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0
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1. Introduction

Many ecologists and evolutionary biologists are attracted by the issue of why individuals disperse
for a number of years. So far, a great deal of researches are addressed to understand the mechanism
of dispersal [1, 2]. Over the last few decades, researchers from both biology and mathematics have
used the reaction-diffusion equations to model population dynamics in spatial ecology and evolution.
Among these models, the two species Lotka-Volterra competition-diffusion system perhaps is the most
salient example; refer to, e.g., the books [1, 3] and some recent works in [4–6].

With further development, researchers become more interested in the study of spatial population
dynamics in advective environments which forces organisms to move in certain directions(biased
movements) modeled by reaction-diffusion-advection equations. For instance, a part of researchers
pay attention to an active research area concerning the population dynamics in which the individuals
are very intelligent so that they can sense the surroundings and move upward along the gradients of a
resource distribution. Belgacem and Consner [7] was the first to raise the single species model and
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then Cantrell et al. [2] presented the two-species model. From the direction of different research, a
portion of researchers investigate population dynamics of some aquatic ecosystem modeled by
reaction-diffusion-advection equations. The aquatic ecosystems are environments which are featured
by a predominantly unidirectional flow, such as rivers, water columns or streams [8–14]. The
organisms will move passively toward the downstream end due to unidirectional water flow if species
lives in rivers and streams, or move upward(downward) due to buoyancy(gravity) if species is in water
columns. Specially, environmental conditions shift can produce biased motion, such as, the movement
of temperature isoclines, which is caused by global climate change [15]. Speirs and Gurney [16]
proposed the following single compartment model with diffusion, advection and a logistic growth
from river ecosystems.

ut = duxx − αux + u[m − u], 0 < x < L, t > 0,
dux(0, t) − αu(0, t) = 0, t > 0,
u(L, t) = 0, t > 0,
u(x, 0) = u0 ≥,. 0, 0 < x < L,

(1.1)

where u(x, t) denotes the population density at location x and time t, d is the diffusion rate, L is the
size of the habitat, and in the sequel, we call x = 0 the upstream end and x = L the downstream end, α
measures the tendency of the biased movement by water flow (sometimes we call α the advection
speed/rate) and we point out here that α should be positive since it is defined that x = L is the
downstream end. At the upstream end x = 0, the no-flux type condition is imposed, which indicates
that there is no individuals movement in or out through the upstream end. However, at the
downstream end x = L, the hostile condition is assumed which means that once individuals pass
through the downstream end they do not return back(e.g., stream to ocean [16]). The constant m > 0
accounts for intrinsic growth rate, which indicates that the environment is spatially homogeneous.
However, as we know, spatial characteristics of the environment play a vital role in ecology and
evolution, and the uneven distribution of resources caused by the effect of geological and
environmental heterogeneity could create very interesting phenomena in population dynamics.
Moreover, the phenomenon of spatial heterogeneity of resources will create more complexity to
investigate the global dynamics.

Recently, Tang and Zhou [17] considered the situation where a new or exotic species invades such
advective environment. They investigated the competitive consequence of two species model in
nonhomogeneous environment, to be more specific, the following two-species Lotka-Volterra
competition-diffusion-advection system:

ut = d1uxx − α1ux + u[m1(x) − u − v], 0 < x < L, t > 0,
vt = d2vxx − α2vx + u[m2(x) − u − v], 0 < x < L, t > 0,
d1ux(x, t) − α1u(x, t) = d2ux(x, t) − α2u(x, t) = 0, x = 0, L, t > 0,
u(x, 0) = u0 ≥,. 0, v(x, 0) = v0 ≥,. 0, 0 < x < L,

(1.2)

where u and v stand for the population densities of two competing aquatic species with their inter-
specific and intra-specific competition intensities all equal to 1. d1, d2 and α1, α2 are the diffusion
and advection rates respectively. The functions m1(x) and m2(x) represent the intrinsic growth rates
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at location x of these two competitors, which also reflect the distribution of resources. The parameter
L > 0 measures the length of the one-dimensional habitat. And at the boundary of the habitat, it is
assumed that there is no net flux across for either of the two species which implies that the environment
is closed. In their study, they imposed that m2 = M where M is a constant, that is, the distribution of
resources for the species u is spatially uneven while for the species v is homogeneous. By employing
principal spectral theory, they investigated the global dynamics of system (1.2) on the condition that:
(H) α1/d1 = α2/d2 =: k > 0 and found that the competitive result was depended on d1, d2 and m1.
However, for the general situation where m1 , m2 and m1 together with m2 is the function of spatial
variation x, the global dynamics of system (1.2) is far from being completely understood. It is common
to ask if the outcome of competition when m2 is a function with respect to x is more complex than when
m2 is a constant. We will pursue further in this direction.

For the spatially homogeneous case m1 = m2 ≡ m0 with m0 being a positive constant, a lot of
researchers are interested in it and have investigated it qualitatively [18–22]. In the case that m1 =

m2 =: m(x), non-constant, that is, spatially nonhomogeneous, system (1.2) is more difficult to handle
and has been explored in many works. Lam et al. [23] seemed the first to try to discuss the case
d1 , d2 and α1 = α2, which directed at the existence and diversity of evolutionarily stable strategies
applying some limiting arguments (in the sense of both diffusion and advection rates are sufficiently
small and comparable). Zhao and Zhou [24], considering on the special case d1 , d2 and α1 = 0 < α2,
which meant that one species merely suffered random while the other one underwent both random and
advective movements, attempted to uncover some various phenomena. For the general case d1 , d2

and α1 , α2, recently, Lou et al. [25], by developing new techniques to surmount the difficult caused
by non-self-adjoint operators, obtained a profound understanding on the global dynamics. The more
general case m1 , m2 now is far from being understood completely. Zhou and Xiao [26] established a
classification of all possible long time behaviors for a more general competitive system in the condition
of (H). Indeed, they discussed it in higher spatial dimensions.

