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Abstract: Statistical physics provides a useful perspective for the analysis of many complex systems;
it allows us to relate microscopic fluctuations to macroscopic observations. Developmental biology, but
also cell biology more generally, are examples where apparently robust behaviour emerges from highly
complex and stochastic sub-cellular processes. Here we attempt to make connections between different
theoretical perspectives to gain qualitative insights into the types of cell-fate decision making processes
that are at the heart of stem cell and developmental biology. We discuss both dynamical systems as
well as statistical mechanics perspectives on the classical Waddington or epigenetic landscape. We
find that non-equilibrium approaches are required to overcome some of the shortcomings of classical
equilibrium statistical thermodynamics or statistical mechanics in order to shed light on biological
processes, which, almost by definition, are typically far from equilibrium.
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1. Introduction

Cells are often seen as the fundamental level from which to start investigating biological systems [1]:
drill down in detail, or increase resolution, and we end up with intricate molecular processes and
arrangements that shape the cells physiology and behaviour. Zoom out, and we observe how cells
interact with each other, compete for resources, or self-organise into tissues and whole multicellular
organisms [2, 3]. Genes and their gene products—mRNA and proteins—can only fulfil their evolved
biological function in the context of cells and organisms [4]; and for complex multicellular organisms
we cannot ignore the discrete cellular structure of tissues.

Cells are themselves highly dynamic and dynamically changing systems. They sense and respond
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to changes in their environment; they control their internal state, adapting it where necessary; and
many cells coordinate their reproduction into pairs of daughter cells. In multi-cellular, but also in
some uni-cellular organisms, this process can involve profound changes in the cells’ characteristics
and states.

Dynamical systems describe how many natural, including biological, systems change over time.
Analysis of ordinary differential equations (ODE) describes the behaviour over time of e.g., predator
prey systems, biochemical reaction systems, neuronal activity, or physiological processes. If x denotes
the state of the cell (abundances of mRNAs, proteins, lipids etc) then we assume that we have a (high-
dimensional) function, f (x), such that the rate of change in x is given by

dx
dt

= f (x) (1.1)

with “cell states”, x∗, corresponding to the locally stable stationary points of the dynamical system,
calculated from

f (x∗) = 0,

that is those solutions for which the eigenvalues of the corresponding Jacobian (assuming linear
stability analysis suffices),

J =

(
∂ f i(x∗)
∂x j

)
i, j=1,...,d

are all less than zero [5,6]. Where linear stability analysis is not sufficient to assess the (local) stability,
other, more involved methods need to be invoked.

The stochastic differential equation (SDE) counterpart to Eq (1.1) takes the form

dx = f (X) dt + g (X) dWt, (1.2)

where g(x) captures the functional form of the stochastic contribution to the dynamics, and Wt is a
Wiener Process increment. The stability of stationary points of deterministic dynamical systems under
the influence of stochastic dynamics is in general difficult to assess analytically [7,8]. Instead, in most
cases, approximations or simulations are required.

What we are interested in are new ways of determining and analysing the functional form of f (x)
(and g(x)). This would open up the possibility of making more and better mechanistic models in cell
biology. With the exception of a handful of simple models of e.g., embryonic [9–12] and
haematopoietic stem cells [13], we have precious few mathematical models of the relevant
differentiation systems. Analysis of data is thus largely descriptive, but even from these descriptions
we can learn or distill some important lessons that could inform mechanistic modelling in the
future [14]. Three such examples include molecular noise, the dynamics of gene regulation, and the
time it takes for cell-fate decisions to take place. First, noise in gene expression, or cell to cell
heterogeneity, appears to be closely associated with the transition between cell states [15–17].
Second, there is clear evidence that the regulation at the gene expression level is highly dynamic and
shaped by factors at the epigenetic, transcriptomic, proteomic, and post-translational modification
levels [18–21]. We cannot describe this in terms of static gene regulatory networks, and instead need
to develop explicitly dynamical descriptions; even then we need to take into account the uncertainty in
these networks [22]. Third, the timing of a transition appears to indicate that differentiation is a
non-Markovian process [23].
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In the following we will outline a set of qualitative frameworks for the analysis of cell
differentiation dynamics, developing their connections, and follow one of these, non-equilibrium
statistical mechanics, further in order to characterise transitions between states or cell fates.

