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Abstract: Mahalanobis-Taguchi System (MTS) is an effective algorithm for dimensionality 

reduction, feature extraction and classification of data in a multidimensional system. However, when 

applied to the field of high-dimensional small sample data, MTS has challenges in calculating the 

Mahalanobis distance due to the singularity of the covariance matrix. To this end, we construct a 

modified Mahalanobis-Taguchi System (MMTS) by introducing the idea of proper orthogonal 

decomposition (POD). The constructed MMTS expands the application scope of MTS, taking into 

account correlations between variables and the influence of dimensionality. It can not only retain most 

of the original sample information features, but also achieve a substantial reduction in dimensionality, 

showing excellent classification performance. The results show that, compared with expert 

classification, individual classifiers such as NB, RF, k-NN, SVM and superimposed classifiers such as 

Wrapper + RF, MRMR + SVM, Chi-square + BP, SMOTE + Wrapper + RF and SMOTE + MRMR + SVM, 

MMTS has a better classification performance when extracting orthogonal decomposition vectors with 

eigenvalues greater than 0.001. 

Keywords: Mahalanobis-Taguchi System; proper orthogonal decomposition; high-dimensional-small-

sample-size data; classification 

 

1. Introduction 

Mahalanobis-Taguchi System (MTS) is a new pattern recognition method proposed by Japanese 

http://www.aimspress.com/article/10.3934/mbe.2020392
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quality engineer Genichi Taguchi [1,2]. This method utilizes Mahalanobis distance and Taguchi robust 

design to perform dimensionality reduction, feature extraction, classification and diagnosis in a multi-

dimensional system [2]. MTS uses Mahalanobis distance as the covariance distance. It can effectively 

measure the importance of each variable [4] and has unique robustness. Therefore, MTS is widely used 

in dimensionality reduction and classification of large-sample-size data and unbalanced data, such as 

dimensionality reduction and classification of agricultural crop [3], pre-indicators of delirium [4], and 

health monitoring [5]. 

In recent years, more and more high-dimensional-small-sample-size data require 

dimensionality reduction and classification, such as pilot randomized controlled designs in clinical 

research [6], energy prediction and optimization in the petrochemical industry [7], and rapid-cycle 

quality improvement projects [8]. The sample numbers of datasets from these fields are often much 

smaller than their dimension numbers [9]. Therefore, it is difficult to apply statistical methods for 

parameter estimation and classification, and the constructed predictive models are prone to 

problems such as poor learning performance, large uncertainty, and low accuracy, which will 

interfere with the final decision [10]. Some scholars proposed to perform principal component 

analysis (PCA) based on variance measurement to achieve dimensionality reduction and 

classification of high-dimensional-small-sample-size data [11]. However, PCA only reduces the 

dimensionality of a single dataset and does not consider correlations between datasets [12]. To address 

this issue, Ma et al. improved PCA and proposed sparse principal component analysis (SPCA), which 

sparsifies load factors so that most of them are 0, thereby rendering the principal component a stronger 

interpretation ability [13]. However, SPCA requires the calculation of a large number of eigenvalues, 

which is computationally costive [14]. In addition, some scholars used penalized techniques to reduce 

the dimensionality of high-dimensional small sample data, such as least absolute shrinkage and selection 

operator (LASSO) regression or smoothly clipped absolute deviation (SCAD) and minimum concave 

penalty functions. However, such techniques suffer from so-called oracle inequalities, multiple local 

minimums, and computational difficulties [15].The minimum-redundancy-maximum-relevance (MRMR) 

is used as one of the effective methods of dimensional reduction because of its high accuracy, but it 

has high computational cost and is significantly influenced by the number of features [16]. Wrapper is 

also an effective dimensional reduction method, but often suffers from over-fitting problems [17]. 

In view of the unique effectiveness of MTS in dimensionality reduction and classification, Xiao 

et al. [18] optimized MTS to perform classification on high-dimensional-small-sample-size data. MTS 

uses definite thresholds to identify valid features and build models, thus exhibiting good 

dimensionality reduction, feature extraction and classification performances. However, when using 

MTS to process high-dimensional-small-sample-size data, the solution of an inverse problem is not 

unique, there will be an infinite number of solutions compatible with the data [19]. Therefore, the 

singularity of covariance matrix must be considered. 

To overcome the covariance matrix singularity problem, and to inherit and innovate the traditional 

variance measurement-based dimensionality reduction and classification methods, in this study, we 

introduce the idea of proper orthogonal decomposition (POD) from the traditional methods to construct 

a modified MTS (MMTS) for dimensionality reduction and classification of high-dimensional-small-

sample-size data. POD was originally proposed by K. Pearson [20] and H. Hotelling [21]. It can reduce 

a large number of interdependent variables to a much smaller number of variables [22]. Therefore, it 
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can effectively overcome the variance matrix singularity problem. Compared with the adjoint matrix 

method or the Schmidt orthogonalization method used in the traditional MTS, the POD method has 

several advantages in terms of building fewer matrix elements, greatly reducing computation, and 

improving computing speed. When applied in high-dimensional-small-sample-size data, POD-based 

MMTS can not only solve the covariance matrix singularity problem in MTS, improve the architecture 

and algorithm of the traditional MTS, expand the application scope of MTS, but also inherit and 

innovate the traditional dimensionality reduction methods by overcoming the poor robustness and 

week interpretation ability of PCA and reducing the computational cost of SPCA. Therefore, MMTS 

is a method that can quickly and efficiently extract valid features and achieve the goal of 

dimensionality reduction and classification. 

