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1. Introduction

Many ecologists and evolutionary biologists are attracted by the issue of why individuals disperse
for a number of years. So far, a great deal of researches are addressed to understand the mechanism
of dispersal [1,2]. Over the last few decades, researchers from both biology and mathematics have
used the reaction-diffusion equations to model population dynamics in spatial ecology and evolution.
Among these models, the two species Lotka-Volterra competition-diffusion system perhaps is the most
salient example; refer to, e.g., the books [1, 3] and some recent works in [4—6].

With further development, researchers become more interested in the study of spatial population
dynamics in advective environments which forces organisms to move in certain directions(biased
movements) modeled by reaction-diffusion-advection equations. For instance, a part of researchers
pay attention to an active research area concerning the population dynamics in which the individuals
are very intelligent so that they can sense the surroundings and move upward along the gradients of a
resource distribution. Belgacem and Consner [7] was the first to raise the single species model and
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then Cantrell et al. [2] presented the two-species model. From the direction of different research, a
portion of researchers investigate population dynamics of some aquatic ecosystem modeled by
reaction-diffusion-advection equations. The aquatic ecosystems are environments which are featured
by a predominantly unidirectional flow, such as rivers, water columns or streams [8—14]. The
organisms will move passively toward the downstream end due to unidirectional water flow if species
lives in rivers and streams, or move upward(downward) due to buoyancy(gravity) if species is in water
columns. Specially, environmental conditions shift can produce biased motion, such as, the movement
of temperature isoclines, which is caused by global climate change [15]. Speirs and Gurney [16]
proposed the following single compartment model with diffusion, advection and a logistic growth
from river ecosystems.

U, = du,, — au, + ulm — uj, O<x<L,t>0,

du,(0,1) — au(0,1) = 0, t>0,

u,(0,1) — au(0, 1) (L)
u(lL,t) =0, t>0,

M(X,O):Moz,fo, 0<X<L,

where u(x, ) denotes the population density at location x and time ¢, d is the diffusion rate, L is the
size of the habitat, and in the sequel, we call x = O the upstream end and x = L the downstream end, &
measures the tendency of the biased movement by water flow (sometimes we call @ the advection
speed/rate) and we point out here that a should be positive since it is defined that x = L is the
downstream end. At the upstream end x = 0, the no-flux type condition is imposed, which indicates
that there is no individuals movement in or out through the upstream end. However, at the
downstream end x = L, the hostile condition is assumed which means that once individuals pass
through the downstream end they do not return back(e.g., stream to ocean [16]). The constant m > 0
accounts for intrinsic growth rate, which indicates that the environment is spatially homogeneous.
However, as we know, spatial characteristics of the environment play a vital role in ecology and
evolution, and the uneven distribution of resources caused by the effect of geological and
environmental heterogeneity could create very interesting phenomena in population dynamics.
Moreover, the phenomenon of spatial heterogeneity of resources will create more complexity to
investigate the global dynamics.

Recently, Tang and Zhou [17] considered the situation where a new or exotic species invades such
advective environment. They investigated the competitive consequence of two species model in
nonhomogeneous environment, to be more specific, the following two-species Lotka-Volterra
competition-diffusion-advection system:

U = dilly — i, + ulmi(x) —u—vj, O<x<L,t>0,

Vi = doVy — @V, + u[my(x) — u — v, O<x<L,t>0, (12)
diu(x,1) — au(x, t) = douy(x, 1) — aru(x, t) =0, x=0,L, t>0,
u(x,0) =ug =, %0, v(x,0) =vyg >, £0, O0<x<L,

where u and v stand for the population densities of two competing aquatic species with their inter-
specific and intra-specific competition intensities all equal to 1. d;, d, and «,, @, are the diffusion
and advection rates respectively. The functions m;(x) and m,(x) represent the intrinsic growth rates
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at location x of these two competitors, which also reflect the distribution of resources. The parameter
L > 0 measures the length of the one-dimensional habitat. And at the boundary of the habitat, it is
assumed that there is no net flux across for either of the two species which implies that the environment
is closed. In their study, they imposed that m, = M where M is a constant, that is, the distribution of
resources for the species u is spatially uneven while for the species v is homogeneous. By employing
principal spectral theory, they investigated the global dynamics of system (1.2) on the condition that:
(H) ay/d; = ap/d, =: k > 0 and found that the competitive result was depended on d,,d, and m;.
However, for the general situation where m; # m, and m; together with m, is the function of spatial
variation x, the global dynamics of system (1.2) is far from being completely understood. It is common
to ask if the outcome of competition when m; is a function with respect to x is more complex than when
my is a constant. We will pursue further in this direction.