2. Theoretical descriptions of cell fate decisions

The theory of dynamical systems offers a set of tools that allow us to investigate developmental
processes. There is already a set of well studied problems, including different stem cell differentiation
systems [9–13], segmentation in insect development [24], neural tube formation [25], and Turing
patterns [26, 27]. But for the vast majority of systems of concrete biological interest we lack such
mechanistic descriptions.

In addition to developing these models from the bottom up, we can also take a more abstract
perspective, again grounded in the theory of dynamical systems. Below we outline two such
approaches.

2.1. Qualitative dynamics of cell differentiation

If we identify cell fates with the stationary points, x∗, of a dynamical system, then, even if we do
not know the structure and form of the dynamical system, i.e., we do not know the mathematical form
of f (x) in Eq (1.1) or Eq (1.2), we can still make some general qualitative statements. Work in this
area, especially by René Thom [28], was in fact partly inspired by problems in developmental biology.

Catastrophe Theory [28–30] was developed to characterise the qualitative behaviour exhibited by
dynamical systems as system parameters change. A central tenet of this approach, borne out
empirically as well, is that in many cases even high-dimensional systems can be understood in terms
of dynamics of a much lower dimensional system. Here the evocative term “catastrophe” refers to a
sudden change in the qualitative nature of the set of solutions of a dynamical system, caused by a
smooth or small change in some model parameter, system variable, or control input.

In the example in Figure 1 such a change is observed in the number of fates that are accessible,
as cell-type specific markers are varied. There are regions in parameter space where either one of the
fates (Fate 1 or Fate 2) is realised, and regions where both can co-exist. As the differentiation factor is
reduced, only a single state, the stem-like state, can exist. In the language of catastrophe theory this is
an example of a cusp catastrophe.

Despite the appeal of this framework there are considerable limitations, including the fact that
many of the theoretical results are limited to gradient systems, although stability properties can apply
more widely [31]. Certainly a central cornerstone of catastrophe theory, structural stability [29], will
have wider implications. We mean by this that the qualitative behaviour of a mathematical model or
theoretical system remains stable even when the model is changed slightly. Such structural stability
of a model would be desirable, as we know that real-world systems differ from our models, and often
quite considerably so. Clearly we should therefore strive in our modelling to only consider structurally
stable systems.

2.2. Models of epigenetic landscapes

Following Waddington’s groundbreaking conceptual work—which has had great influence on Rene
Thom’s work [28]—the well-known epigenetic landscape was long primarily seen as a useful metaphor
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Figure 1. Example of a Cusp Catastrophe and its relationship to developmental dynamics.
The two control variables are a differentiation marker, which leads to loss of stem-like
properties, and factors affecting cell-identity, such as the relative abundance of competing
transcription factors.

for developmental processes [32]. In the 21st century, however, it has increasingly been seen as a
computational tool in its own right [33–39]. And there is a rich mathematical literature to draw on, that
has only rarely been tapped into so far [30], notably related to Morse theory [5, 40].

Here, however, we follow in the first instance the statistical physics perspective developed above.
We shall also restrict ourselves to gradient-like systems, i.e., where f (x) in Eqs (1.1) and (1.2) can be
written as

f (x) = −∇U(x), (2.1)

where U(x) is a potential [5] (or quasi-potential [41] under suitable circumstances). For stochastic
systems (for deterministic systems, (1.1) resulting densities are typically sums of Dirac δ functions),
we have for the probability density of the solution of Eq (1.2) to be at xdx,

π(x) = exp(−U(x)), (2.2)

details to this can be found in [35–37].
Local minima of the potential correspond to (locally) stable attractors of the dynamics and can

thus be related to cell states [33, 42]. And Morse theory [29, 43], which applies to gradient systems,
allows us to relate the different fixed-points of gradient systems in the case of deterministic dynamics.
Notably, any set of locally stable fixed points, is separated by (at least) one saddle node, i.e., a fixed
point where the Jacobian of the potential, U(x), has both positive and negative eigenvalues [5, 29].
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Figure 2. Representation of the definition of macrostates and microstates for the case of
a small gene network representing the phenotype. Macrostate A is represented here by the
top network; macrostate B by the network at the bottom. The macrostates correspond to
distributions over different microstates. The microstates here are interpreted as the (joint)
expression levels of genes, G1 (gene 1), G2 (gene 2) and G3 (gene 3). The expression levels
of G3 overlap between the two macrostates, but the (G1,G2,G3) microstates associated with
the macrostates are distinct.