The structure of this article is as follows. In Section 2, we introduce the theory and method of the 

traditional MTS. In Section 3, we first introduce POD and then systematically explain the MMTS 

constructed based on the idea of POD. In Section 4, we introduce a dataset and the evaluation metrics, 

and demonstrate through experiments that the MMTS exhibits good classification accuracy. Section 5 

summarizes this research. 

2. Mahalanobis-Taguchi System 

MTS is one of the most cutting-edge methods in the field of quality engineering. It utilizes 

Mahalanobis distance and Taguchi robust design to perform diagnosis and forecast in a multi-dimensional 

system [1]. It applies the whole set of ideas of Taguchi signal-to-noise ratio (SNR) experimental design 

into characteristic variable selection of pattern recognition [23]. This method uses orthogonal tables 

and SNR gains to test the validity of characteristic variables and select influential characteristic 

variables, thereby optimizing and simplifying characteristic variables [1] and effectively reducing 

dimensionality. It realizes minimizing the number of original features in the system without losing the 

quality of recognition [24]. 

Since MTS uses Mahalanobis distance as the covariance distance, it can effectively measure the 

importance of attribute sets [25]. Mahalanobis distance, which constitutes a general indication of the 

degree of divergence in the means of the sample characteristics in multivariate space [26], is used to 

eliminate the influence of dimensions [27]. The Mahalanobis distance facilitates the construction of 

multi-dimensional measure scales for the purpose of classification [28]. Therefore, MTS has great 

advantages on dimensionality reduction. In addition, MTS does not require any data distribution 

assumption, requires only small sample sizes, and is easy to operate [2]. In view of these characteristics, 

MTS is widely used in the medical, engineering, and financial fields [29]. 

The basic operation steps of MTS are as follows: 

Step1: Construction of the Mahalanobis space 

Collect a sample dataset with a sample number of n  and a characteristic variable number of 
p

 

from the normal group. Let ijx
 be the value of the j th characteristic variable of the i th sample in 

the normal group, where =1,2,...,i n , =1,2,..,pj . 

Calculate the mean jx
 and the standard deviation 

s j , and standardize the sample dataset: 
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Step2: Calculation of the Mahalanobis distance and SNR 

Calculate the Mahalanobis distances of the normal and abnormal groups. Mahalanobis distances 

is a square distance, recorded as 
2D : 

 
2 1( )T

i i iMD D Z R Z−= =
 

(2) 

where R  is the correlation coefficient matrix of data. iZ  is the all characteristic values of the 

i th sample that have been standardized, 1 2, , ,i i i ipZ Z Z Z =   . 

If the Mahalanobis distance of the normal group is greater than that of the abnormal group, the 

Mahalanobis space is valid, and an appropriate orthogonal table is selected for orthogonal experiments 

and SNR calculation. This study takes larger-the-better characteristics as an example: 
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Where m  is the sample number of the abnormal group. 

Step 3: Selection of characteristic variables 

For a j  th characteristic variable, 1levelSNR   represents the mean SNR value of experiments 

using this characteristic variable, while 2levelSNR  represents the mean SNR value of experiments not 

using this characteristic variable. If SNR 1 2 0level levelgain SNR SNR= − ＞  , the j  th characteristic 

variable is selected, otherwise the variable is removed. 

3. Modified Mahalanobis-Taguchi System 

This section introduces the classification of high-dimensional-small-sample-size data using an 

MMTS. First, we introduce the POD proposed by K. Pearson [20] and H. Hotelling [21]. Then we 

describe an improved POD proposed by Zhu et al. [30], which is suitable for matrices with a large 

number of variables and a relatively small number of samples. Finally, we introduce the algorithm and 

operation steps of the constructed MMTS in details. 

3.1. Proper Orthogonal Decomposition 

POD can obtain uncorrelated principal components [31] and is therefore widely used in multi-
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dimensional and multi-variable scenarios, such as comparison of stock return volatility patterns [32] 

and environmental research [33]. 

Set X  as the data matrix, it  as the orthogonal decomposition vector of matrix XX   and ir  as 

the orthogonal decomposition vector of matrix X X  . The principle of POD is to perform 
( 1, 2,..., )i it Xr i n= =  orthogonal transformation on data matrix X , so that the variance of vector it  is 

the largest, that is 
max( )i it t

 . When the variance corresponding to it   is smaller, the vector is 

considered to contain more noise components and needs to be removed. The model is: 

 

max( )
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. . 1( 1,2,..., )
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To enhance the calculation efficiency of the iterative algorithm, Zhu et al. [30]. improved the 

algorithm. Instead of using matrix ( )iX X  , the improved algorithm uses matrix ( )iXX   , which is 

more suitable for matrices with a large number of variables and a relatively small number of samples. 

Multiply X  by 1
( )i i i

i

r X X r


= , we get: 
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Where i  is the characteristic value corresponding to ir . 