For the spatially homogeneous case m; = m, = my with m, being a positive constant, a lot of
researchers are interested in it and have investigated it qualitatively [18-22]. In the case that m; =
my =: m(x), non-constant, that is, spatially nonhomogeneous, system (1.2) is more difficult to handle
and has been explored in many works. Lam et al. [23] seemed the first to try to discuss the case
d; # d, and @ = a,, which directed at the existence and diversity of evolutionarily stable strategies
applying some limiting arguments (in the sense of both diffusion and advection rates are sufficiently
small and comparable). Zhao and Zhou [24], considering on the special case d; # d, and @1 = 0 < a»,
which meant that one species merely suffered random while the other one underwent both random and
advective movements, attempted to uncover some various phenomena. For the general case d; # d,
and a; # a», recently, Lou et al. [25], by developing new techniques to surmount the difficult caused
by non-self-adjoint operators, obtained a profound understanding on the global dynamics. The more
general case m; # m, now is far from being understood completely. Zhou and Xiao [26] established a
classification of all possible long time behaviors for a more general competitive system in the condition
of (H). Indeed, they discussed it in higher spatial dimensions.

Motivated by Tang and Zhou [17], in this paper, we mainly investigate the dynamical behaviors of
system (1.2). Firstly, we need to make the following basic assumptions:

(Hy) ay/dy = az/dy =: k > 0 (or equivalently, d,/d, = ay/a; =: k* > 0);
(H>) m; € C'([0,L]) with some y € (0,1) is nonconstant, m;(x) > 0 in [0, L], m;(x) & ma(x),
mi(x) # coe*, where ¢y = MLk/(et — 1)(i = 1,2) and

1 [t 1t
—f mi(x)dx = —f my(x)dx = M.
L Jo L Jo

Condition (H;), biologically, means that the movement strategies(random diffusion and advection
rates) of two competitors are proportional, and it is a mathematically technical condition in the main
body of this paper. In assumption (H,), it means the two competing populations have the same
amount of total resources and the distributions of resources are spatially heterogeneous as well as
nonidentical. Moreover, we exclude the ideal free distribution introduced in [27].
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According to the above hypotheses, system (1.2) changes to

u; = dy[uy, — kuy] + ulmi(x) —u—vJ, O<x<L,t>0,

Vi = do[ Ve — kvi] + ulmy(x) — u —v], O<x<L,t>0, (1.3)
u(x,t) —ku(x,t) = v(x,t) — kv(x, 1) =0, x=0,L, t>0,

u(x,0) =ug>,%0,v(x,0) =vyg >,£0, O<x<L,

where, the variables in the system (1.3) have the same meanings as in the system (1.2). Moreover, as
we know, system (1.3) has one trivial steady state (0, 0) (always linearly unstable) and two semi-trivial
steady states respectively denoted by (64, k., 0) and (0, 8,4, 4.m,) in the sequel.

Following the approach in [22], we first give some notations:

I''=R"XR" and R"=(0,00),

and
2, :=A{(d1,dr) €T : (64 xm,,0) is linearly stable},
2, :={(d),dy) €I' : (0, 64,4m,) 1s linearly stable},
Y. :={d,d)eT: (64, k.m,»0) 1s neutrally stable},
Y, :={(d,dy) €T : (0, 04, x.m,) 1s neutrally stable},

L=5,n%,
2, :=1{(d\,d>) €T: (64, km,,0) and (0, 6,4, ,) are linearly unstable}.

The definitions of the linear stability/instability and the neutrally stability of a steady state of system
(1.3) will be given precisely in Section 2.

Due to assumption (H,), the following complete classification on the global dynamics of system
(1.3) can be obtained directly from (Theorem 1.2 [26]). It is a special case of (Theorem 1.2 [26]),
where the advective direction P(x) = x, inter-specific competition ability » = ¢ = 1, and the habitat
Q=10,L].

Assume that (H;) and (H;) hold. Then for system (1.3), we have the following mutually disjoint
decomposition of I':

r=C,UZ,\2H)UE, U \ZHUZ, UL, (1.4)
Moreover,

@(i’) for all (d,dy) € (T, UZ, \ ), (B4 1my» 0) is g.a.s;
(ii*) for all (d,d>) € (T, UZ, \ 2, (0,04, 1m,) is g.a.5;
(iii”) for all (dy, d,) € Z,, system (1.3) has a coexistence steady state that is g.a.s;
@1v’) for all (d,,d,) € i;, 04, kmy = Oaxm, in (0, L) and system (1.3) has a compact global attractor
consisting of a continuum of steady states

{©0B4, jomy» (1 = P)y o, = p € [0, L]}

connecting the two semi-trivial steady states;
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where g.a.s means that the steady state is globally asymptotically stable among all non-negative and
nontrivial initial conditions.

A basic classification on all possible long time behaviors of system (1.3) is exhibited by the above
statements. However, to obtain a transparent picture of the global dynamics of system (1.3), it remains
to know explicitly when %,,%,,2,,%, and X, will happen. Equivalently speaking, is it possible to
provide a sharp division of these sets by using certain variable parameters? As mentioned in [26],
each component of these sets could be empty, and more challengingly, it is hard to give a criteria
guaranteeing the dynamics in these sets. Even for the non-advective case, it is not yet completely
solved [4].