Motivated by Tang and Zhou [17], in this paper, we mainly investigate the dynamical behaviors of
system (1.2). Firstly, we need to make the following basic assumptions:

(H1) α1/d1 = α2/d2 =: k > 0 (or equivalently, d2/d1 = α2/α1 =: k∗ > 0);
(H2) mi ∈ C

1+γ([0, L]) with some γ ∈ (0, 1) is nonconstant, mi(x) ≥ 0 in [0, L], m1(x) . m2(x),
mi(x) , c0ekx, where c0 = MLk/(ekL − 1)(i = 1, 2) and

1
L

∫ L

0
m1(x)dx =

1
L

∫ L

0
m2(x)dx = M.

Condition (H1), biologically, means that the movement strategies(random diffusion and advection
rates) of two competitors are proportional, and it is a mathematically technical condition in the main
body of this paper. In assumption (H2), it means the two competing populations have the same
amount of total resources and the distributions of resources are spatially heterogeneous as well as
nonidentical. Moreover, we exclude the ideal free distribution introduced in [27].
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According to the above hypotheses, system (1.2) changes to
ut = d1[uxx − kux] + u[m1(x) − u − v], 0 < x < L, t > 0,
vt = d2[vxx − kvx] + u[m2(x) − u − v], 0 < x < L, t > 0,
ux(x, t) − ku(x, t) = vx(x, t) − kv(x, t) = 0, x = 0, L, t > 0,
u(x, 0) = u0 ≥,. 0, v(x, 0) = v0 ≥,. 0, 0 < x < L,

(1.3)

where, the variables in the system (1.3) have the same meanings as in the system (1.2). Moreover, as
we know, system (1.3) has one trivial steady state (0, 0) (always linearly unstable) and two semi-trivial
steady states respectively denoted by (θd1,k,m1 , 0) and (0, θd2,k,m2) in the sequel.

Following the approach in [22], we first give some notations:

Γ := R+ × R+ and R+ = (0,∞),

and

Σu := {(d1, d2) ∈ Γ : (θd1,k,m1 , 0) is linearly stable},

Σv := {(d1, d2) ∈ Γ : (0, θd2,k,m2) is linearly stable},

Σ̃u := {(d1, d2) ∈ Γ : (θd1,k,m1 , 0) is neutrally stable},

Σ̃v := {(d1, d2) ∈ Γ : (0, θd2,k,m2) is neutrally stable},

Σ̃v
u := Σ̃u ∩ Σ̃v,

Σo := {(d1, d2) ∈ Γ: (θd1,k,m1 , 0) and (0, θd2,k,m2) are linearly unstable}.

The definitions of the linear stability/instability and the neutrally stability of a steady state of system
(1.3) will be given precisely in Section 2.

Due to assumption (H1), the following complete classification on the global dynamics of system
(1.3) can be obtained directly from (Theorem 1.2 [26]). It is a special case of (Theorem 1.2 [26]),
where the advective direction P(x) = x, inter-specific competition ability b = c = 1, and the habitat
Ω = [0, L].

Assume that (H1) and (H2) hold. Then for system (1.3), we have the following mutually disjoint
decomposition of Γ:

Γ = (Σu ∪ Σ̃u \ Σ̃v
u) ∪ (Σv ∪ Σ̃v \ Σ̃v

u) ∪ Σo ∪ Σ̃v
u. (1.4)

Moreover,

(i’) for all (d1, d2) ∈ (Σu ∪ Σ̃u \ Σ̃v
u), (θd1,k,m1 , 0) is g.a.s;

(ii’) for all (d1, d2) ∈ (Σv ∪ Σ̃v \ Σ̃v
u), (0, θd2,k,m2) is g.a.s;

(iii’) for all (d1, d2) ∈ Σo, system (1.3) has a coexistence steady state that is g.a.s;
(iv’) for all (d1, d2) ∈ Σ̃v

u, θd1,k,m1 = θd2,k,m2 in (0, L) and system (1.3) has a compact global attractor
consisting of a continuum of steady states

{(ρθd1,k,m1 , (1 − ρ)θd2,k,m2 : ρ ∈ [0, L]}

connecting the two semi-trivial steady states;
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where g.a.s means that the steady state is globally asymptotically stable among all non-negative and
nontrivial initial conditions.

A basic classification on all possible long time behaviors of system (1.3) is exhibited by the above
statements. However, to obtain a transparent picture of the global dynamics of system (1.3), it remains
to know explicitly when Σu, Σ̃u,Σv, Σ̃v and Σo will happen. Equivalently speaking, is it possible to
provide a sharp division of these sets by using certain variable parameters? As mentioned in [26],
each component of these sets could be empty, and more challengingly, it is hard to give a criteria
guaranteeing the dynamics in these sets. Even for the non-advective case, it is not yet completely
solved [4].

In this paper, we study the global dynamics of system (1.3) which contains two competing species.
We assume that the two species both are in heterogeneous environment and denote their intrinsic
growth rates by the functions m1(x) and m2(x), respectively. As we known, the distribution of
resources is uneven in the natural environment, hence, this case is of more realistic significance. In
the condition that m1 . m2 and total resources of the two species are fixed at the same
level(

∫ L

0
m1(x)dx =

∫ L

0
m2(x)dx ), we find that the sign of

∫ L

0
(m1 − m2)ekxdx plays an extremely

important role in determining the global dynamics. This result indicates that the values of m1 and m2

influence the global dynamics of the system. Moreover, we obtain the limiting behaviour of the
coexistence steady state when the diffusion rates(d1 and d2) of the two species tend to zero.