Perform the following transformations on 
1( ) ( )i i i i iX X X X rr+

 = − : 
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(6) 

Perform the following transformation on i ir : 
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 ( ) =i i i ir X X r X t  =  (7) 

It is demonstrated that the results obtained by this algorithm (including , ,i i ir t  ) are exactly the 

same as those obtained by the traditional algorithm. 

3.2. A modified Mahalanobis-Taguchi System based on the idea of POD 

MTS has unique advantages in dimensionality reduction and classification. It utilizes orthogonal 

tables to design experimental plans, takes the SNR gain of the Mahalanobis distance as the evaluation 

metric, and uses the data analysis method of orthogonal experiment to optimize the selection of 

characteristic variables. Therefore, this method is novel, ease to operate and effective [23]. However, when 

the dimension number of data is greater than the number of samples, the Mahalanobis distance cannot be 

calculated [34], thereby making MTS unusable. This research introduces the idea of POD into MTS and 

proposes an MMTS, thereby eliminating the system structural and algorithmic defects of MTS. 

The algorithm and operation steps of the POD-based MMTS are as follows: 

Step 1: Data standardization 

Let the input data matrix X  be an n p  matrix, and that n p＜ . ijx  is an element in the i th 

row and j th column of X . Its actual meaning is the value of the j th characteristic variable of the 

i th sample, where =1,2,...,i n , =1,2,..,pj . 

Standardize the data as follows: 

 

1

2

1

1
=

1
s = ( )

1

n

j ij

i

n

j ij j

i

ij j

ij

j

x x
n

x x
n

x x
Z

s

=

=

−
−

−
=



  (8) 

Step 2: Iteratively calculate the variance of ZZ   matrix of the normal samples until -8 



（k+1） （k）

（k）

-
＜10  

is satisfied. ( )k  is the characteristic value of the k th iteration. At this point, all useful information 

has been extracted by default. 

Calculate the variance of ZZ   matrix of the normal samples: 

 
1( )ZZ ZZ =  (9) 

where 
1 2, ,...,i i i ipZ Z Z Z =   ,  1 2, , , nZ Z Z Z= . 

Select 
j  to make vector 

jt  a unit vector: 

 1
( )j k j

j

t ZZ t


=  (10) 

Where 
j  is the characteristic value and 

jt  is the orthogonal decomposition vector of matrix ( )kZZ  . 

Select 
j  to make vector 

jr  a unit vector, 
j jt Zr= , and calculate vector 

jr : 
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j j

j
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Update the variance matrix: 

 

1( ) ( )k k j jZZ ZZ t t+
 = −  (12) 

The abnormal samples are extracted according to the orthogonal decomposition vectors extracted 

from the normal samples. 

Step 3: Calculate the correlation matrix and Mahalanobis distance and verify the validity of the 

Mahalanobis space. 

Let the dimension number obtained by POD be q . Set 
new j  as the characteristic value and 

j  

as the orthogonal decomposition vector of the data matrix, =1,2,..,qj  . Note that 
j   needs to be 

unitized. 
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Calculate the Mahalanobis distance: 
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Where 
1 2, ,...,i i i ipZ Z Z Z =   . 

If the Mahalanobis distance of the abnormal samples is greater than that of the normal samples, 

the Mahalanobis space is valid. 

Step 4: Calculate the SNR gain, extract valid features, and complete dimensionality reduction. 

Use an appropriate orthogonal table to carry out orthogonal experiments, and select a valid 

orthogonal decomposition variable by calculating the SNR. The SNR used in this article has 

larger-the-better characteristics: 
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Where m  is the number of samples in the abnormal group. 

When designing the orthogonal table, “1” indicates that the characteristic variable is used, while 

“2” indicates that the characteristic variable is not used. The calculation formula of SNR gain is as 

follows: 

 

1 2level levelgain SNR SNR= −  (16) 

If 1 2 0level levelgain SNR SNR= − ＞  , then the characteristic variable is considered to be worth 

keeping; if 1 2 0level levelgain SNR SNR= − ＜ , it is considered that the characteristic variable should be 
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removed. 

Step 5: Use the dimensionality-reduced characteristic variable to verify the validity of the 

Mahalanobis space again. If the Mahalanobis space is valid, the dimensionality-reduced characteristic 

variable can be used for other analyses (such as prediction and classification) of unknown samples. 

Take classification as an example. Before classifying the test set X , it is necessary to standardize 

its data matrix. Let the element of the unknown dataset be ijX , the mean value and standard deviation 

of the matrix of “normal” samples be jx  and js , respectively, and the processed matrix element be 

ijXD , then: 

 

ij j

ij

j

X x
XD

s

−
=  (17) 

Extract 
q

  dimensions of valid variables from the processed data matrix, calculate the 

Mahalanobis distance 
iMD , and classify the test set according to the threshold. 

 1( )T

i i iMD XD R XD−=  (18) 

Where 
1R−
 is the inverse matrix of the correlation matrix. 