In this paper, we study the global dynamics of system (1.3) which contains two competing species.
We assume that the two species both are in heterogeneous environment and denote their intrinsic
growth rates by the functions m;(x) and my(x), respectively. As we known, the distribution of
resources is uneven in the natural environment, hence, this case is of more realistic significance. In
the condition that m; # m, and total resources of the two species are fixed at the same
level( foLml(x)dx = fOL my(x)dx ), we find that the sign of fOL(ml — my)e*dx plays an extremely
important role in determining the global dynamics. This result indicates that the values of m; and m;,
influence the global dynamics of the system. Moreover, we obtain the limiting behaviour of the
coexistence steady state when the diffusion rates(d; and d») of the two species tend to zero.

The rest of this paper is organized as follows. Section 2 contains some preliminaries which are
useful in later analysis and our main results. In Section 3, we will give the proof of Theorem 1.1. We
prove Theorem 1.2 in Section 4. Finally, we give a short discussion.

2. Preliminaries and main results

This section is aim to display our main results and exhibit some fundamental results which will be
utilized in later sections.

We obtain the following result when one of d; and d, tends to zero.
Theorem 1.1. Assume that (H;) and (H;) hold. The following statements are valid:

(1) Fixd, > 0.
(i) If fOL(ml — my)edx < 0, then for small d; > 0, (64, 4., 0) is linearly unstable;
(ip) If fOL(ml—mg)ekxdx > 0, then for small d; > 0, (64, xm,,0)1s g.a.s provided d > 1/p(my—my)
and linear unstable provided d, < 1/u (my — my).
(i1) Fix d; > 0.
(iiy) If fOL(ml — my)e*dx > 0, then for small d, > 0, (0, 04, x.m,) 1 linearly unstable;

(iip) If fOL(ml—mz)e’“dx < 0, then for small d, > 0, (0, 8,4, x.m,) 1 g.a.s provided d; > 1/p(m;—my)
and linear unstable provided d; < 1/u;(m; — my);

where p(h) is the unique nonzero principal eigenvalue of problem (2.4).

Remark 1.1. In [17], the authors found that the outcome of competition in general heterogeneous
distribution is very complicate: either u# wins, or v wins, or u — v coexists, depending on the size of
diffusion rates d, d, and m,. Similar to [17], Theorem 1.1 indicates that the outcome of competition
depends on the size of diffusion rates d; and d; however, in this paper, because the resource functions
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of the two competing species u and v are both spatially nonhomogeneous, then the outcome of
competition depends not only on the distribution of m; but also the distribution of m,. Moreover, the
competition outcome in this situation will be more abundant.

Remark 1.2. According to Theorem 1.1, we find that the sign of the quantity fOL(ml — my)e**dx
plays a significant role in understanding the global dynamics of system (1.3) which is similarly to the
description mentioned in [16]. Then we give some sufficient conditions about determining the sign of
the quantity fOL(ml — my)e**dx on the condition that m; and m, are monotonic with respect to spatial
variable x. In view of the monotonicity of m; and m,, we can divide into six situations to talk about
and the graphs of m; and m;, are as follows Figure 1. From Figure 1, the following statements are true:

—m1 —ml —m1
—m2 —m?2 —m2

0 (@) L 0 (b) L 0 (©) L
—m1/] —m1 —m1
—m2 —m2 —m2

0 (d) L 0 (e) L 0 ® L

Figure 1. xy € (0, L) is the unique point such that m;(x) = m,(x). (a) describes the situation
where m|(x) > 0, my(x) > 0 and m;(x) > my(x) when x > Xxo; (b) shows that m/(x) > 0,
m,(x) > 0 and my(x) > m;(x) when x > xo; (c) displays that m{(x) > 0 and m}(x) < 0;
(d) declares that mj(x) < 0 and m}(x) > 0; (e) indicates that m}(x) < 0, mj(x) < 0 and
my(x) < my(x) when x > xo; (f) describes that m;(x) > my(x) when x > x, and m|(x) < 0,
mj(x) < 0.

(1) In cases of a, ¢ and f, it holds that fOL(ml —my)edx < 0

(i1) In cases of b, d and ¢, we can obtain fOL(ml —my)e¥dx > 0.

