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Abstract: Trajectory planning is one of the key technologies for autonomous driving. A* algorithm 
is a classical trajectory planning algorithm that has good results in the field of robot path planning. 
However, there are still some practical problems to be solved when the algorithm is applied to 
vehicles, such as the algorithm fails to consider the vehicle contours, the planned path is not smooth, 
and it lacks speed planning. In order to solve these problems, this paper proposes a path processing 
method and a path tracking method for the A* algorithm. First, the method of configuring safe 
redundancy space is given considering the vehicle contour, then, the path is generated based on A* 
algorithm and smoothed using Bessel curve, and the speed is planned based on the curvature of the 
path. The trajectory tracking algorithm in this paper is based on an expert system and pure tracking 
theory. In terms of speed tracking, an expert system for the acceleration characteristics of the vehicle 
is constructed and used as a priori information for speed control, and good results are obtained. In 
terms of path tracking, the required steering wheel angle is calculated based on pure tracking theory, 
and the influence factor of speed on steering is obtained from test data, based on which the steering 
wheel angle is corrected and the accuracy of path tracking is improved. In addition, this paper 
proposes a target point selection method for the pure tracking algorithm to improve the stability of 
vehicle directional control. Finally, a simulation analysis of the proposed method is performed. The 
results show that the method can improve the applicability of the A* algorithm in automated vehicle 
planning. 
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1. Introduction 

The development of autonomous driving technology can gradually liberate drivers from driving 
behaviors, reduce traffic accidents caused by improper driving behaviors, thereby improve road 
traffic efficiency and ensure traffic safety. The progress of artificial intelligence technology in recent 
years has made the application of autonomous driving technology in practical scenarios possible. The 
key issues of autonomous driving vehicle lie in three aspects: location and perception, 
decision-making and planning and control and execution. Among them, trajectory planning 
determines the expected trajectory, which is related to the safety, comfort, efficiency of the vehicle. 
At the same time, trajectory planning has been a research challenge due to the complexity of the 
traffic environment and vehicle systems. 

Currently, research on trajectory planning has focused on grid search-based algorithm [1], 
random sampling-based planning algorithm [2], artificial potential field method [3], genetic 
algorithm [4] and other artificial intelligence planning algorithms. 

Grid search-based planning algorithms have been widely used in path planning in recent years 
due to their simple principle and parsimony optimality. The most typical search algorithms are 
Dijkstra search algorithm [5], A* algorithm [6], D* algorithm [7]. These algorithms require 
pre-processing of perceptual information to generate a search map containing obstacles and free 
areas, and then apply a graph search algorithm to find the shortest path [8]. The A* algorithm 
combines the idea of mathematical search and heuristic search, which not only improves the 
efficiency of the algorithm, but also ensures the optimality of the results [9]. Therefore, it is widely 
used in path planning. 

Traditional A* algorithms are usually applied to robot path planning. Most researchers are 
concerned with the real-time performance of the algorithm. The WA* (Weighted A*) algorithm is a 
variant of the A* algorithm [10]. By assigning a variable weight to the heuristic term of the 
evaluation function of the original A* algorithm, it enhances the influence of heuristic information 
and improves the computational efficiency. The A*-connect algorithm speeds up the search process 
by bidirectional search [11]. 

At the same time, the optimality of the A* algorithm is also a concern for researchers. The 
ARA* (Anytime Repairing A*) algorithm can improve the optimality of planning results as much as 
possible within a given time constraint [12]. MHA* (Multi-Heuristic A*) algorithm avoids falling 
into local optimal results by setting multiple heuristic functions [13]. DMHA*(Dynamic 
Multi-Heuristic A*) algorithm ensures the global optimality of the algorithm by setting up a 
jump-out mechanism to make the algorithm jump out of the locally optimal results [14]. 

In addition, the application of the A* algorithm in dynamic environment is also a problem to be 
solved. The LPA* (Lifelong Planning A*) algorithm applies the incremental search idea to A* 
algorithm [15], which can reuse the previous search results in path re-planning, thus improve the 
computational efficiency of the algorithm in dynamic environment.  The D* algorithm can avoid 
large-scale re-planning after map changes through reverse search, so as to improve efficiency [16]. 