The main contribution of this paper is to integrate the idea of POD into MTS, thereby perfecting 

MTS's own theoretical system, solving the problems of covariance matrix singularity and the eigenvalue 

estimation, and expanding the application scope of MTS. In addition, our research establishes a reliable 

and effective method for dimensionality reduction of high-dimensional-small-sample-size data, thereby 

providing new ideas for academic research on high-dimensional-small-sample-size data and feature 

extraction and dimensionality reduction in real life scenarios. 

4. Experiments and results 

4.1. Dataset 

In recent years, radiomics and texture analysis have received extensive attention from clinical and 

academic circles [35–37]. Therefore, in this section, we select a dataset from the UCI database showing 

colonoscopy video information of gastrointestinal lesions [38]. The dataset includes 76 cases, 698 

characteristic variables, and three types of lesions, namely hyperplastic lesions, adenomas and serrated 

adenomas. After deleting the missing values, the dimension of dataset is 415. 

From the perspective of a binary classification problem, hyperplastic lesions belong to the 

“benign” category with a sample size of 21, while adenomas and serrated adenomas together belong 

to the “malignant” category with a sample size of 55. During binary classification of this dataset, the 

average classification accuracy of seven clinicians (including four experts and three beginners) is 

79.4956%. The average classification accuracy of the expert group is 79.6052%, and the average 

classification accuracy of the beginner group is 79.3860%. The data features used in this study include 

narrow band imaging (NBI), color, 3D shape, and textural features. The software used in this study 

includes MATLAB 2018b, SPSS25, and Minitab17. 

Our experiments compare the results of MMTS with the results of individual classifiers 

such as naive bayes (NB), random forests (RF), k-nearest neighbor (k-NN) and support vector 
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machine (SVM) techniques that have been commonly used in the gastroenterology field to 

facilitate high-dimensional-small-sample-size data classification. Since Wrapper [39], MRMR [40] and 

Chi-square features selection [41] are common methods in terms of feature selection and 

dimensionality reduction, and the synthetic minority oversampling technique (SMOTE) [42,43] is 

widely used in case of small samples to increase the number of observations and thus improve 

classification accuracy, our experiments also compare the results of MMTS with the results of 

superimposed classifiers such as Wrapper + RF, MRMR + SVM, Chi-square + BP, SMOTE + Wrapper + RF 

and SMOTE + MRMR + SVM. 

4.2. Metrics 

To verify if MMTS can effectively classify high-dimensional-small-sample-size data, this study 

uses precision, specificity, recall, accuracy, and F-value as evaluation metrics [44]. 

Table 1 is a confusion matrix for the binary classification problem, where TP (True Positives) 

represents the number of positive cases that are correctly predicted, TN (True Negatives) represents 

the number of negative cases that are predicted correctly, FP (False Positives) represents the number 

of positive cases that are incorrectly predicted, and FN (False Negatives) represents the number of 

negative cases that are incorrectly predicted. 

Table 1. Confusion matrix for the binary classification problem. 

 Ture class 

Negative Positive 

Hypothesis output Negative TN FN 

Positive FP TP 

 Sum Nn Np 

T: True; F: False; N: Negative; P: Positive 
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F-value is the weighted harmonic average of “precision”and “recall”. It is usually assumed that 

both metrics are equally important, that is =1 , then 2Recall Precision
F

Recall Precision


=

+
. The larger the F-value (the 

closer it is to 1), the better the classification effect. 

4.3. Results 

Iterative calculation is performed on a training set ZZ   randomly selected from normal samples 

to obtain the orthogonal decomposition results shown in Table 2. 

Table 2. Orthogonal decomposition vectors. 

For high-dimensional-small-sample-size data, the optimal extraction number of orthogonal 

decomposition vector is still an open topic. Therefore, to determine the optimal extraction number of 

orthogonal decomposition vectors, this study extracts the corresponding number of orthogonal 

decomposition vectors following four schemes of eigenvalues greater than 1, eigenvalues greater than 

0.001, eigenvalues greater than 0.0005, and eigenvalue variance accounting for 100% (hereinafter 

abbreviated as MMTS-1, MMTS-2, MMTS-3, and MMTS-4, respectively). Figure 1 shows the 

Mahalanobis distances of normal samples (MDX) and those of abnormal samples (MDY) calculated 

by the different schemes. 

Component 

Initial eigenvalue Extract load sum of square 

Total 
Variance 

percentage (%) 

Cumulative 

variance 

percentage 

(%) 

Total 
Variance 

percentage (%) 

Cumulative 

variance 

percentage 

(%) 

1 14.40442 96.02944 96.029 14.40442 96.029 96.029 

2 0.40432 2.69545 98.725 0.40432 2.695 98.725 

3 0.12969 0.86459 99.589 0.12969 .865 99.589 

4 0.03494 0.23296 99.822 0.03494 .233 99.822 

5 0.01601 0.10670 99.929 0.01601 .107 99.929 

6 0.00350 0.02331 99.952 0.00350 .023 99.952 

7 0.00315 0.02098 99.973 0.00315 .021 99.973 

8 0.00181 0.01206 99.985 0.00181 .012 99.985 

9 0.00110 0.00736 99.993 0.00110 .007 99.993 

10 0.00059 0.00396 99.997 0.00059 .004 99.997 

11 0.00020 0.00136 99.998 0.00020 .001 99.998 

12 0.00013 0.00089 99.999 0.00013 .001 99.999 

13 0.00008 0.00054 100.000 0.00008 .001 100.000 

14 0.00004 0.00026 100.000    

15 0.00002 0.00014 100.000    
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(a) 

  

(b) 

  

(c) 

  

(d) 

Figure 1. MDXs and MDYs under the four schemes of (a) MMTS-1, (b) MMTS-2, (c) 

MMTS-3, and (d) MMTS-4. 
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9

12 (2 )L , 10

12 (2 )L , and 13

16 (2 )L  are chosen according to the corresponding scheme. The calculated SNR 

gains are shown in Figure 2. 