In fact, since m; and m, are monotonic, there is a unique x, € (0, L) such that m;(x) = m,(x). Define

L
q(s) := f (my — my)e* ™ dx.
0

Then
L
q(s) = f (my — my)(x — x0)e* ™ )dx
0
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<0, mi(x) > 0,m}(x) >0, m(x) <my(x) if x< X,
> 0, mi(x) > 0,m}(x) >0, m(x) <my(x) if x> xo,
<0, m\(x) > 0,m})(x) <0,
>0, m}(x) < 0,m}(x) >0,
> 0, mi(x) < 0,m)(x) <0, mi(x) >my(x) if x<x,
<0, m|(x) < 0,m)(x) <0, mi(x) <my(x) if x< xo,

which, by g(0) = [ (m, — m;)dx = 0, implies

<0, mi(x) > 0,m)(x) >0, m(x) <my(x) if x< X,
> 0, mi(x) > 0,m)(x) >0, m(x) <my(x) if x> xo,
— _|<0, m\(x) > 0,m)(x) <0,
q(s) , ;
>0, mi(x) < 0,m)(x) > 0,
>0, mi(x) < 0,m)(x) <0, m(x) >my(x) if x<Xx,
<0, mi(x) < 0,m)(x) <0, m(x) <my(x) if x<x.

The desired result follows by letting s = k.
When d; and d, tend to zero meanwhile, the following result is true.
Theorem 1.2. Assume that (H,) and (H,) hold. Then we have:

(i) Asd; and d, tend to 0, system (1.3) has a coexistence steady state that is g.a.s;
(i1) Let us denote by (u4, 4,, V4, 4,) the unique coexistence stable state of system (1.3). Then we have

i (v ) = (8 00, H)

uniformly on compact subsets of [0, L] \ {x € [0, L] : m;(x) = m,(x)}, where

_{Mﬂ if mi(x) > my(x),
Sx) =
0, if my(x) < my(x),
and
H(x) — 0’ lf ml(x) > mz(x),
my(x), if m(x) < my(x).

Remark 1.3. From a biological perspective, Remark 1.2, together with Theorems 1.1 and 1.2 implies
several interesting explanations. Back to Theorem 1.1 (i), if the resource m, of species u is distributed
decreasingly in spatial variable x and m, of species v is distributed increasingly in spatial variable x or
my and m;, increase in spatial variable meanwhile m; changes faster than m, or m; and m, decrease in
spatial variable meanwhile m; changes slower than m,, then d,k is not good for # no matter how small
d; is, however, in view of Theorem 1.1 (iiy), it is good for v if d, is suitably small. Otherwise, from
Theorem 1.1 (ii;), it is unfavorable for v no matter how small d5 is. In view of Theorem 1.1 (i), it is
favorable for u if d; is suitably small. Therefore, we can infer Theorem 1.2 (i), which says that both
species will coexist if they nearly do not move (d,d, — 0), regardless of the shape of m; and m,.
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Let us look at the following single-species model corresponding to system (1.3)

0, = d[0,, — kB,] + O[m(x) — 6], O<x<L,t>0,
0.(x,1) — kO(k,t) =0, x=0,L, t>0, (2.1)
0(x,0)=6,=>,20, O<x<L,

where d,k > 0, m is in C'*7([0, L]) and m > 0 in [0, L]. Under these conditions, it is easy to see that
problem (2.1) admits a unique positive steady state (see, e.g., [3]), denoted by 6,,,,. By applying this
fact to system (1.3), there are always two semi-trivial steady states (64, xm,,0) and (0,64, xm,) 1n the
condition of (H»).

About the positive steady solution 6,4, of Eq (2.1), we have the following limiting profile. The
limiting profile can be seen as an extension of the non-advective case (i.e., k = 0); see [28,29].
Lemma 2.1. The following statement on 6, ,, is true:

Lim (|64, — mllz=0.) = 0.
d—0

Proof. Denote 6, by 6, for simplicity. Let 84(x) = e™**,. Then B,(x) satisfies

(2.2)

d[Baxx + kBax] + Ba(m(x) — By =0,  0<x<L,
Bax(x) =0, x=0,L.

For any given € > 0, since m is in C'*7([0, L)), there is some function & in C>([0, L)] such that

E0)=¢6(L)=0 and |- me_kx”L"“([O,L]) <e.

Define B* := £ + 2e and B~ := & — 2¢. Then for d sufficiently small, it is not difficult to prove that
B and B~ are, respectively, super- and sub-solution of problem (2.2). That is to say, if d > 0 is small,
we have
E—2e <Pyg<EH+ 26, x € [0, L],

and therefore,
me_kx — 36 Sﬁd < me_kx + 36, X € [07 L]’

due to the arbitrariness of € > 0, the desired result is proved.
Next we consider an auxiliary eigenvalue problem. It is helpful for studying the existence and
stability of semi-trivial steady states:

{d[qﬁxx —kpl+hp+A¢=0, 0<x<L, (2.3)

Drx — k¢x =0, x=0,L,

where d,k > 0 and A is in L*([0, L]). By employing the Krein-Rutman Theorem [30], it is simple
to prove that problem (2.3) admits a principal eigenvalue(simple and has the least real part among
all eigenvalues) which is denoted by A,(d, k, h) in the sequel, and its corresponding eigenfunction
¢1(d, k, h) can be chosen strictly positive in [0, L]. Moreover, the linear stabilities of (64 ., 0) and
(0, 64, k.m,) are determined, respectively, by the sign of A;(d>, k,my — 04, j.m,) and A,(dy, k, my — Oy, g m, ).
Specifically, (64, xm,,0) is linearly stable (resp. linearly unstable) if A,(d>, k,my — 04, xm,) > O (resp.
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Ai(da, k,my—64, g my) < 0); (0, 64, x.m,) 18 linearly stable (resp. linearly unstable) if A,(d;, k, mi =64, km,) >
0 (resp. Ai(dy, k,my — 64, k.m,) < 0). We say (4, k.m,» 0)((0, 04, x.m,)) 1s neutrally stable if A,(d», k, my —
O, k) = O(A1(d1, k, my = 4y k my)=0).