The rest of this paper is organized as follows. Section 2 contains some preliminaries which are
useful in later analysis and our main results. In Section 3, we will give the proof of Theorem 1.1. We
prove Theorem 1.2 in Section 4. Finally, we give a short discussion.

2. Preliminaries and main results

This section is aim to display our main results and exhibit some fundamental results which will be
utilized in later sections.

We obtain the following result when one of d1 and d2 tends to zero.
Theorem 1.1. Assume that (H1) and (H2) hold. The following statements are valid:

(i) Fix d2 > 0.

(i1) If
∫ L

0
(m1 − m2)ekxdx ≤ 0, then for small d1 > 0, (θd1,k,m1 , 0) is linearly unstable;

(i2) If
∫ L

0
(m1−m2)ekxdx > 0, then for small d1 > 0, (θd1,k,m1 , 0) is g.a.s provided d2 > 1/µ1(m2−m1)

and linear unstable provided d2 < 1/µ1(m2 − m1).

(ii) Fix d1 > 0.

(ii1) If
∫ L

0
(m1 − m2)ekxdx ≥ 0, then for small d2 > 0, (0, θd2,k,m2) is linearly unstable;

(ii2) If
∫ L

0
(m1−m2)ekxdx < 0, then for small d2 > 0, (0, θd2,k,m2) is g.a.s provided d1 > 1/µ1(m1−m2)

and linear unstable provided d1 < 1/µ1(m1 − m2);

where µ(h) is the unique nonzero principal eigenvalue of problem (2.4).
Remark 1.1. In [17], the authors found that the outcome of competition in general heterogeneous
distribution is very complicate: either u wins, or v wins, or u − v coexists, depending on the size of
diffusion rates d1, d2 and m1. Similar to [17], Theorem 1.1 indicates that the outcome of competition
depends on the size of diffusion rates d1 and d2; however, in this paper, because the resource functions
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of the two competing species u and v are both spatially nonhomogeneous, then the outcome of
competition depends not only on the distribution of m1 but also the distribution of m2. Moreover, the
competition outcome in this situation will be more abundant.
Remark 1.2. According to Theorem 1.1, we find that the sign of the quantity

∫ L

0
(m1 − m2)ekxdx

plays a significant role in understanding the global dynamics of system (1.3) which is similarly to the
description mentioned in [16]. Then we give some sufficient conditions about determining the sign of
the quantity

∫ L

0
(m1 − m2)ekxdx on the condition that m1 and m2 are monotonic with respect to spatial

variable x. In view of the monotonicity of m1 and m2, we can divide into six situations to talk about
and the graphs of m1 and m2 are as follows Figure 1. From Figure 1, the following statements are true:

(a)

m1
m2

L0 (b)

m1
m2

L0 (c)

m1
m2

L0

(d)

m1
m2

L0 (e)

m1
m2

L0 (f)

m1
m2

L0

Figure 1. x0 ∈ (0, L) is the unique point such that m1(x) = m2(x). (a) describes the situation
where m′1(x) > 0, m′2(x) > 0 and m1(x) > m2(x) when x > x0; (b) shows that m′1(x) > 0,
m′2(x) > 0 and m2(x) > m1(x) when x > x0; (c) displays that m′1(x) > 0 and m′2(x) < 0;
(d) declares that m′1(x) < 0 and m′2(x) > 0; (e) indicates that m′1(x) < 0, m′2(x) < 0 and
m1(x) < m2(x) when x > x0; ( f ) describes that m1(x) > m2(x) when x > x0 and m′1(x) < 0,
m′2(x) < 0.

(i) In cases of a, c and f , it holds that
∫ L

0
(m1 − m2)ekxdx < 0;

(ii) In cases of b, d and e, we can obtain
∫ L

0
(m1 − m2)ekxdx > 0.

In fact, since m1 and m2 are monotonic, there is a unique x0 ∈ (0, L) such that m1(x) = m2(x). Define

q̃(s) :=
∫ L

0
(m2 − m1)es(x−x0)dx.

Then

q̃′(s) =

∫ L

0
(m2 − m1)(x − x0)es(x−x0)dx

Mathematical Biosciences and Engineering Volume 18, Issue 1, 564–582.



570

< 0, m′1(x) > 0,m′2(x) > 0, m1(x) < m2(x) i f x < x0,

> 0, m′1(x) > 0,m′2(x) > 0, m1(x) < m2(x) i f x > x0,

< 0, m′1(x) > 0,m′2(x) < 0,
> 0, m′1(x) < 0,m′2(x) > 0,
> 0, m′1(x) < 0,m′2(x) < 0, m1(x) > m2(x) i f x < x0,

< 0, m′1(x) < 0,m′2(x) < 0, m1(x) < m2(x) i f x < x0,

which, by q(0) =
∫ L

0
(m2 − m1)dx = 0, implies

q̃(s)



< 0, m′1(x) > 0,m′2(x) > 0, m1(x) < m2(x) i f x < x0,

> 0, m′1(x) > 0,m′2(x) > 0, m1(x) < m2(x) i f x > x0,

< 0, m′1(x) > 0,m′2(x) < 0,
> 0, m′1(x) < 0,m′2(x) > 0,
> 0, m′1(x) < 0,m′2(x) < 0, m1(x) > m2(x) i f x < x0,

< 0, m′1(x) < 0,m′2(x) < 0, m1(x) < m2(x) i f x < x0.