 

Figure 2. SNR gains of MMTS-2, MMTS-3, and MMTS-4. 

According to the results, except for the gain of the third eigenvector of MMTS-3, which is less 

than zero, the SNR gains calculated by other methods are all greater than zero. Therefore, the third 

eigenvector of MMTS-3 is removed, while all the remaining eigenvectors are reserved. For MMTS-3, 

after removing the third eigenvector, it is necessary to recalculate the Mahalanobis space, verify the 

validity of the Mahalanobis space, and recalculate the Mahalanobis distance. Figure 3 shows the test 

set Mahalanobis distances calculated by the four schemes. 

  

  

Figure 3. Mahalanobis distances of the test set. 
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Then we classify the samples in the test set according to the Mahalanobis distances, and calculate 

the precision, specificity, recall, accuracy, and F value−   of the four schemes. The results are 

summarized in Table 3. 

Table 3. Summary of classification performance of four schemes. 

Number Method Number of 

variables 

Precision Specificity Recall Accuracy F 

(a) MMTS-1 1 28.57% 54.55% 47.62% 52.63% 0.36 

(b) MMTS-2 9 83.33% 95.00% 83.33% 92.31% 0.83 

(c) MMTS-3 9 58.06% 76.36% 85.71% 78.95% 0.69 

(d) MMTS-4 13 44.68% 52.73% 100.00% 65.79% 0.62 

Among the four schemes, the optimal orthogonal decomposition vector extraction scheme is 

MMTS-2, that is, selecting orthogonal decomposition vectors with eigenvalues greater than 0.001. 

The evaluation metric values of MMTS-2 are =83.33%precision  , specificity=95.00%  , 

recall=83.33%  , accuracy=92.31%  , and =0.83F  . In MMTS-1, since only one orthogonal 

decomposition vector is selected, the component contains relatively less feature information of the 

original dataset. Therefore, this scheme cannot be used to effectively classify the samples in the 

test set and the values of its evaluation metrics are relatively low. In MMTS-3 and MMTS-4, 

orthogonal decomposition vectors with eigenvalues > 0.0005 and with eigenvalue variance 

accounting for 100% are extracted, respectively, retaining most feature information of the original 

dataset. However, “overfitting” phenomenon is likely to occur when using these two schemes to 

process high-dimensional-small-sample-size data, thereby resulting in decreased evaluation metric 

values and affecting final classification results. MMTS-2 selects orthogonal decomposition vectors 

with eigenvalues greater than 0.001 and extracts enough feature information from the original 

dataset without resulting in “overfitting”. Therefore, this scheme exhibits great effectiveness in 

classification. 

To verify the effectiveness of the proposed method, we compare it with expert classification, 

individual classifiers such as NB, RF, k-NN, SVM and superimposed classifiers such as Wrapper + RF, 

MRMR + SVM, Chi-square + BP, SMOTE + Wrapper + RF and SMOTE + MRMR + SVM. 

When using Wrapper + RF and MRMR + SVM methods, we select 30 features for 

classification. When using Chi-square + BP method, we select 332 features based on Chi-square 

values. Figure 4 shows the Chi-square values distribution. 
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Figure 4. Chi-square values distribution of Chi-square+SVM method. 

When using SMOTE + Wrapper + RF and SMOTE + MRMR + SVM methods，in order to explore 

the best classification performance, we debug the K value in the SMOTE (Select K nearestneighbor 

when synthesizing samples.), 2,3,4,5,6K = . Finally, we set 2K =  to add 20 normal samples. Figure 

5 shows classification performance under different K values. 

 

Figure 5. Classification performance under different K values. 

The classification performance results of NB, RF, k-NN, SVM, Wrapper + RF, MRMR + 
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Table 4. Summary of classification performance of MMTS-2 and other methods. 

Method 
Number of 

variables 
Precision Specificity Recall Accuracy F 

MMTS-2 9 83.33% 95.00% 83.33% 92.31% 0.83 

NB 415 33.33% 70.00% 50.00% 65.38% 0.40 

RF 415 50.00% 75.00% 83.33% 76.92% 0.63 

k-NN 415 33.33% 70.00% 50.00% 65.38% 0.40 

SVM 415 54.55% 75.00% 100.00% 80.77% 0.71 

Wrapper + RF, 30 83.33% 95.00% 83.33% 92.31% 0.83 

MRMR + SVM 30 40.00% 70.00% 66.67% 69.23% 0.50 

Chi-square + BP 332 60.00% 90.00% 50.00% 80.77% 0.55 

SMOTE + Wrapper + RF 30 50.00% 80.00% 66.67% 76.92% 0.57 

SMOTE + MRMR + SVM 30 57.14% 85.00% 66.67% 80.77% 0.62 

Compared with the methods mentioned above, MMTS-2 shows better dimensionality reduction 

and classification performance. The accuracy of the MMTS-2 method is higher (F = 0.83) as compared 

to the average accuracy of the other methods. In terms of dimensionality reduction, the number of 

selected features for the MMTS-2 method is much lower (N = 9) as compared to the other methods. 