By the variational approach, 4,(d, k, h) can be characterized by

L 500 kx Loy o kx
A= inf j(; dyre dx—fo hy~e*dx

0#peH! (0,1) fo L ekry2dx

(2.4)

The following Lemma 2.2 collects some important properties of A,(d, k, h). The proof can be found
in [1,17,31,32].
Lemma 2.2. The following statements on A,(d, k, h) are true:

(i) A(d, k, h) and ¢,(d, k, h) depend continuously and differentially on parameters d and k;
(1) A,(d, k, h) 1s strictly increasing in the parameter d provided / is non-constant;

(iii) limg—o A1(d.k, h) = — max h(x) and limg_ 4i(d,k, h) = = [ h(x)ekdx/ [ edx.
x€[0,L]

For later research, it is needed to introduce the following eigenvalue problem with indefinite weight

xx — k x T h¢ =0, O<x<L,

¢ ¢ + phe x 2.5)
¢ — ko =0, x=0,L,

where h # 0, could change sign in (0, L). If there is a positive solution for problem (2.5) we say
(1 = py(h) is a principal eigenvalue.(0 is always a principal eigenvalue.) The following result collects
some important properties of u;(4) in connection with A,(d, k, h). The eigenvalue problem (2.5) is a
special case of a general problem studied in [33,34]. Indeed, by the transformation o = e**¢, one can
change problem (2.5) to a Neumann type problem.

Lemma 2.3. The problem (2.5) has a nonzero principal eigenvalue u; = p;(h) if and only if
fOL he**dx # 0 and h changes sign in (0, L). More precisely, if & changes sign in (0, L), then

(1) fOL he**dx = 0 & 0 is the only principal eigenvalue;
(i) [ het*dx > 0 & p(h) < 0;
(ii1) fOL he**dx < 0 & u;(h) > 0; and in this case, (/) can be characterized by

L kx,2

e yridx
p(h) = inf fi—; (2.6)

YeH (O.L)), [ hy2ek*dx>0 fo hy?ekxdx

(iv) [ he®dx >0 = A(d,k,h) <O forall d > 0, and
. Ad k k) <0, if d< g,
f he¥dx < 0= 0/(d, k,h) =0, if d= oL 2.7)
0

Ai(d, k,h) >0, if d>-

m:
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3. Proof of Theorem 1.1

For clarity, we proceed with the proof in the from of several claims.
Claim 1: There are two functions cfﬁ = ﬁ;(dl) and cf}‘ = cf}‘(dz) defined by

0, if rr%ax(mz—edlkml)go,
d;(dy) = { oo, if fo(gdl’“”l—‘m”edx <0, 3.1)
e"xdx
1
1 0m—6a ) © (0, 00), otherwzse,
and
0, if xrr%ax (my = B4y 1m,) <0,
ditdr) = 1o, if Wz}z—k’;“’d <0, (3.2)
o e X
m € (0, ), otherwise,
such that

2, = {(d1.dy) €T : dy > d3(d)))
={(d1,dy) €T : dy > dj(d>)) (3.3)
Y, = {(d,dy) €T : dy < di(dy) and d, < d}(dy)}

and the following statements are valid:

(a) for all (dy, d>) € (T, UZ,), (B4 4m,»0) is g.a.s;

(b) for all (dy,d>) € (T, UL,), (0,04,4m) is g.a.s;

(c) for all (dy,d,) € Z,, system (1.3) has a coexistence steady state that is g.a.s.

Where p, 1s the nonzero principal eigenvalue of Eq (2.5).

We first assert that £’ = 0. On the contrary, suppose that £’ # 0. In view of statement (iV’), one
finds that for some d} and d) > 0, 60 4, = 60 fm, in [0, L.