2.3. Statistical mechanics of cell differentiation

A different approach is rooted in theoretical physics and has found widespread use in e.g.,
ecology [44], signal transduction [45–47], and gene regulation [48, 49], but it has also been shown to
be helpful in developmental and stem-cell biology [12, 23, 50, 51]. Statistical physics links
microscopic behaviour of e.g., molecules or atoms, to macroscopic observables such as pressure. In
the context of cell biology, the precise molecular composition characterise microstates, whereas the
cell-types are the observable macrostates. Just as in statistical physics, each macrostate is associated
with a large number of corresponding microstates. In biological terms, the microstates associated with
a given macrostate represent all molecular configurations (chromatin states, mRNA and protein
concentrations, transcription factor activities etc) corresponding to a given cell state (Figure 2).

Statistical mechanics is concerned with the long-term behaviour of a system [52, 53], in particular
assigning probabilities of different macrostates being realised. We will start by defining some of the
terminology. First, we use Latin and Greek letters to denote micro- and macrostates, respectively; here
and below we follow the exceptionally clear terminology set out by Attard [53]. We assume that we
can meaningfully define weights for the different microstates, ωi. We then have for the weights of the
corresponding macrostates, ωα,

ωα =
∑
i∈α

ωi. (2.3)
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Summing over all microstates and macrostates must necessarily give the same value, W, that is we
have ∑

α

ωα =
∑

i

ωi = W, (2.4)

where W is the total weight (to be made precise below). For notational convenience we use the sum
symbol,

∑
, rather than the integral (as would be more appropriate for continuous state spaces). From

the weights we obtain the probabilities of micro- and macrostates,

pi =
ωi

W
, and pα =

ωα

W
, (2.5)

with which we can, for example, obtain expectation values for functions, e.g., across a macrostate, by
averaging

E[r]α =
∑
i∈α

piri.

Here r could denote cell size, or gene expression level associated with a given cell type, if α refers to
cell types. Higher moments, including variances are calculated similarly.

The entropy plays a central role in statistical mechanics, and here is defined as

S = log(W), (2.6)

or, if we consider the entropy of a macrostate, as

S α = log(ωα) = log

∑
i∈α

ωi

 . (2.7)

If we have a uniform distribution over the microstates we can assign unit weight to each microstate,
ωi = 1,∀i. The entropy of a macrostate is then simply, S α = log nα, where nα is the number of
microstates corresponding to macrostate, α.

One of the central results of statistical mechanics is encapsulated in the second law of
thermodynamics, which states that entropy never spontaneously decreases [52, 53]. Thus spontaneous
change will only ever occur if a change in state leads to an increase in entropy. So in this picture, a
change from state α to α′ will only be observed if S α′ > S α; or, in the case of uniform weight over
microstates, if nα′ > nα.

3. Epigenetic landscapes, entropy, and cell fate transitions

We next link the epigenetic landscape with entropy, first by considering equilibrium statistical
mechanics, then by considering transitions between states. We start by developing the total entropy of
the system, Eq (2.6), further,

S = log(W) =
∑
α

pα log
(
ωαW
ωα

)
(3.1)

=
∑
α

pαS α −
∑
α

pα log pα. (3.2)
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Here the second term is the conventional representation, which captures the uncertainty associated
with respect to which macrostate, α, the system is in. The first term captures the internal uncertainty
associated with the macrostates; this is often ignored because in many applications only differences in
entropy matter, and the whole term can then be viewed as an additive constant. But, for example, when
considering a system coupled to a reservoir, this term does matter profoundly. It is also important for
the case where we consider different macrostates, which below include alternative definitions of cell
types.