Overall, the classification performance of the MMTS-2 method is identical to the classification 

performance of the Wrapper + RF method, and both are superior to the other methods. 

In general, MMTS not only greatly reduces the number of characteristic variables and effectively 

achieves the goal of dimensionality reduction, but also obtains better results on all the evaluation 

metrics except for the recall of SVM. Our experiments have proved that MMTS can achieve 

dimensionality reduction without sacrificing classification accuracy, it still retains a large amount of 

the most important original feature information. 

When used for dimensionality reduction and classification of high-dimensional-small-

sample-size data, MMTS can reduce the computational cost while retaining valid variables to 

effectively achieve the goal of dimensionality reduction. In addition, since this method can 

enlarge small differences between two types of samples, the differences in Mahalanobis space 

and Mahalanobis distance between two types of samples will be enlarged. Therefore, the method 

shows good performance when classifying test set. Taken collectively, our results indicate that 

the MMTS proposed in this study is suitable for dimensionality reduction and classification of 

high-dimensional-small-sample-size data. 

5. Discussions and conclusions 

PCA and SPCA are not suitable for processing high-dimensional-small-sample-size data, because they 

do not consider the impact of data correlation on dimensionality. As one of the promising dimensionality 

reduction and classification methods in the 21st century, the traditional MTS must consider the covariance 
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matrix singularity problem when dealing with multi-dimensional-small-sample-size data. In order to solve 

the problems of traditional dimensionality reduction methods and MTS in dimensionality reduction 

and classification of high-dimensional-small-sample-size data, this study proposes an MMTS based 

on the idea of POD. 

Our experiments prove that MMTS can achieve the optimal results when extracting 

decomposition vectors with eigenvalues greater than 0.001. Extracting too much information will lead 

to the phenomenon of “overfitting”, while extracting too little information can not accurately classify 

the samples. 

In addition, the dimensionality reduction efficiency and classification performance of MMTS is better 

than those of expert classification, individual classifiers such as NB, RF, k-NN, SVM and superimposed 

classifiers such as Wrapper + RF, MRMR + SVM, Chi-square + BP, SMOTE + Wrapper + RF and 

SMOTE + MRMR + SVM. 

The classification accuracy of the Wrapper + RF, MRMR + SVM, and Chi-square + BP methods 

are much higher as compared to the individual classifiers (NB, RF, k-NN, SVM). Our results 

demonstrate the importance of dimensionality reduction when dealing with high-dimensional-small-

sample-size data classification. Dimensionality reduction and feature selection can not only reduce 

calculations but also improve classification accuracy. 

When using SMOTE + Wrapper + RF and SMOTE + MRMR + SVM, in order to obtain better 

classification performance, we debug the value of K and set the value to 2 to 6. The classification 

performance is better when k = 2, which indicates that when the sample size is small, 2K =  has a 

better performance in terms of the nearest neighbor selection. Furthermore, we notice that in 

comparison to the Wrapper + RF method, the classification performance of the SMOTE + Wrapper + 

RF method is lower. However, in comparison to the MRMR + SVM method, the classification 

performance of the SMOTE + MRMR + SVM method is higher. Thus, the method of using SMOTE 

to expand the sample size is not applicable to all classifiers. 

In general, compared with NB, RF, k-NN, SVM, Wrapper + RF, MRMR + SVM, Chi-square + BP, 

SMOTE + Wrapper + RF and SMOTE + MRMR + SVM, MMTS is more suitable for high-dimensional 

small sample data classification research. 

The main contributions of MMTS are: (a) It solves the problems of covariance matrix 

singularity and eigenvalue estimation difficulty in dimensionality reduction and classification of 

high-dimensional-small-sample-size data, thereby improving the architecture and algorithm of the 

traditional MTS. (b) It takes into account the correlation of data, reduces the computational cost, has 

high robustness, and overcomes the problems of PCA and SPCA in dimensionality reduction. (c) It 

provides a new idea for processing high-dimensional-small-sample-size data, and achieves quick and 

effective dimensionality reduction and classification without sacrificing valid sample feature 

information. In summary, MMTS is of certain reference value, it provides new ideas for academic 

research on high-dimensional-small-sample-size data dimensionality reduction and classification in 

real life scenarios. 

Acknowledgments 

This work was supported by the China National Social Science Fund Project “Research on the 



442 

Mathematical Biosciences and Engineering  Volume 18, Issue 1, 426–444. 
 

Implementation Path of Leading Quality Improvement with Standards in the Context of Building a 

Powerful Manufacturing Country” [grant number 18BJY033]. We would like to thank TopEdit 

(www.topeditsci.com) for English language editing of this manuscript. 