The aforementioned researchers are more concerned with the path optimization and efficiency 
of the A* algorithm. However, if the algorithm is applied to the path planning of automobiles, the 
smoothness of the path cannot be ignored. Some researchers use the method of increasing search 
dimension or grid search scope to smooth the path. For example, study [17] added heading angle 
state, which changed the state space from two-dimensional space to three-dimensional space. Some 
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researchers have increased the search scope from 8 neighborhoods to 24 neighborhoods [18]. These 
methods can smooth the path to some extent, but are prone to increase the computational effort. 

Another important issue is that the contours of the vehicle must be taken into account during 
path planning. Existing literature usually uses larger grid sizes to avoid this problem, but this affects 
planning accuracy. In addition, speed planning is also indispensable. Existing literature usually deals 
with speed planning on structured paths [19,20], while there is little literature related to speed 
planning in unstructured environments. 

Trajectory tracking also has an important impact on the application of the A* algorithm. MPC [21] 
and pure pursuit algorithm [22] are commonly used algorithms for vehicle trajectory tracking. MPC 
can achieve good tracking results, but often requires a large amount of computational resources. The 
pure pursuit algorithm has better real-time performance, but the tracking error is larger when the 
curvature changes. The selection of the target point in the pure pursuit algorithm has a great impact 
on the tracking effect, but few papers describe this in detail. 

Therefore, a set of map pre-processing and path post-processing methods are proposed to 
address the shortcomings of the A* algorithm in vehicle trajectory planning, and a target point 
selection method for pure pursuit algorithms is proposed to improve the usefulness of the A* 
algorithm in vehicles. The main contributions of this paper are as follows: 

(1) A set of processing methods is proposed to address the safety, path smoothing and speed 
planning problems of the A* algorithm in the practical application of vehicle trajectory 
planning. The redundancy space of the raster map is set up to avoid vehicle collisions. The 
path planning is done based on the A* algorithm, then the path is smoothed by Bezier curve 
and the velocity planning is done based on the curvature of the path. The novelty of the 
proposed process is that multiple problems are considered and solved simultaneously in a 
continuous and complete set of processes. These problems are not apparent when the 
algorithm is applied to a robot, but are crucial when it is applied to a vehicle. 

(2) A feedforward control method based on an expert system is constructed for speed control, 
and a pure pursuit algorithm is used for steering control. The target point selection method 
of pure pursuit algorithm is proposed, which is rare in the previous literature. 

The sections of the paper are organized as follows. Section 2 describes the whole architecture of 
automatic driving algorithm in this work, then proposes a set of trajectory planning and processing 
process based on A* algorithm. Section 3 puts forward a trajectory tracking algorithm based on 
expert system and pure pursuit algorithm. Section 4 gives the simulation results and analysis of the 
algorithm, which is followed by the conclusions in section 5. 

2. Trajectory planning and processing 

A* algorithm is usually used in unstructured environment where obstacles are relatively 
cluttered and vehicle speeds are low. In order to avoid collision of vehicle contours, redundant spaces 
are set up based on vehicle size when the map is rasterized. In order to meet the vehicle steering 
constraints, the path is smoothed using Bessel curves after the initial planning of the A* algorithm. In 
addition, the planning of vehicle speed is based on curvature. 
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2.1. Automatic driving system architecture 

As shown in Figure 1, we use the "perception, planning, control" automatic driving algorithm 
architecture in this work. First, the perception system generates a local map by positioning and 
sensor information. Then, trajectory planning is performed based on the A* algorithm. Finally, the 
trajectory tracking algorithm is used to calculate and output control signals to the vehicle. 

 

Figure 1. Automatic driving system architecture. 