The desired result follows by letting s = k.
When d1 and d2 tend to zero meanwhile, the following result is true.

Theorem 1.2. Assume that (H1) and (H2) hold. Then we have:

(i) As d1 and d2 tend to 0, system (1.3) has a coexistence steady state that is g.a.s;
(ii) Let us denote by (ud1,d2 , vd1,d2) the unique coexistence stable state of system (1.3). Then we have

lim
d1,d2→0

(ud1,d2 , vd1,d2) = (S (x),H(x)),

uniformly on compact subsets of [0, L] \ {x ∈ [0, L] : m1(x) = m2(x)}, where

S (x) =

m1(x), i f m1(x) > m2(x),
0, i f m1(x) < m2(x),

and

H(x) =

0, i f m1(x) > m2(x),
m2(x), i f m1(x) < m2(x).

Remark 1.3. From a biological perspective, Remark 1.2, together with Theorems 1.1 and 1.2 implies
several interesting explanations. Back to Theorem 1.1 (i1), if the resource m1 of species u is distributed
decreasingly in spatial variable x and m2 of species v is distributed increasingly in spatial variable x or
m1 and m2 increase in spatial variable meanwhile m1 changes faster than m2 or m1 and m2 decrease in
spatial variable meanwhile m1 changes slower than m2, then d1k is not good for u no matter how small
d1 is, however, in view of Theorem 1.1 (ii2), it is good for v if d2 is suitably small. Otherwise, from
Theorem 1.1 (ii1), it is unfavorable for v no matter how small d2 is. In view of Theorem 1.1 (i2), it is
favorable for u if d1 is suitably small. Therefore, we can infer Theorem 1.2 (i), which says that both
species will coexist if they nearly do not move (d1, d2 → 0), regardless of the shape of m1 and m2.
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Let us look at the following single-species model corresponding to system (1.3)
θt = d[θxx − kθx] + θ[m(x) − θ], 0 < x < L, t > 0,
θx(x, t) − kθ(k, t) = 0, x = 0, L, t > 0,
θ(x, 0) = θ0 ≥,. 0, 0 < x < L,

(2.1)

where d, k > 0, m is in C1+γ([0, L]) and m > 0 in [0, L]. Under these conditions, it is easy to see that
problem (2.1) admits a unique positive steady state (see, e.g., [3]), denoted by θd,k,m. By applying this
fact to system (1.3), there are always two semi-trivial steady states (θd1,k,m1 , 0) and (0, θd2,k,m2) in the
condition of (H2).

About the positive steady solution θd,k,m of Eq (2.1), we have the following limiting profile. The
limiting profile can be seen as an extension of the non-advective case (i.e., k = 0); see [28, 29].
Lemma 2.1. The following statement on θd,k,m is true:

lim
d→0
‖θd,k,m − m‖L∞(0,L) = 0.

Proof. Denote θd,k,m by θd for simplicity. Let βd(x) = e−kxθd. Then βd(x) satisfiesd[βdxx + kβdx] + βd(m(x) − βdekx) = 0, 0 < x < L,

βdx(x) = 0, x = 0, L.
(2.2)

For any given ε > 0, since m is in C1+γ([0, L]), there is some function ξ in C2([0, L)] such that

ξx(0) = ξx(L) = 0 and ‖ξ − me−kx‖L∞([0,L]) < ε.

Define β+ := ξ + 2ε and β− := ξ − 2ε. Then for d sufficiently small, it is not difficult to prove that
β+ and β− are, respectively, super- and sub-solution of problem (2.2). That is to say, if d > 0 is small,
we have

ξ − 2ε ≤ βd ≤ ξ + 2ε, x ∈ [0, L],

and therefore,
me−kx − 3ε ≤ βd ≤ me−kx + 3ε, x ∈ [0, L],

due to the arbitrariness of ε > 0, the desired result is proved.
Next we consider an auxiliary eigenvalue problem. It is helpful for studying the existence and

stability of semi-trivial steady states:d[φxx − kφx] + hφ + λφ = 0, 0 < x < L,

φxx − kφx = 0, x = 0, L,
(2.3)

where d, k > 0 and h is in L∞([0, L]). By employing the Krein-Rutman Theorem [30], it is simple
to prove that problem (2.3) admits a principal eigenvalue(simple and has the least real part among
all eigenvalues) which is denoted by λ1(d, k, h) in the sequel, and its corresponding eigenfunction
φ1(d, k, h) can be chosen strictly positive in [0, L]. Moreover, the linear stabilities of (θd1,k,m1 , 0) and
(0, θd2,k,m2) are determined, respectively, by the sign of λ1(d2, k,m2 − θd1,k,m1) and λ1(d1, k,m1 − θd2,k,m2).
Specifically, (θd1,k,m1 , 0) is linearly stable (resp. linearly unstable) if λ1(d2, k,m2 − θd1,k,m1) > 0 (resp.
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λ1(d2, k,m2−θd1,k,m1) < 0); (0, θd2,k,m2) is linearly stable (resp. linearly unstable) if λ1(d1, k,m1−θd2,k,m2) >
0 (resp. λ1(d1, k,m1 − θd2,k,m2) < 0). We say (θd1,k,m1 , 0)((0, θd2,k,m2)) is neutrally stable if λ1(d2, k,m2 −

θd1,k,m1) = 0(λ1(d1, k,m1 − θd2,k,m2)=0).
By the variational approach, λ1(d, k, h) can be characterized by

λ1 = inf
0,ψ∈H1(0,L)

∫ L

0
dψ2

xe
kxdx −

∫ L

0
hψ2ekxdx∫ L

0
ekxψ2dx

(2.4)

The following Lemma 2.2 collects some important properties of λ1(d, k, h). The proof can be found
in [1, 17, 31, 32].
Lemma 2.2. The following statements on λ1(d, k, h) are true:

(i) λ1(d, k, h) and φ1(d, k, h) depend continuously and differentially on parameters d and k;
(ii) λ1(d, k, h) is strictly increasing in the parameter d provided h is non-constant;

(iii) limd→0 λ1(d, k, h) = − max
x∈[0,L]

h(x) and limd→∞ λ1(d, k, h) = −
∫ L

0
h(x)ekxdx/

∫ L

0
ekxdx.