Conflict of interest 

The authors declare there is no conflict of interest. 

References 

1. G. Taguchi, S. Chowdhury, Y. Wu, The Mahalanobis-Taguchi System, 2001. 

2. Z. P. Chang, Y. W. Li, N. Fatima., A theoretical survey on Mahalanobis-Taguchi System, 

Measurement, 136 (2019), 501–510. 

3. N. Deepa, K. Ganesan, Mahalanobis Taguchi System based criteria selection tool for agriculture 

crops, 41 (2016), 1407–1414. 

4. B. Buenviaje, J. E. Bischoff, R. A. Roncace, C. J. Willy, Mahalanobis-Taguchi System to identify 

preindicators of delirium in the ICU, IEEE J. Biomed. Heal. Informatics, 20 (2016), 1205–1212. 

5. J. Wang, C. Duan, Structural health monitoring using Mahalanobis-Taguchi System, Proc. 2009 

Int. Conf. Inf. Eng. Comput. Sci. ICIECS 2009, (2009). 

6. A. K. Dwivedi, I. Mallawaarachchi, L. A. Alvarado, Analysis of small sample size studies using 

nonparametric bootstrap test with pooled resampling method, Stat. Med., 36 (2017), 2187–2205. 

7. H. F. Gong, Z. S. Chen, Q. X. Zhu, Y. L. He, A monte carlo and PSO based virtual sample 

generation method for enhancing the energy prediction and energy optimization on small data 

problem: An empirical study of petrochemical industries, Appl. Energy, 197 (2017), 405–415. 

8. E. Etchells, M. Ho, K. G. Shojania, Value of small sample sizes in rapid-cycle quality 

improvement projects, BMJ Qual. Saf., 25 (2016), 202–206. 

9. W. Jia, D. Zhao, L. Ding, An optimized RBF neural network algorithm based on partial least 

squares and genetic algorithm for classification of small sample, Appl. Soft Comput. J., 48 (2016), 

373–384. 

10. Abdul Lateh, A. K. Muda, Z. I. M. Yusof, N. A. Muda, M. S. Azmi, Handling a small dataset 

problem in prediction model by employ artificial data generation approach: A review, J. Phys. 

Conf. Ser., 892 (2017). 

11. F. Song, Z. Guo, D. Mei, Feature selection using principal component analysis, Int. Conf. Syst. 

Sci., 2 (2010). 

12. C. Lameiro, P. J. Schreier, A sparse CCA algorithm with application to model-order selection for 

small sample support, ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. Proc., (2017), 

4721–4725. 

13. Z. Ma, Sparse principal component analysis and iterative thresholding, Ann. Stat., 41 (2013), 772–801. 

14. C. M. Feng, Y. L. Gao, J. X. Liu, C. H. Zheng, S. J. Li, D. Wang, A Simple Review of Sparse 

Principal Components Analysi, Intell. Comput. Theor. Appl., 9772 (2016), 374–383. 

15. L. R. Eun, C. Jinwoo, Y. Kyusang, A systematic review on model selection in high-dimensional 

regression, J. Korean Stat. Soc., 48 (2019), 12. 



443 

Mathematical Biosciences and Engineering  Volume 18, Issue 1, 426–444. 
 

16. S. Ramírez‐Gallego, I. Lastra, D. Martínez‐Rego, V. Bolón‐Canedo, J. M. Benítez, F. Herrera, et 

al., Fast‐mRMR: Fast minimum redundancy maximum relevance algorithm for high‐dimensional 

big data, Int. J. Intell. Syst., 32 (2017), 134–152. 

17. González, J. Ortega, M. Damas, P. Martín-Smith, J.Q. Gan, A new multi-objective wrapper 

method for feature selection-accuracy and stability analysis for BCI, Neurocomputing, 333 (2019), 

407–418. 

18. X. Xiao, D. Fu, Y. Shi, J. Wen, Optimized Mahalanobis-Taguchi System for high-dimensional 

small sample data classification, Comput. Intell. Neurosci., 2020 (2020). 

19. B. Bayar, N. Bouaynaya, R. Shterenberg, SMURC: High-dimension small-sample multivariate 

regression with covariance estimation, IEEE J. Biomed. Heal. Informatics, 21 (2017), 573–581. 

20. K. Pearson, On lines and planes of closest fit to systems of points in space, Phil. Mag, 2 

(1901). 

21. H. Hotelling, Analysis of a complex of statistical variables into principal components, Educ. 

Psychol, 24 (1933), 417–441. 

22. G. Kerschen, J. C. Golinval, A. F. Vakakis, L. A. Bergman, The method of proper orthogonal 

decomposition for dynamical characterization and order reduction of mechanical systems: an 

overview, Nonlinear Dyn., 41 (2005), 147–169. 

23. X. Chen, Research on Several Issues of mahalanobis taguchi System, 2008. 

24. L. Cheng, V. Yaghoubi, W. Van Paepegem, M. Kersemans, Mahalanobis classification system 

(MCS) integrated with binary particle swarm optimization for robust quality classification of 

complex metallic turbine blades, Mech. Syst. Signal Process., 146 (2021), 107060. 