2.2. Principle of A* algorithm 

The principle of A* algorithm is shown in Figure 2. The algorithm creates two lists: 𝑜𝑝𝑒𝑛𝐿𝑖𝑠𝑡 
and 𝑐𝑙𝑜𝑠𝑒𝐿𝑖𝑠𝑡. Where, 𝑜𝑝𝑒𝑛𝐿𝑖𝑠𝑡 is used to store the grid to be extended and 𝑐𝑙𝑜𝑠𝑒𝐿𝑖𝑠𝑡 is used to 
store the processed grid. During initialization, the starting point is put into the 𝑜𝑝𝑒𝑛𝐿𝑖𝑠𝑡 [23]. In 
subsequent iterations, the grid with the lowest path estimation cost is selected from the 𝑜𝑝𝑒𝑛𝑙𝑖𝑠𝑡 as 
the current grid 𝑐𝑢𝑟, and the path estimation cost is calculated by Eq (1). 

𝐹 ൌ 𝐺 ൅ 𝐻 (1)

𝐺 is the actual cost, representing the current lowest cost of expanding from the starting grid to 
the current grid, and 𝐻 is the heuristic cost, representing the estimated cost from the current grid to 
the end grid. The sum of the two is the estimated cost of the entire path. The actual cost 𝐺 used in 
this paper refers to the cumulative distance. The cost of vertical and horizontal movement is 10, and 
the cost of diagonal movement is 14. The heuristic cost 𝐻 is the Euclidean distance from the current 
grid to the final target grid. 

Next, remove the current grid from the 𝑜𝑝𝑒𝑛𝐿𝑖𝑠𝑡 and put it into the 𝑐𝑙𝑜𝑠𝑒𝐿𝑖𝑠𝑡. Traverse eight 
grids around the current grid. If the searched grid cannot pass or it is already in the 𝑐𝑙𝑜𝑠𝑒𝐿𝑖𝑠𝑡, skip it. 
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Otherwise, if it is not in the 𝑜𝑝𝑒𝑛𝐿𝑖𝑠𝑡, add it to the 𝑜𝑝𝑒𝑛𝐿𝑖𝑠𝑡 and calculate the actual cost, 
heuristic cost and estimated cost. If it is already in the 𝑜𝑝𝑒𝑛𝐿𝑖𝑠𝑡, compare the actual cost of the grid 
with the current grid as the parent node with the original one, and keep the one with less value as the 
new parent node of the grid. When the end grid appears in the 𝑜𝑝𝑒𝑛𝐿𝑖𝑠𝑡, it means that the search is 
completed. The planned path can be output by taking the parent node from the current grid. 

Start

Input grid map, starting point 
S, target point T

Initialize openList and closeList with empty lists
Initialize S estimated cost S.F with 0

Is T in openLIst?

 Add S to openList

 Set the point with minimum F in 
openList as current point cur 

N

 Delete cur from openList
 Append cur to closeList

 Set one of surrounding adjacent 
points as tarTemp 

Is tarTemp passable?

 Is tarTemp in closeList?

 Calculate cost tarTemp.GTemp, 
heuristic cost tarTemp.H,
 estimated cost tarTemp.F

i=0

cur.parrent=NULL?

path[i]=cur.parent
cur=cur.parent

i=i+1;

End

Y

N

Y

Output path

N

Y

Y

N

 Is tarTemp in openList?
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N
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tarTemp.G = tarTemp.GTemp

tarTemp.Gtemp<tarTemp.G

Y

Y

N

 

Figure 2. A* algorithm flowchart. 

2.3. Gridding of map 

The information output from the vehicle perception system is usually based on Cartesian 



6 

 

Mathematical Biosciences and Engineering  Volume 18, Issue 1, 1–21. 

coordinate system. However, the A* algorithm needs to be run on a grid map, so the map must be 
gridded as shown in Figure 3. The grid map is actually a two-dimensional matrix. The matrix index 
indicates the position, and the matrix element value indicates the presence of obstacles. The 
correspondence between the position of the grid matrix elements and the coordinates in the local map 
is shown in Eq (2). 