3.1. Macrostates for cell biology

Identifying macrostates for cell biology is, perhaps surprisingly, non-trivial. Microstates are
versions of gene expression states, associated to a macrostate [23, 50, 51]. Many of these microstates
will never be attained [36]. We assume that the whole state space can, in principle, be specified and
we denote it by Γ. The whole set of macrostates, called a collective, has to cover all potential states in
a non-overlapping manner, that is⋃

α

α = Γ =
⋃

i

xi and α ∩ α′ = ∅. (3.3)

The second condition is typically easy to meet, the first is slightly more problematic: we have to assign
microstates that are potentially never observed [36] to appropriate macrostates. We discuss an almost
certainly incomplete list of suitable macrostates for cell biology in the following.

Phenotypic Definition: If we have a set of objective phenotypic markers (morphology or cell surface
marker), S = {s1, s2, . . . , sC}, we may use this as a base from which to define macrostates; α. We then,
have, however, three types of microstates: (i) microstates that are observed in these cell-types; (ii)
microstates that are never observed; these have weight ωi −→ 0 and can be ignored without biasing or
distorting e.g., the calculation of state-transition probabilities. Finally, (iii) there are microstates that
do not conform to these previously defined cell-types and are thus not assigned. These can, however,
have finite probability. Their assignment to macrostates is a priori complicated: they may correspond
to new cell-types or sub-types; they may correspond to intermediate cell states [14,54]; or they may be
fleetingly visited as cells explore the molecular states available [36]. These states need to be considered
with some care if we want to base macrostates on phenotypic cell definitions.

Data-Driven Definition: Alternatively, observed microstates can be subjected to statistical analysis,
perhaps, unsupervised learning to group them together and then assign macrostates to clusters [14,
15, 55]. The ambiguity of clustering [56]—especially whether to lump small clusters together, or split
larger, more extended clusters—is, of course, encountered in this approach. But because of the practical
irrelevance of microstates that are never encountered (see above) this approach seems sensible, and
unproblematic.

Dynamical Systems Definition: We can use ideas from the theory of dynamical systems [5]. For
the deterministic case we can group all microstates, xi which, for t −→ ∞ go to the same stationary
state into the same macrostate. This definition assigns every point in Γ to one and only one macrostate.
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However, generalisation to stochastic dynamics is not straightforward; furthermore, it does not capture
the role of saddle node fixed points, which may play an important role in defining intermediate cell
states [14].

Mixed Macrostates: The advantage of the form for the entropy given in Eq (3.2) is that we can
combine different collectives of macrostates, here denoted by α, β, and γ. We can calculate the weight
of such mixtures using the usual laws for joint probabilities, e.g., we have

ω(αβγ) =
∑

i∈α∩β∩γ

ωi.

With this, it becomes possible to combine the macrostate definitions above and overcome their
individual limitations. We can also, through simple relabelling of macrostates, simplify the notation
and have a single subscript to denote the new “mixed macrostate”.

3.2. Non-stationary epigenetic landscapes

One problem related to the difficulty in developing a statistical mechanics for stem cell biology,
comes from the fact that much of the appeal of statistical mechanics lies in the fact that entropic
arguments can be used to determine (most probable) system states. The second law of thermodynamics,
in particular, states that entropy never decreases spontaneously, and that the maximum entropy state
is the one realised with high probability [52, 53]. If the macrostates are not coherently defined then
entropy and

∑
i∈α pi log pi cannot be used to assign the most probable states.

Reports, for example, that entropy across cell-populations becomes maximal around the transition
state are thus not necessarily in violation of thermodynamics [57]: clearly the most probable states
(i.e., the states with highest probability as t −→ ∞) will correspond to fixed points and their vicinity.
High entropy at transition states could either reflect poor definitions of cell states; or this could simply
reflect that the concepts from equilibrium thermodynamics and statistical mechanics are of limited use
in this regime.