25. Z. Chang, L. Cheng, L. Cui, Interval choquet fuzzy integral multi-attribute decision-making 

method based on mahalanobis taguchi system, Control Decis., 31 (2016), 180–186. 

26. Y. Kikuchi, T. Ishihara, Anomaly detection and prediction of high-tension bolts by using strain 

of tower shell, Wind Energy, (2020), 1–16. 

27. Z. Sheng, L. Cheng, Y. Gu, Research on the generation mechanism of mahalanobis space in 

mahalanobis taguchi system based on control chart[, Math. Stat. Manag., 26 (2017), 1059–1068. 

28. Z. Chang, W. Chen, Y. Gu, H. Xu, Mahalanobis-Taguchi System for symbolic interval data based 

on kernel mahalanobis distance, IEEE Access, 8 (2020), 20428–20438. 

29. W. Z. A. W. Muhamad, K. R. Jamaludin, S. A. Saad, Z. R. Yahya, S. A. Zakaria, Random binary 

search algorithm based feature selection in Mahalanobis Taguchi system for breast cancer 

diagnosis, AIP Conf. Proc., 2018. 

30. E. Zhu, X. Wang, A principal component orthogonal decomposition algorithm suitable for 

processing fingerprint data of traditional Chinese medicine, J. Xiamen Univ. Natural Sci. Ed., 6 

(2005), 150–151. 

31. K. Lu, Y. Jin, Y. Chen, Y. Yang, L. Hou, Z. Zhang, et al., Review for order reduction based on 

proper orthogonal decomposition and outlooks of applications in mechanical systems, Mech. Syst. 

Signal Process., 123 (2019), 264–297. 

32. D. Wang, L. He, J. Zhu, Comparison of stock return volatility patterns based on functional 

adaptive clustering, Stat. Res., 35 (2018), 79–91. 

33. V. Penenko, E. Tsvetova, Orthogonal decomposition methods for inclusion of climatic data into 

environmental studies, Ecol. Modell., 217 (2008), 279–291. 

https://www.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Ram%C3%ADrez-Gallego%2C+Sergio
https://www.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Mart%C3%ADnez-Rego%2C+David
https://www.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Bol%C3%B3n-Canedo%2C+Ver%C3%B3nica
https://www.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Ben%C3%ADtez%2C+Jos%C3%A9+Manuel
https://www.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Herrera%2C+Francisco


444 

Mathematical Biosciences and Engineering  Volume 18, Issue 1, 426–444. 
 

34. M. Ohkubo, Y. Nagata, Anomaly detection in high-dimensional data with the 

Mahalanobis-Taguchi system, Total Qual. Manag. Bus. Excell., 29 (2018), 1213–1227. 

35. R. Valeria, C. Renato, R. Carlo, U. Lorenzo, C. Sirio, V. Francesco, et al., Prediction of tumor 

grade and nodal status in oropharyngeal and oral cavity squamous-cell carcinoma using a radiomic 

approach, Anticancer Res., 40 (2020), 271–280. 

36. A. Stanzione, C. Ricciardi, R. Cuocolo, V. Romeo, J. Petrone, M. Sarnataro, et al., MRI radiomics 

for the prediction of fuhrman grade in clear cell renal cell carcinoma: A machine learning 

exploratory study, J. Digit. Imaging, (2020), 1–9. 

37. V. Romeo, C. Ricciardi, R. Cuocolo, A. Stanzione, F. Verde, L. Sarno, et al., Machine learning 

analysis of MRI-derived texture features to predict placenta accreta spectrum in patients with 

placenta previa Magnetic resonance imaging, 64 (2019), 71–76. 

38. P. Mesejo, D. Pizarro, A. Abergel, Computer-aided classification of gastrointestinal lesions in 

regular colonoscopy, IEEE Trans. Med. Imaging, 35 (2016), 2051–2063,. 

39. R. L.Babu, S. Vijayan, Wrapper based feature selection in semantic medical information retrieval, 

J. Med. Imaging Heal. Informatics, 6 (2016), 802–805. 

40 G. L. Irene, R. V. Esther, Characterization of artifact signals in neck photoplethysmography, IEEE 

Trans. Biomed. Eng., 67 (2020), 1–1. 

41. J. Gardezi, I. Faye, F. Adjed, N. Kamel, M. Hussain, Mammogram classification using chi-square 

distribution on local binary pattern features, J. Med. Imaging Heal. Informatics, 7 (2017) , 30–35. 

42. H. A. Khan, W. Jue, M. Mushtaq, M. U. Mushtaq, Brain tumor classification in MRI image using 

convolutional neural network, Math. Biosci. Eng., 17 (2020), 6203. 

43. G. D’Addio, C. Ricciardi, G. Improta, P. Bifulco, M. Cesarelli, Feasibility of Machine Learning 

in Predicting Features Related to Congenital Nystagmus, In: Henriques J., Neves N., de Carvalho 

P. (eds XV Mediterranean Conference on Medical and Biological Engineering and Computing 

MEDICON 2019), IFMBE Proceedings, (2020). 

44. M. El-Banna, Modified Mahalanobis Taguchi System for imbalance data classification, Comput. 

Intell. Neurosci., 2017 (2017). 

©2021 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0) 