൞
𝑛 ൌ

𝑥
𝑝

𝑚 ൌ
𝑦௠௔௫ െ 𝑦

𝑝

 (2)

Where, 𝑛 is the column index of elements in the grid matrix, 𝑚 is the row index of elements, 
𝑝 is the precision of the grid map, which is the actual distance indicated by side length of unit grid, 
ሺ𝑥, 𝑦ሻ is the coordinate in the actual map, and 𝑦௠௔௫ represents the maximum vertical coordinate of 
the local map. Since 𝑝 and 𝑦௠௔௫ will affect the accuracy and required computing resources, in 
order to balance accuracy and real-time performance, we set 𝑝 to 0.25 m, and 𝑦௠௔௫ to 50 m. 

                                       

   (a)                                          (b) 

Figure 3. Gridding of map: (a) Actual scenario; (b) Grid map. 

Considering the vehicle profile, some redundant space must be reserved near obstacles. The 
redundant space around obstacles can leave some space between the planned path and obstacles, and 
ensure the safety when the vehicle tracks the path directly. The specific method of setting up 
redundant crash spaces on a grid map includes the following steps: 

(1) Determine the maximum distance between vehicle tracking center and the outer contour of 
the vehicle 𝐷௦. This paper uses Audi a8 model, and the 𝐷௦ is set to 2.5 m. 

(2) Calculate the minimum number of grids to be retained based on the actual distance 𝑝 
represented by a single grid edge length as shown in Eq (3). 

𝑛௘௫ ൌ 𝐶𝑒𝑖𝑙𝑖𝑛𝑔 ൬
𝐷௦

𝑝
൰ (3)

Where, 𝐶𝑒𝑖𝑙𝑖𝑛𝑔ሺሻ is the up-rounding function. 
(3) During the binarization of the grid map, the 𝑛௘௫ grids in the up, down, left and right of 

obstacles are assigned as non-passable values. In this paper, 𝑛௘௫ is calculated to be 10. 
After the above steps, Figure 3(b) can be further represented as a grid map with redundant 

spaces as shown in Figure 4. 
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The direct output path of A* algorithm is expressed in the form of matrix indexes, so it is 
necessary to convert the index representation of path in grid map to the coordinate representation of 
rectangular coordinate. The conversion formula is shown in Eq (4). 

ቄ
𝑥 ൌ 𝑛𝑝

𝑦 ൌ 𝑦௠௔௫ െ 𝑚𝑝 (4)

Take the vehicle position as the starting point and the destination as the end point to run A* 
algorithm for path search, and the path can be obtained as shown in Figure 5. 

                                                       

Figure 4. Grid map with redundant space.             Figure 5. Planning results. 

2.4. Path smoothing 

It can be seen from Figure 5 that there are many turning points in the path directly output by A* 
algorithm, which is not conducive to the stable following of the vehicle. Therefore, further 
smoothing is needed. We use Bezier curve to smooth the path in this work. 

            
(a)                                                    (b) 

Figure 6. Smoothing results: (a) Path; (b) Curvature. 

Bezier curve is widely used in two-dimensional graphic design because of its simple control and 
smooth curve [24]. Figure 6(a) shows planned path before and after smoothing, Figure 6(b) shows 
curvature of the path before and after smoothing. The curvature is calculated by the curvature 
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formula as shown in Eq (5). 

𝜅 ൌ
𝛥𝛼
𝛥𝑠

 (5)

Where 𝜅 is the curvature, 𝛥𝛼 is the tangent direction difference of the sampling points, and 
𝛥𝑠 is the arc length of the sampling points. 

As can be seen in the figure, the curvature of the smoothed path and its variation is greatly 
reduced, which facilitates the smooth tracking of the vehicle. 

2.5. Speed planning 

The curvature of the planned path is highly variable and has significant constraints on the speed. 
Therefore, we plan the velocity based on the average curvature. The average curvature of the 10 
points before and after the current path point is taken as the influencing factor. As shown in Eq (6), 
when the curvature is zero, the instantaneous velocity 𝑣෤௜ is 20𝑘𝑚/ℎ, which decreases with the 
increase of curvature. The final output velocity 𝑣௜ is the average speed within 10 points before and 
after the current point as shown in Eq (7). 