For later research, it is needed to introduce the following eigenvalue problem with indefinite weightφxx − kφx + µhφ = 0, 0 < x < L,

φx − kφ = 0, x = 0, L,
(2.5)

where h . 0, could change sign in (0, L). If there is a positive solution for problem (2.5) we say
µ1 = µ1(h) is a principal eigenvalue.(0 is always a principal eigenvalue.) The following result collects
some important properties of µ1(h) in connection with λ1(d, k, h). The eigenvalue problem (2.5) is a
special case of a general problem studied in [33, 34]. Indeed, by the transformation % = e−kxφ, one can
change problem (2.5) to a Neumann type problem.
Lemma 2.3. The problem (2.5) has a nonzero principal eigenvalue µ1 = µ1(h) if and only if∫ L

0
hekxdx , 0 and h changes sign in (0, L). More precisely, if h changes sign in (0, L), then

(i)
∫ L

0
hekxdx = 0⇔ 0 is the only principal eigenvalue;

(ii)
∫ L

0
hekxdx > 0⇔ µ1(h) < 0;

(iii)
∫ L

0
hekxdx < 0⇔ µ1(h) > 0; and in this case, µ1(h) can be characterized by

µ1(h) = inf
ψ∈H1((0,L)),

∫ L
0 hψ2ekxdx>0

∫ L

0
ekxψ2

xdx∫ L

0
hψ2ekxdx

; (2.6)

(iv)
∫ L

0
hekxdx ≥ 0⇒ λ1(d, k, h) < 0 for all d > 0, and

∫ L

0
hekxdx < 0⇒


λ1(d, k, h) < 0, i f d < 1

µ1(h) ,

λ1(d, k, h) = 0, i f d = 1
µ1(h) ,

λ1(d, k, h) > 0, i f d > 1
µ1(h) .

(2.7)
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3. Proof of Theorem 1.1

For clarity, we proceed with the proof in the from of several claims.
Claim 1: There are two functions d̂∗2 = d̂∗2(d1) and d̂∗1 = d̂∗1(d2) defined by

d̂∗2(d1) =


0, i f max

x∈[0,L]
(m2 − θd1,k,m1) ≤ 0,

∞, i f
∫ L

0 (θd1 ,k,m1−m2)ekxdx∫ L
0 ekxdx

≤ 0,
1

µ1(m2−θd1 ,k,m1 ) ∈ (0,∞), otherwise,

(3.1)

and

d̂∗1(d2) =


0, i f max

x∈[0,L]
(m1 − θd2,k,m2) ≤ 0,

∞, i f
∫ L

0 (θd2 ,k,m2−m1)ekxdx∫ L
0 ekxdx

≤ 0,
1

µ1(m1−θd2 ,k,m2 ) ∈ (0,∞), otherwise,

(3.2)

such that 
Σu := {(d1, d2) ∈ Γ : d2 > d̂∗2(d1)}
Σv := {(d1, d2) ∈ Γ : d1 > d̂∗1(d2)}
Σo := {(d1, d2) ∈ Γ : d2 < d̂∗2(d1) and d1 < d̂∗1(d2)}

(3.3)

and the following statements are valid:
(a) for all (d1, d2) ∈ (Σu ∪ Σ̃u), (θd1,k,m1 , 0) is g.a.s;
(b) for all (d1, d2) ∈ (Σv ∪ Σ̃v), (0, θd2,k,m2) is g.a.s;
(c) for all (d1, d2) ∈ Σo, system (1.3) has a coexistence steady state that is g.a.s.
Where µh is the nonzero principal eigenvalue of Eq (2.5).
We first assert that Σ̃v

u = ∅. On the contrary, suppose that Σ̃v
u , ∅. In view of statement (iv′), one

finds that for some d0
1 and d0

2 > 0, θd0
1 ,k,m1

≡ θd0
2 ,k,m2

in [0, L].
If (d0

2 − d0
1) = 0, by the equations of θd0

1 ,k,m1
and θd0

2 ,k,m2
, it holds that

m1(x) − θd0
1 ,k,m1

d0
1

≡
m2(x) − θd0

2 ,k,m2

d0
2

, x ∈ [0, L].

From the above equation, one can derive that m1 ≡ m2 in [0, L], which contradicts our assumption (H2).
If (d0

2 − d0
1) , 0, by the equations of θd0

1 ,k,m1
and θd0

2 ,k,m2
again, one arrives at∫ L

0

m1(x) − θd0
1 ,k,m1

d0
1

dx =

∫ L

0

m2(x) − θd0
2 ,k,m2

d0
2

dx, x ∈ [0, L].

