamics of an HBV infection model with
cell-to-cell transmission and CTL immune response, and analyze the stochastic fluctuation of positive
solutions of SDE model (2) around the infection-free equilibrium E, (Figures 7(a)-7(c)) and the
infection equilibrium E* (Figures 1, 2 and Figure 7(d)-7(f)) of the deterministic model (1),
respectively, which reveals that the influence of the white noise on HBV dynamics. More precisely,
when the deterministic model (1) is disturbed by small white noise o; (i = 1,2, 3), the HBV infection
is extinct (see Theorem 4.1 and Remark 2) or persist (see Theorem 5.1 and Remark 3), and the
solutions of model (2) will fluctuate around the infection equilibrium E* of the deterministic
model (1). Furthermore, via numerical simulations, we find that the fluctuation amplitude is positively
related to the intensity of the white noise, which means, epidemiologically, as the intensity of white
noise decreases, the fluctuation of the solution of model (2) around the equilibrium of the
corresponding deterministic model (1) becomes smaller and smaller (Figures 1-4). In these cases, to a
great extent, we can ignore the noise and use the deterministic model (2) to describe the HBV
infection dynamics. However, when the noise o; (i = 1,2,3) is sufficiently large, the infected
hepatocytes y(#) on relatively large disturbance of white noise goes to extinction, and the uninfected
hepatocytes x(f) generates persistence (Figure 5). In these cases, we cannot ignore the effect of noise,
that is, we should use the stochastic HBV model (2) rather than the deterministic model (1) to
describe the HBV infection dynamics. In addition, it should be pointed out that the increase in S,
results in the corresponding increase in R,. From the biological point of view, one can find that under
certain forcing intensity, reducing the value of the effective contact rate 5, so that the value of Ry is
less than unity could lead to the stochastically extinction of the HBV infection. These results can
provide us with some useful control strategies to regulate HBV infection dynamics.
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