𝑣෤௜ ൌ 20 െ 30 ⋅
1

21
෍ 𝜅௝

௜ାଵ଴

௝ୀ௜ିଵ଴

 (6)

Where, 𝑣෤௜ is the instantaneous value of velocity of the 𝑖th point, 𝜅௝ is the curvature of the 𝑗th 
point. 

𝑣௜ ൌ
1

21
෍ 𝑣෤௝

௜ାଵ଴

௝ୀ௜ିଵ଴

 (7)

Using the above method to plan the velocity of the path in Figure 6(a), the planning results are 
shown in Figure 7. It can be seen from the figure that the speed is relatively smooth and the planned 
speed can be reduced in time when the curvature is large. The results show that the planned velocity 
is conducive to the safe driving of vehicles. 

 

Figure 7. Speed planning results. 
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3. Trajectory tracking algorithm 

The planned path only works through precise control. Therefore, a speed control method based 
on expert system and a steering control method based on the pure pursuit algorithm are proposed. 
The acceleration and steering characteristics of the vehicle are considered. At the same time, the 
target point selection method is proposed. 

3.1. Speed tracking algorithm based on expert system 

 

(a)                                          (b) 

 
(c) 

Figure 8. Vehicle acceleration characteristics: (a) Velocity curve; (b) 
Velocity-acceleration curve; (c) Velocity-acceleration-throttle map. 

The acceleration characteristics of different vehicles are different, so the acceleration 
characteristics of the vehicle need to be tested. The current speed, desired speed and desired 
acceleration of the vehicle are taken as inputs to the speed control system. Several equal gradient 
fixed throttle acceleration tests are performed, the vehicle speed is recorded and the acceleration is 
calculated to obtain the acceleration curve of the vehicle at each throttle, as shown in Figure 8. Based 
on the results of Figure 8(a),(b), the map of velocity-acceleration-throttle as shown in Figure 8(c) can 
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be obtained. 
The actual control process of vehicle speed is shown in the Figure 9. Firstly, calculate the 

difference between the current speed and the target speed, and judge whether to enter the throttle 
control mode or the brake control mode according to the difference. When entering the brake control 
mode, the throttle output is set to zero, and the required brake pedal opening is calculated by PID 
algorithm. When entering the throttle control mode, the brake pedal opening is set to zero, then 
calculate the theoretical acceleration demand through the speed error and acceleration time. Next, 
add the acceleration error value at the current time for correction to get the actual acceleration 
demand. The throttle opening is obtained by looking-up the map shown in Figure 8 through the 
current speed and actual acceleration. Finally, the throttle is filtered and output. 

 

Figure 9. Speed control process. 

 

(a)                                      (b) 

Figure 10. Speed control result: (a) Step target speed; (b) Sine wave target speed. 
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The velocity control results for step and sinusoidal input conditions are shown in Figure 10. It 
can be seen that the algorithm is able to track the target velocity quickly and steadily. 

3.2. Path tracking algorithm based on pure pursuit algorithm 

Pure pursuit algorithm is a path following algorithm. A point on the path is selected as the target 
point, and the currently required control input is computed based on the position of the target point. 
At the same time, with the iteration of the algorithm, the target point moves forward on the expected 
trajectory, making the vehicle approach the expected trajectory with a smooth trace [25]. 

                 

(a)                                      (b) 

Figure 11. Principle of pure pursuit algorithm: (a) Vehicle steering geometry; (b) Pure 
pursuit algorithmic geometry. 

Figure 11 shows the principle of pure pursuit algorithm. In the vehicle coordinate system, 
𝑃ሺ𝑥, 𝑦ሻ is the target point, 𝑙ௗ is the distance between the target point and the rear wheel center of 
the vehicle, 𝛿  is the front wheel angle, 𝐿 is the vehicle wheelbase, 𝑅  is the expected path 
curvature radius, 𝛼 is the azimuth of the target point relative to the vehicle. Figure 11(a) shows the 
geometric relationship of vehicle steering, which conforms to the Ackerman steering geometry as 
shown in Eq (8). 