Because of the condition (H2), the above equality can be rewritten as

(d0
2 − d0

1)
∫ L

0
m1(x)dx = (d0

2 − d0
1)
∫ L

0
θd0

1 ,k,m1
dx,

which implies that ∫ L

0
[m1(x) − θd0

1 ,k,m1
]dx = 0.
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Dividing the first equation of Eq (2.1) by e−kxθd,k,m and integrating over [0, L], one deduces that

d
∫ L

0

ekx[e−kxθd,k,m]2
x

[ekxθd,k,m]2 dx +

∫ L

0
[m(x) − θd,k,m]ekxdx = 0,

so the positive steady solution θd,k,m of problem (2.1) satisfies∫ L

0
[m(x) − θd,k,m]ekxdx ≤ 0,

and the equality is valid if and only if m(x) = cekx for some c > 0.
Due to the assumption (H2), there is a contradiction. This contradiction gives that Σ̃v

u = ∅. Then
statements (a), (b) and (c) follow directly from Theorem 1.1.

It is sufficient to prove Eqs (3.1) and (3.2) can be verified in the same manner so we omit here.
Given any d1 > 0, as shown above, the sign of λ1(d2, k,m2 − θd1,k,m1) determines the linear stability of
(θd1,k,m1 , 0), which, by Lemma 2.2 (iii), we have

lim
d2→0

λ1(d2, k,m2 − θd1,k,m1) = − max
x∈[0,L]

(m2 − θd1,k,m1),

and

lim
d2→∞

λ1(d2, k,m2 − θd1,k,m1) = −

∫ L

0
(m2 − θd1,k,m1)e

kxdx∫ L

0
ekxdx

.

For the first case, if max
x∈[0,L]

(m2−θd1,k,m1) ≤ 0, by Lemma 2.2 (ii) and the above first limit, λ1(d2, k,m2−

θd1,k,m1) > 0 for every d2, so we can define d̂∗2(d1) = 0; similarly, for the second case, using Lemma 2.2
(ii) again and the above second limit, one can define d̂∗2(d1) = ∞ if −

∫ L

0
(m2 − θd1,k,m1)e

kxdx/
∫ L

0
ekxdx ≤

0; for the rest case, from Lemma 2.3 (iv) it can be defined that d̂∗2(d1) = 1/µ1(m2 − θd1,k,m1) ∈ (0,∞).
By the above statements, the formula in Eq (3.1) is established.
In view of the definition of linear stability and unstability, it is easy to understand the sets described

in Eq (3.3).
Claim 2: The following limiting behaviors of d̂∗2(d1) and d̂∗1(d2) hold true:

For d̂∗2(d1), we have

lim
d1→0

d̂∗2(d1) =

∞, i f
∫ L

0
(m1 − m2)ekxdx ≤ 0,

1
µ1(m2−m1) , otherwise;

(3.4)

For d̂∗1(d2), we have

lim
d2→0

d̂∗1(d2) =

∞, i f
∫ L

0
(m1 − m2)ekxdx ≥ 0,

1
µ1(m1−m2) , otherwise.

(3.5)

As mentioned above, the sign of λ1(d2, k,m2 − θd1,k,m1) determines the linear stability of (θd1,k,m1 , 0),
which, from Lemma 2.1, satisfies

lim
d1→0

λ1(d2, k,m2 − θd1,k,m1) = λ1(d2, k,m2 − m1).
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Using Lemma 2.2 (iii), one has

lim
d2→0

( lim
d1→0

λ1(d2, k,m2 − θd1,k,m1)) = − max
x∈[0,L]

(m2 − m1) < 0, (3.6)

and

lim
d2→∞

( lim
d1→0

λ1(d2, k,m2 − θd1,k,m1)) =

∫ L

0
(m1 − m2)ekxdx∫ L

0
ekxdx

. (3.7)

Then we can infer the limit Eq (3.4) from Eqs (3.6) and (3.7) and Lemmas 2.2 (ii) and 2.3 (iv).
The limit Eq (3.5) can be obtained by the above ideas as in the proof of Eq (3.4). This finishes claim

2.
Now we are in a position to prove Theorem 1.1. We first prove statement (i) by fixing d2 > 0. If∫ L

0
(m1 −m2)ekxdx ≤ 0, by Eq (3.4), for small d1 > 0 and d2 < d̂∗2(d1), it can be obtained that (θd1,k,m1 , 0)

is linearly unstable. If
∫ L

0
(m1 − m2)ekxdx > 0, using the second limit in Eqs (3.4) and (3.2), for small

d1 > 0, it is easy to conclude the second result of statement (i).
Similar to the above argument, from Eqs (3.1) and (3.5), statement (ii) could be obtained.

4. Proof of Theorem 1.2

In order to prove statement (i), the continuous dependence of the principal eigenvalue λ1(d, k, h) in
the parameter d as well as the weight function h plays a vital role.

Specifically, in view of Lemmas 2.1 and 2.3 (iv), one obtains

lim
d1→0,d2→0

λ1(d2, k,m2 − θd1,k,m1) = − max
x∈[0,L]

(m2 − m1) < 0,

and
lim

d1→0,d2→0
λ1(d1, k,m1 − θd2,k,m2) = − max

x∈[0,L]
(m1 − m2) < 0.

From the first inequality, (θd1,k,m1 , 0) is linearly unstable and (0, θd2,k,m2) is linearly unstable by the second
inequality. Due to the statement (c), it is easy to deduce that system 1.3 has a coexistence steady state
that is g.a.s.

Next we prove the limiting behavior of coexistence steady state of system (1.3). Following the ideas
in [35], we obtain the proof of this statement.
Lemma 4.1. (i) Consider the sequences {un}

n=∞
n=1 and {vn}

n=∞
n=1 defined by

u1 = θd1,k,m1 , vn = θd2,k,m2−un , un+1 = θd1,k,m1−vn
, (n ≥ 1).