If (d) — d}) = 0, by the equations of 6,0, and 6,9, it holds that

my(x) — Qd(l) my(x) — Hdg,k,mz
- = 5 , x € [0, L].
dt d

2

k,my

From the above equation, one can derive that m; = m, in [0, L], which contradicts our assumption (H5).
If (d) — dY) # 0, by the equations of 0.0 kmy, AN 6,0 1, again, one arrives at

Lmy(x) = 6,0 .m L my(x) = 00 4
[ iy (PO By o
0 dl 0 d2

Because of the condition (H,), the above equality can be rewritten as

I L
()~ dY) fo mi(x)dx = (dy — d) fo Ot 4%
which implies that
L
f [11(x) = 60 gy Jdx = O
0
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Dividing the first equation of Eq (2.1) by e‘k"Hd,k,m and integrating over [0, L], one deduces that

L ekx[e—kxgdk ]2 L
d | ——2dx+ — Ogpmledx =0,
L [€¥604 4. m]? g \fo [m(x) = Busemle™dx

so the positive steady solution 6, , of problem (2.1) satisfies

L
f [m(x) — Oyxm]e“dx <0,
0

and the equality is valid if and only if m(x) = ce** for some ¢ > 0.

Due to the assumption (H;), there is a contradiction. This contradiction gives that 52; = (. Then
statements (a), (b) and (c) follow directly from Theorem 1.1.

It is sufficient to prove Eqs (3.1) and (3.2) can be verified in the same manner so we omit here.
Given any d; > 0, as shown above, the sign of A,(d», k, my — 64, x ) determines the linear stability of
(64, k.m,»0), which, by Lemma 2.2 (iii), we have

lim Ay (dy, k,my — 04, jm,) = — max (ma — 04 jom,)s
dr—0 x€[0,L]

and

L
_ 5 my = 64 s, Ve dx
lim A(da, k,my — 04, km) = — :

dy—eo fOL ekxdx

For the first case, if n%g)Lcl(mz =064, km;) < 0, by Lemma 2.2 (i1) and the above first limit, 4;(d>, k, m, —
x€|0,

04, x.m,) > 0 for every d,, so we can define ﬁ;(dl) = (; similarly, for the second case, using Lemma 2.2
(i1) again and the above second limit, one can define ﬁ;(dl) =ooif — fOL(mz =64, ko Ye*dx/ fOL edx <
0; for the rest case, from Lemma 2.3 (iv) it can be defined that ﬁ;(dl) = 1/pu1(my — 64 km,) € (0, 00).
By the above statements, the formula in Eq (3.1) is established.
In view of the definition of linear stability and unstability, it is easy to understand the sets described
in Eq (3.3).
Claim 2: The following limiting behaviors of di(d;) and d:(d,) hold true:
For ﬁz(dl), we have

. L ;
~ Py - xd S O,
lim d5(d) = 00 | if fO (m; — my)e**dx (3.4)
d—0 —, otherwise;
Hi(ma—my)
For c?f(dz), we have
. L x
n , - *dx > 0,
lim &3 (dy) = 00 1 if fo'(ml my)e™dx 35)
dy—>0 PTETE otherwise.

As mentioned above, the sign of A;(d,, k,my — 64, xm,) determines the linear stability of (64 km,,0),
which, from Lemma 2.1, satisfies

}imo Ai(da, k,my — 64, km,) = Ai(da, k,my — my).
1—>
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Using Lemma 2.2 (iii), one has

lim (lim A,(da, k,my — 64, g m,)) = — max (my —m;) <0, (3.6)
dr—0 d—0 x€[0,L]

and

fOL(ml —my)eMdx
lim (lim A,(d>, k,my = 04, jm,)) = .

dy—o0 dj—0 j(‘)L ekxdx

Then we can infer the limit Eq (3.4) from Eqgs (3.6) and (3.7) and Lemmas 2.2 (ii) and 2.3 (iv).

The limit Eq (3.5) can be obtained by the above ideas as in the proof of Eq (3.4). This finishes claim
2.

Now we are in a position to prove Theorem 1.1. We first prove statement (i) by fixing d, > 0. If
fOL(ml —my)e*dx < 0, by Eq (3.4), for small d; > 0 and d, < d;(d,), it can be obtained that (64, 1, 0)

is linearly unstable. If fOL(ml — my)ef*dx > 0, using the second limit in Eqgs (3.4) and (3.2), for small
d; > 0, it is easy to conclude the second result of statement (1).
Similar to the above argument, from Eqs (3.1) and (3.5), statement (ii) could be obtained.

(3.7)

4. Proof of Theorem 1.2

In order to prove statement (i), the continuous dependence of the principal eigenvalue 4,(d, k, h) in
the parameter d as well as the weight function 4 plays a vital role.
Specifically, in view of Lemmas 2.1 and 2.3 (iv), one obtains

lim  Ay(da, k,my — 04 g pn,) = — max (my —my) <0,
dy—0,d,—0 x€[0,L]
and
lim /ll(dl,k,ml - de’k’mz) = — max (m1 - I’I12) < 0.
d—0,dr,—0 x€[0,L]

From the first inequality, (64, x.»,, 0) is linearly unstable and (0, 8,, x»,) 1s linearly unstable by the second
inequality. Due to the statement (¢), it is easy to deduce that system 1.3 has a coexistence steady state
that is g.a.s.