As shown in Figure 11(b), according to the geometric relationship, the Eqs (9)–(11) can be 
listed. 

𝑡𝑎𝑛 𝛿 ൌ
𝐿
𝑅

 (8)

𝛼 ൅ 𝛽 ൌ
𝜋
2

 (9)

𝛾 ൅ 2𝛽 ൌ 𝜋 (10)

𝑙ௗ ⋅ 𝑐𝑜𝑠 𝛼 ൌ 𝑅 ⋅ 𝑠𝑖𝑛 𝛾 (11)

By combining Eq (9) with Eq (10), the Eq (12) can be obtained. 
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𝛾 ൌ 2𝛼 (12)

The Eq (13) can be obtained by combining Eq (12) with Eq (11). 

𝑅 ൌ
𝑙ௗ ⋅ 𝑐𝑜𝑠 𝛼

𝑠𝑖𝑛 2 𝛼
ൌ

𝑙ௗ

2 𝑠𝑖𝑛 𝛼
 (13)

By combining Eq (13) with Eq. (8), the Eqs (14) and (15) can be obtained. 

𝑡𝑎𝑛 𝛿 ൌ
2𝐿 𝑠𝑖𝑛 𝛼

𝑙ௗ
 (14)

𝛿 ൌ arctan
2𝐿 𝑠𝑖𝑛 𝛼

𝑙ௗ
 (15)

Due to the different steering characteristics of vehicles at different speeds, the Eq (16) is finally 
obtained by adding the speed-related correction factor K in Eq (15). 

𝛿 ൌ 𝐾 ⋅ arctan
2𝐿 𝑠𝑖𝑛 𝛼

𝑙ௗ
 (16)

The correction factor 𝐾 in Eq (16) can be obtained through experiments, and finally the 𝐾 െ 𝑣 
fitting curve as shown in Figure 12 can be obtained. 

 

Figure 12. K-v fitting curve. 

The steering control process is shown in Figure 13. Firstly, the coordinates of the target point 
and the current vehicle coordinates are obtained, and then the difference between the target heading 
angle and the current heading angle of the vehicle is calculated. Next, the distance of the target point 
and the correction coefficient K are calculated, which are substituted into the formula for calculating 

Desired curve
Fitted curve

K
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the front wheel angle and multiplied by the correction coefficient to obtain the steering wheel angle. 

 

Figure 13. Steering control process. 

3.3. Target point selection 

The selection of target point has a great influence on the tracking accuracy, especially when the 
path curvature and speed change. Therefore, it is necessary to give a target point selection method. In 
this paper, the target point distance 𝑑௧௔௥ is used to select target points. Among the preceding path 
points, the first one whose distance from the vehicle is not less than 𝑑௧௔௥ is selected as the target 
point. 

  

   (a)                                               (b) 

Figure 14. The influence of different correction coefficients on tracking effect when path 
curvature is 0.1: (a) 𝜑 ൌ 1 (b) 𝜑 ൌ 0.6. 
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Figure 14 shows the tracking results when the expected path curvature is 0.1, and the target 
point distance between target points is from 1 m to 6 m. Figure 14(a) shows that the longer the target 
distance, the easier it is to produce the "shortcut" phenomenon, and the shorter the target distance, 
the easier it is to cause oscillation. As shown in Eq (17), in order to avoid "short cut" phenomenon, a 
correction coefficient 𝜑 is used to correct original angle 𝛿 to get the output angle 𝛿௢௨௧. When the 
𝜑 is set to 0.6, the tracking result is obtained as shown in Figure 14(b). Although the "short cut" 
phenomenon is improved, it also brings the “understeer” phenomenon. 