Then, for small d1, d2 > 0, denote the coexistence state of system (1.3) by (u, v), the following hold:

u ≤ un+1 ≤ un, v ≥ vn+1 ≥ vn, (n ≥ 1); (4.1)

(ii) Analogously for sequences {un}
n=∞
n=1 and {vn}

n=∞
n=1 defined by

v1 = θd2,k,m2 , un = θd1,k,m1−vn , vn+1 = θd2,k,m2−un
, (n ≥ 1).
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We have

u ≥ un+1 ≥ un, v ≤ vn+1 ≤ vn, (n ≥ 1). (4.2)

Proof. It is enough to prove Eq (4.1) as the proof of Eq (4.2) follows by the symmetry. The proof is
obtained by induction argument.

From the equation of u, we obtain

d1[uxx − kux] = −u[m1 − u − v] ≥ −u[m1 − u], x ∈ (0, L),

that is to say, u is a sub-solution ofd1[wxx − kwx] + w[m1 − w] = 0, x ∈ (0, L),
wx(x) − kw(x) = 0, x = 0, L.

Therefore,
u ≤ u1 := θd1,k,m1 , x ∈ (0, L).

Now, substitute this inequality into the equation of v

d2[vxx − kvx] = −u[m2 − u − v] ≤ −v[m2 − u1 − v], x ∈ (0, L),

that is, v is a super-solution ofd2[zxx − kzx] + z[m2 − u1 − v] = 0, x ∈ (0, L),
zx(x) − kz(x) = 0, x = 0, L,

so
v ≥ v1 := θd2,k,m2−u1 , x ∈ (0, L).

Back to the equations of u and v, one can obtain

u ≤ u2 := θd1,k,m1−v1
, x ∈ (0, L).

and
v ≥ v2 := θd2,k,m2−u2 , x ∈ (0, L).

For small d1 and d2 > 0, we have v1 > 0 in (0, L), so

u2 := θd1,k,m1−v1
≤ u1 := θd1,k,m1 , x ∈ (0, L),

which further implies
v2 := θd2,k,m2−u2 ≥ v1 := θd2,k,m2−u1 , x ∈ (0, L).

This completes the proof of Eq (4.1) for n = 1.
Now suppose that Eq (4.1) is true for some N > 1. Then it suffices to show that

u ≤ uN+2 ≤ uN+1, v ≥ vN+2 ≥ vN+1, x ∈ (0, L).
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From v ≥ vN+1 in (0, L),

d1[uxx − kux] = −u[m1 − u − v] ≥ −u[m1 − u − vN+1], x ∈ (0, L),

so
u ≤ uN+2 := θd1,k,m1−vN+1

, x ∈ (0, L).

Similarly, one can derive
v ≥ vN+2 := θd2,k,m2−uN+2 , x ∈ (0, L).

Thus it is sufficient to show that

uN+2 ≤ uN+1 and vN+2 ≥ vN+1, x ∈ (0, L).

Since vN+1 ≥ vN in (0, L), we get

uN+2 := θd1,k,m1−vN+1
≤ uN+1 := θd1,k,m1−vN

, x ∈ (0, L).

Similarly,
vN+2 := θd2,k,m2−uN+2 ≥ vN+1 := θd2,k,m2−uN+1 , x ∈ (0, L).

This completes the proof.
We now analyze the behavior of the scheme introduced by Lemma 4.1, Eqs (4.1) and (4.2) as d1

and d2 tend to 0.
In consideration of Lemma 4.1, for each n ≥ 1, one can define the following limits in the topology

of C([0, L]):

Un = lim
d1,d2→0

un, Un = lim
d1,d2→0

un, Vn = lim
d1,d2→0

vn, Vn = lim
d1,d2→0

vn.

As a matter of fact, these limits can be described detailedly.
Lemma 4.2. The following identities hold:

U1 = m1, Un+1 = [m1 − (m2 − Un)+]+, x ∈ [0, L],
V1 = m2, Vn+1 = [m2 − (m1 − Vn)+]+, x ∈ [0, L],
U1 = (m1 − m2)+, Un+1 = [m1 − (m2 − Un)+]+, x ∈ [0, L],
V1 = (m2 − m1)+, Vn+1 = [m2 − (m2 − Vn)+]+, x ∈ [0, L],

(4.3)

where n ≥ 1.
Proof. First, using the same arguments as in proof of Lemma 2.1, if

∫ L

0
m(x)dx > 0 and the set

{x : m(x) < 0} has a positive measure, we can obtain ‖θd,k,m − m+‖L∞(0,L) → 0 as d → 0 with m+(x) =

max{m(x), 0}.
Due to assumption (H2), Eq (4.3) is hold when n = 1. Suppose that Eq (4.3) is valid for every

1 ≤ n ≤ N. Then, by definition, uN+2 := θd1,k,m1−vN+1
. Using the argument above again, one obtains

UN+2 = lim
d1,d2→0

θd1,k,m1−vN+1
= [m1 − (m2 − uN+1)+]+.