Next we prove the limiting behavior of coexistence steady state of system (1.3). Following the ideas
in [35], we obtain the proof of this statement.
Lemma 4.1. (i) Consider the sequences {u,},~° and {y }=7" defined by

uy = O, kms YV, = Otkmy-as  Unet = Oy fom—,, (12 1).
Then, for small d;, d, > 0, denote the coexistence state of system (1.3) by (u, v), the following hold:
U< Upit < Up, vy 2V, (n=1); 4.1)
(if) Analogously for sequences {u, }~1" and {v,}/~{* defined by

Vi = 9dz,k,mz9 Zn = edl,k,ml—ﬁ,,’ Vntl = edz,k,mz—yn9 (n 2 1)
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We have

uz>u >Uu

U U, VST <V, (n=1). 4.2)

Proof. It is enough to prove Eq (4.1) as the proof of Eq (4.2) follows by the symmetry. The proof is
obtained by induction argument.
From the equation of u, we obtain

di[uy, — ku,] = —ulm; —u—v] > —u[m; —u], x€(0,L),
that is to say, u is a sub-solution of

dy[Wyy — kwy] + wlm —w] =0, x € (0,L),
w(x) —kw(x) =0, x=0,L.

Therefore,
u < uy =04 jms x€(0,L).

Now, substitute this inequality into the equation of v
o[Vey = kvy] = —ulmy —u—v] < —vlmy —uy —v], x€(0,L),

that is, v is a super-solution of

do[zex — kzo ] + 2[my —u; —v] =0, x€(0,L),
Z(x) — kz(x) = 0, x=0,L,

SO
V2> v, = Hdz,k,mQ—ﬁp X € (O, L)

Back to the equations of u and v, one can obtain
u<u = Hdl,k,ml—zl’ X € (0, L)

and
V2> Vv, = 9d2,k’m2_gz, X € (O, L)

For small d; and d> > 0, we have v, > 0in (0, L), so
Uy 2= Oy fomy—, < U1 = Ogypms X € (0, L),

which further implies
Yy 1= Oty komy-iy Z Yy = Oty komy-ay» X € (0, L).
This completes the proof of Eq (4.1) for n = 1.
Now suppose that Eq (4.1) is true for some N > 1. Then it suffices to show that

U < Uy < Ungps VZ\_/'N+222 XG(O,L).

N+1°
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Fromv > v, . in (0, L),

— =N+1
dl [uxx - kux] = —M[I’I’l] —u- V] 2 _u[ml —u- 2N+1]’ X € (0’ L),
SO
U < uUnsa = Ody kmy-vy,,» X € (0, L).
Similarly, one can derive
Vv > ZN+2 = Gdbk,mz_g,m, X € (0, L)
Thus it is sufficient to show that
Uynyz < Uyt and Vyir 2 Vnsps X €0, L).
Since v,,,, = v, in (0, L), we get
Un+2 2= Oy ko v, < Un+1 2= Odykm—vy>s X € (0, L).
Similarly,
Yy = Hdz,k,mz—ﬁmz 2 Yy = Hdz,k,mz—ﬁzwl’ X € (0’ L)'

This completes the proof.

We now analyze the behavior of the scheme introduced by Lemma 4.1, Eqs (4.1) and (4.2) as d,
and d, tend to 0.

In consideration of Lemma 4.1, for each n > 1, one can define the following limits in the topology
of C([0, L)):

U,= limu, U =1mwu, V,= limy, V = lim v.
di,d>»—0 " d,dr,—0" di,dr—0 T d,dr—-0"

As a matter of fact, these limits can be described detailedly.
Lemma 4.2. The following identities hold:

Ul = my, Upir = [my — (my — Un)+]+, x € [0, L],
Vi =m, Vet = [my = (my = V)'I*, x€[0,L], “43)
U, =(m —my)", U, , =lm-m-U)T, xel0L],
V,=my—mp)", Voo =lm—m-V)T, xel0,L],

where n > 1.
Proof. First, using the same arguments as in proof of Lemma 2.1, if fOL m(x)dx > 0 and the set
{x : m(x) < O} has a positive measure, we can obtain |64, — m*||lL~0) — 0asd — 0 with m*(x) =
max{m(x), 0}.

Due to assumption (H;), Eq (4.3) is hold when n = 1. Suppose that Eq (4.3) is valid for every
1 < n < N. Then, by definition, uy,, := Oty ki vy, - Using the argument above again, one obtains

77 —_ 1 _ _ i +1+
Uni2 = dll,ggo edl,k,ml—gNH = [my —(my —un.1)"]".
We can demonstrate the rest ones in the similar manner. Hence, the proof is finished.
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By the above result, it is allowable to get explicit formulas for each of the sequences U,, U 0 V,

and V. The following lemma makes these precisely.
Lemma 4.3. The following formulas for U, U, V, and V  are true:

my(x), if  my(x) < m(x),

Uper = { (n + Dmy (x) — nmy(x), if om0 < m(x) < Zmy(x),
O’ lf mz(X) 2 M’/nl,
mi(x), if  mi(x) > Elmy(x),

Ui = (1 + Dmy(x) — mo(x)], if  my(x) <my < Elmy(x),
0, if  m(x) < my(x),
my(x), if  m(x) <my(x),

Vet =4 (n+ Dimy(x) — nmy(x), if  mp(x) < my(x) < my(x),
0, if  m(x)> ”“mz(x)
my(x), if  ma(x) > =my(x),

V. =1+ Dmy(x) — m(0)], if  mi(x) <my < my(x),
0, if  m(x) <m(x),

where n > 1.