 𝛿௢௨௧ ൌ 𝜑 ∙ 𝛿 (17)

If the algorithm is used to track the expected path of other curvatures, as shown in Figure 15, 
the results are similar. Also, it can be found that with the increase of curvature, it is not so sensitive 
to the distance of the target point. 

   
 (a)                              (b)                              (c) 

Figure 15. Tracking results under different curvature: (a) curvature is 0.02 m-1; (b) 
curvature is 0.005 m-1; (c) curvature is 0.001 m-1. 

To further quantify the relationship between curvature and target distance, the average error for 
each condition was calculated and the results are shown in Table 1. 

Table 1. Average tracking error under different curvature and different target point 
distance conditions. 

Curvature (m-1) 
𝑑௧௔௥(m) 

0.005 0.01 0.02 0.05 0.1 

1 0.012 0.013 0.020 0.041 0.075 
2 0.011 0.011 0.016 0.038 0.069 
3 0.010 0.010 0.018 0.043 0.074 
4 0.009 0.012 0.021 0.049 0.077 
5 0.011 0.014 0.026 0.061 0.113 
6 0.013 0.018 0.033 0.079 0.153 

Obviously, different curvature corresponds to different optimal target point distances, so a 
variable curvature road was used for further testing. The expected trajectory is shown in Figure 16(a). 
The curvature of the road is shown in Figure 16(b), where the horizontal axis is the distance from the 
starting point. 
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(a)                                              (b) 

Figure 16. Expected path of changing curvature: (a) path; (b) curvature. 

The test results at a speed of 15 𝑘𝑚/ℎ are shown in Figure 17. It can be seen that in the first 
half of the path, the curvature of the path is smaller, and the error is smaller when the target point 
distance is short. In the second half of the path, the curvature of the path increases, the vibration 
occurs when the target point distance is short, and the error decreases when the target point distance 
is long. 

  

(a)                                               (b) 

Figure 17. Tracking results of different target point distances at 15 km/h: (a) path 
tracking comparison; (b) path tracking error comparison. 

The target point distance is fixed at 6 𝑚 and the path tracking test is performed at different 
speeds. The results are shown in the Figure 18. The higher the speed, the more prone to understeer. 

 

(a)                                               (b) 

Figure 18. Tracking results of different velocity when the target point distances is 6 m: (a) 
path tracking comparison; (b) path tracking error comparison. 
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In summary, the greater the curvature, the smaller the optimal target point distance. With the 
increase of curvature, the influence of target point distance on tracking effect decreases. In addition, 
the greater the speed, the more prone to understeer, and the larger the target point distance is needed. 
Therefore, Eq (18) can be used to calculate the target point distance: 

 
𝑑௧௔௥ ൌ 𝜆 ∙ √𝑣 ∙ ln ൬

1
𝜅

൰ ൅ 𝜇 (18)

Where, 𝑑௧௔௥ is the target point distance; 𝑣 is the vehicle velocity; 𝜅 is the curvature; 𝜆 is 
correction factor; 𝜇 is correction item. 

 

(a)                                              (b) 

 
(c)                                               (d) 

Figure 19. Comparison of tracking error of fixed target point distance and changed target 
point distance at different speeds: (a) 15 km/h; (b) 35 km/h; (c) 55 km/h; (d) 75 km/h. 

Table 2. Comparison of average tracking error of fixed target point distance and changed 
target point distance at different speeds. 

Velocity(km/h)
𝑑௧௔௥(m) 

15 35 55 75 

1 0.137 0.400 0.616 1.1542 
2 0.047 0.053 0.210 0.474 
3 0.063 0.094 0.272 0.570 
4 0.088 0.148 0.394 0.849 
5 0.115 0.204 0.520 1.211 
6 0.141 0.260 0.666 1.408 

Optimal 𝑑௧௔௥ 0.038 0.032 0.179 0.461 

When 𝜆 is 0.2 and 𝜇 is 0.5, the tracking result of the optimized target point distance using the 
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Eq (18) is compared with the fixed target point distance, and the results are shown in the Figure 19. 
The average error comparison is shown in Table 2. The tracking error is lower than that of any fixed 
target point distance when the target point distance is changed as Eq (18). 