We can demonstrate the rest ones in the similar manner. Hence, the proof is finished.
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By the above result, it is allowable to get explicit formulas for each of the sequences Un, Un, Vn

and Vn. The following lemma makes these precisely.
Lemma 4.3. The following formulas for Un,Un,Vn and Vn are true:

Un+1 =


m1(x), i f m2(x) ≤ m1(x),
(n + 1)m1(x) − nm2(x), i f m1(x) < m2(x) < n+1

n m1(x),
0, i f m2(x) ≥ n+1

n m1,

(4.4)

Un+1 =


m1(x), i f m1(x) ≥ n+1

n m2(x),
(n + 1)[m1(x) − m2(x)], i f m2(x) ≤ m1 <

n+1
n m2(x),

0, i f m1(x) < m2(x),

(4.5)

Vn+1 =


m2(x), i f m1(x) ≤ m2(x),
(n + 1)m2(x) − nm1(x), i f m2(x) < m1(x) < n+1

n m2(x),
0, i f m1(x) ≥ n+1

n m2(x),

(4.6)

Vn+1 =


m2(x), i f m2(x) ≥ n+1

n m1(x),
(n + 1)[m2(x) − m1(x)], i f m1(x) ≤ m2 <

n+1
n m1(x),

0, i f m2(x) < m1(x),

(4.7)

where n ≥ 1.
Proof. We only prove Eq (4.4) by the induction argument and Eqs (4.5), (4.6) and (4.7) can be verified
similarly.

From Lemma 4.2, it can be inferred that

U2 =


m1(x), i f m1(x) ≥ m2(x),
2m1(x) − m2(x), i f m1(x) < m2(x) < 2m1(x),
0, i f m2(x) ≥ 2m1(x).

Hence for n = 1, Eq (4.4) is hold.
Now suppose that Eq (4.4) is true for every 1 ≤ n ≤ N, then one has

UN+1 =


m1(x), i f m2(x) ≤ m1(x),
(N + 1)m1(x) − Nm2(x), i f m1(x) < m2(x) < N+1

N m1(x),
0, i f m2(x) ≥ N+1

N m1(x).

By Lemma 4.2 again, it holds that

UN+2 = [m1 − (m2 − UN+1)+]+, x ∈ [0, L].

Due to the above two equalities, the following can be obtained that

UN+2 =


m1(x), i f m2(x) ≤ m1(x),
(N + 2)m1(x) − (N + 1)m2(x), i f m1(x) < m2(x) < N+2

N+1m1(x),
0, i f m2(x) ≥ N+2

N+1m1(x).
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This completes the proof.
Now it is in a position to prove

lim
d1,d2→0

(ud1d2 , vd1,d2) = (S (x),H(x)).

By Lemmas 4.1 and 4.2, for small d1, d2 > 0,

un ≤ ud1,d2 ≤ un and vn ≤ vd1,d2 ≤ vn, for all n ≥ 1.

Setting d1, d2 → 0, we have

Un ≤ lim inf
d1,d2→0

ud1,d2 ≤ lim sup
d1,d2→0

ud1,d2 ≤ Un, for all n ≥ 1,

and
Vn ≤ lim inf

d1,d2→0
vd1,d2 ≤ lim sup

d1,d2→0
vd1,d2 ≤ Vn, for all n ≥ 1.

By further letting n→ ∞ and by Lemma 4.3, one obtains

lim
n→∞

Un(x) = lim
n→∞

Un(x) =

m1(x), i f m1(x) > m2(x),
0, i f m1(x) < m2(x),

and

lim
n→∞

Vn(x) = lim
n→∞

Vn(x) =

m2(x), i f m2(x) > m1(x),
0, i f m2(x) < m1(x),

which completes the proof.
Remark 4.1. If mi(x) changes sign in [0, L](i = 1, 2), we have

lim
d1,d2→0

(ud1,d2 , vd1,d2) = (S ′(x),H′(x)),

uniformly on compact subsets of [0, L] \ {x ∈ [0, L] : m1(x) = m2(x)}, where

S ′(x) =

m1(x), i f m2(x) < m1(x) and 0 < m1(x),
0, i f 0 < m1(x) < m2(x) or m1(x) ≤ 0,

and

H′(x) =

0, i f m2 ≤ 0 or 0 < m2(x) < m1(x),
m2(x), i f m1(x) < m2(x) and 0 < m2(x).

5. Discussions

In this paper, motivated by Tang and Zhou [17], we studied a classical two-species Lotka-Volterra
competition-diffusion-advection system in which the diffusion rates, advection rates and intrinsic
growth rates are allowed to take on different values in the space(heterogeneity).

In the condition that total resources for two populations are fixed at the same level, we consider both
species u and v are both in heterogeneous environment. We assume that the two competing species have
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different resource functions and the distributions of resources are uneven, which is different from the
literature [17], where the authors supposed that one spatial distribution is even across space while the
other one not. We find that the outcome of competition in this situation is very abundant: either one
of the two competitors becomes the final single winner or both populations coexist eventually, which
is dependent on the diffusion rates of both species and the specific shapes of m1 and m2; see Theorem
1.1. By limiting arguments, we investigate further the population dynamics when d1 and d2 tend to
zero and give the asymptotic behaviour of coexistence steady state for small diffusion; see Theorem
1.2. These results partially generalizes Tang and Zhou [17]. In comparison with Tang and Zhou [17],
we study a more general case. In their paper, they assume that the resource function of v expressed
as m2 is a constant M. In our research, m2 is a function of the spatial variable x. This case is more
realistic. Moreover, our results indicate that the values of m1 and m2 have a significant impact on the
global dynamics of (1.3) and the limiting behaviour of the coexistence steady state. Therefore a change
in the value of m2 will produce more complicated spatial population dynamics.

From the above research, we know that both m1 and m2 have effects on global dynamics of system
(1.3). It seems that the spatial population dynamics will appear to be more abundant. Moveover,
assumption (H1) plays an important role in the proof process. When (H1) fails, it is far away from
a complete understanding and extremely challenging to deal with. We will continue to explore these
problems in the future.
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