4.4)

4.5)

(4.6)

4.7)

Proof. We only prove Eq (4.4) by the induction argument and Eqs (4.5), (4.6) and (4.7) can be verified

similarly.
From Lemma 4.2, it can be inferred that

B my(x), if  m(x) > m(x),
Uz = {2m;(x) — my(x), if  m(x) <my(x) < 2my(x),
O, lf mg(x) > 2m1(x).

Hence for n = 1, Eq (4.4) is hold.
Now suppose that Eq (4.4) is true for every 1 < n < N, then one has

my(x), if  my(x) <m(x),
Uit = (N + Dmy(x) — Nmy(x), if  mi(x) <max) < Hlmy (),
0, if  mp(x) > Tm(x).

By Lemma 4.2 again, it holds that
Uiz = [my = (my = Un2)'1", x €0, L.

Due to the above two equalities, the following can be obtained that

B my(x), if  mp(x) < m(x),
Uniz = {(N +2)m(x) — (N + Dmy(x), if m(x) <my(x) < jNvﬁml(x)
0, if  mp(x) > ¥m(x).
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This completes the proof.
Now it is in a position to prove

dll’jl?lo(udldzs Va ) = (S (x), H(x)).

By Lemmas 4.1 and 4.2, for small d,,d; > 0,
u, <ug g, <u, and v <vgq4 <, forall nx>1.
Setting dy,d, — 0, we have

U, <liminfuy 4, <limsupuy 4, < U,, forall n>1,
dy,d,—0 dy,dr—0
and

V. <liminfvg 4, <limsupvy 4, <V,, forall n>1.
di,dr—0 di,d2—0

By further letting n — oo and by Lemma 4.3, one obtains

lim U, (x) = lim U,(x) = {ml(x)’ if  mi(x) > m(x),

e e 0, if  m(x) <my(x),
and

lim V (x) = lim V,(x) = {mg(x), if  my(x) > m(x),

T e 0, if M) < m(x),

which completes the proof.
Remark 4.1. If m;(x) changes sign in [0, L](i = 1, 2), we have

dll,ggo(ud"dz’ Vara) = (8(x), H'(x)),

uniformly on compact subsets of [0, L] \ {x € [0, L] : m;(x) = my(x)}, where

S'(n) = my(x), if my(x) <m(x)and 0 < m(x),
Yo, if 0<m(x)<m(x)orm(x)<0,
and
, {0, if my<0or0<my(x) <m(x),
H(x) =
my(x), if m(x) < my(x)and 0 < my(x).

5. Discussions

In this paper, motivated by Tang and Zhou [17], we studied a classical two-species Lotka-Volterra
competition-diffusion-advection system in which the diffusion rates, advection rates and intrinsic

growth rates are allowed to take on different values in the space(heterogeneity).

In the condition that total resources for two populations are fixed at the same level, we consider both
species u and v are both in heterogeneous environment. We assume that the two competing species have
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different resource functions and the distributions of resources are uneven, which is different from the
literature [17], where the authors supposed that one spatial distribution is even across space while the
other one not. We find that the outcome of competition in this situation is very abundant: either one
of the two competitors becomes the final single winner or both populations coexist eventually, which
is dependent on the diffusion rates of both species and the specific shapes of m; and m,; see Theorem
1.1. By limiting arguments, we investigate further the population dynamics when d; and d, tend to
zero and give the asymptotic behaviour of coexistence steady state for small diffusion; see Theorem
1.2. These results partially generalizes Tang and Zhou [17]. In comparison with Tang and Zhou [17],
we study a more general case. In their paper, they assume that the resource function of v expressed
as m; is a constant M. In our research, m;, is a function of the spatial variable x. This case is more
realistic. Moreover, our results indicate that the values of m; and m, have a significant impact on the
global dynamics of (1.3) and the limiting behaviour of the coexistence steady state. Therefore a change
in the value of m, will produce more complicated spatial population dynamics.

From the above research, we know that both m; and m, have effects on global dynamics of system
(1.3). It seems that the spatial population dynamics will appear to be more abundant. Moveover,
assumption (H;) plays an important role in the proof process. When (H,) fails, it is far away from
a complete understanding and extremely challenging to deal with. We will continue to explore these
problems in the future.
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