4. Simulation and analysis 

To test the adaptability of the algorithm, several simulation tests are conducted in different 
scenarios. The simulation scene software is PreScan,  and the planning and control algorithm is 
written in C++. The CPU of the simulation computer is core i5-9400F. The graphics card is NVIDIA 
GTX 1660 Ti. 

 
(a) (b) 

 

(c)  (d) 

 
(e) (f) 

Figure 20. Simulation results of first scenario: (a) Planned path; (b) Velocity of path 
points; (c) Curvature; (d) Acceleration; (e) Velocity following; (f) Path following. 
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The simulation results of the first scenario are shown in Figure 20. The vehicle in the lower 
right corner need to plan its path to the upper right corner. The scene includes houses, cars and other 
obstacles. On average, it takes 153 𝑚𝑠 per cycle for trajectory planning and tracking. It can meet 
the real-time requirements of vehicle computing platform. 

Figure 20(a) shows the planned path. It indicates that the algorithm has worked out a safe path 
to avoid obstacles, and the overall path is relatively smooth. Figure 20(b) shows the velocity of each 
path point, which shows that the speed can be reduced at the corner and increased at the straight line. 
It also shows that both stability and traffic efficiency are guaranteed. 

 

(a) (b) 

 
(c)  (d) 

 

(e)  (f)  

Figure 21. Simulation results of second scenario: (a) Planned path; (b) Velocity of each 
path point; (c) Curvature; (d) Acceleration; (e) Velocity following; (f) Path following. 
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Figure 20(c),(d) shows the curvature and acceleration of the path, which reflects the changes of 
the path and velocity, respectively. It can be seen from the figures that the curvature and acceleration 
are kept in a small range, which is a good proof that the path has good smoothness and continuity. It 
also proves that the trajectory output by the algorithm has good comfort. 

Figure 20(e),(f) gives the results of velocity following and path following respectively. The 
errors shown in the two figures are both small. It not only shows the accuracy of the tracking 
algorithm, but also proves the practicability of the planning algorithm. 

The simulation results of the second scenario are shown in Figure 21. The vehicle in the upper 
left corner are expected to reach the lower right corner. On average, it takes 141 𝑚𝑠 per cycle for 
trajectory planning and tracking. It can meet the real-time requirements of vehicle computing 
platform. 

Figure 21(a) shows the planned path. Figure 21(b) shows the velocity of each path point. Figure 
21(c),(d) shows the curvature and acceleration of the path respectively. Figure 21(e),(f) gives the 
results of velocity following and path following respectively. 

As can be seen from the figures, the algorithm also achieves good results in this scenario. The 
planned path is safe, efficient, smooth and stable. The planned speed is reasonable and efficient. Path 
tracking process is accurate and smooth. 

5. Conclusions 

The planning and control of intelligent vehicles are studied in this paper. A solution to the 
practical application of A* algorithm in automobile is proposed. In the process of trajectory planning, 
firstly, redundant spaces are set up to avoid the collision risk of the vehicle contours, so that A* 
algorithm can plan a safer vehicle path. Secondly, Bessel curve is used to smooth the path to 
eliminate the discontinuous points of the path, and reduce the curvature of the path, which is 
conducive to meeting the vehicle turning constraints. In addition, the vehicle velocity is planned 
based on the curvature, which ensures the driving stability. In the process of trajectory tracking, a 
speed control method based on expert system is established, and the feedforward information of 
expert system improves the stability of speed control; the direction control is based on the pure 
pursuit theory, and the selection method of target point in the pursuit model is given. In addition, 
considering the influence of speed, a correction coefficient is added to the pursuit model to improve 
the tracking accuracy. 

The process proposed in this paper can solve some problems existing in the practical application 
of A* algorithm in vehicles and has good real-time performance. It has reference significance to 
improve the applicability of search-based algorithm on vehicles. Next, we will consider the 
application of search-based algorithm in intelligent vehicles on structured roads. 
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