Both explanations seem eminently plausible, and non-equilibrium statistical mechanics and
thermodynamics may offer solutions to the second problems, in particular. We will sketch out two
such solutions: a brief introduction to transition probabilities between states and how we can use them
to reconcile some of the experimental results. Finally, we briefly turn to considering dynamic
epigenetic landscapes.

3.3. Transition probabilities and entropy of transitions

In non-equilibrium theories we consider explicit change over time. One convenient way is to
consider transitions over time τ, j

τ
−→ i, as states of interest. We have for the weight of a microstate j

ω j =
∑

i

ω( j, i|τ), (3.4)

that is the weight of a microstate, j is equal to the sum over the weights of transitions out of j into any
other microstate. The weight of a transition between (suitably defined) macrostates β −→ α (where α
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and β can be in the same or different collectives) is then given by

ω(β, α|τ) =
∑
i∈α

∑
j∈β

ω( j, i|τ). (3.5)

Crucially, even if transitions between microstates were deterministic, transitions between macrostates
will still be stochastic, because specification of macrostates, α and β, does not precisely define the start
and end microstates, i ∈ α and j ∈ β [53].

In order to normalise the weights, we have to sum over all states, or equivalently, all transitions that
can occur, and we get

W =
∑

i

ωi =
∑

i, j

ω( j, i|τ)

=
∑
β

ωβ =
∑
α,β

ω(β, α|τ). (3.6)

With this we get for the probability of a transition from state i/α to state j/β to occur at some time in
the future τ, we have

p( j, i|τ) =
ω( j, i|τ)

W
and p(β, α|τ) =

ω(β, α|τ)
W

. (3.7)

We then have for the conditional probability of ending up in state β given that the system starts in state
α

p(β|α, τ) =
ω(β, α|τ)
ω(α)

.

Now analogously to Eq (2.7) we can define a new entropy for the transitions between macrostates,

S (2)(β, α|τ) = logω(β, α|τ), (3.8)

which we refer to as the second entropy. The advantage of this formalism is that for non-equilibrium
systems and equilibrium systems alike, the most likely state transition, given the current state, β can be
obtained by determining the state α̂(τ|β) which maximises the second entropy,

∂S (2)(β, α|τ)
∂α

∣∣∣∣∣∣
α=α̂

= 0.

This shifts the focus of the analysis from states to transitions, and may offer a better perspective on cell
differentiation than a conventional equilibrium statistical mechanics perspective.

3.4. Transitory landscapes

This brings us to the final point, and one that may have been implicitly presaged by Waddington
[32], and is also apparent in the work of Thom [28] and others (see [30] for a recent review): the
epigenetic landscape should not be viewed as a fixed object in time, but one which changes dynamically
[36]. For mathematical models of developmental systems—typically of the essential gene regulation
networks—it is possible to calculate the corresponding epigenetic landscapes as quasi-potentials, U(x)
[30, 34, 35]. These networks change—some interactions become more prominent, while others fade
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Differentiation factors increasing

Figure 3. The epigenetic landscape, and our quasi-potential representation thereof, will
change over time and in response to the cellular environment. This is illustrated here,
where the progression along a developmental trajectory leads to the dissolution of old and
the creation of new potential minima aka cell types. Whether this evolution of surfaces is
necessarily smooth is not clear.

as e.g., transcription factor activity changes in response to external signals [58–60]—and so do the
quasi-potentials, taking the system through a qualitative change point.

In this view (Figure 3) the landscape changes in response to signalling and the resulting minima of
the quasipotential, U(x; ζ), which now explicitly depends on an external signal or differentiation factor,
shifts position in statespace. In this view we make the stationary states of the system dependent on ζ,
that is

x∗ = x∗(ζ)

for the x∗ that solve

∇U(x∗; ζ) = 0. (3.9)

The set of solutions, x∗, does not need to behave in a continuous manner with the control variable,
as is clear, for example, if ζ induces a bifurcation. A priori it is not clear if the potential has to vary
smoothly.

For a transitory landscape, we could potentially treat the landscape associated with ζ as the
macrostate, but we have to note here that the control variable, ζ, will in practice rarely be scalar:
differentiation into a more specialised cell-type typically depends on more than a single molecular
factor [61].
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4. Conclusions

From a merely conceptual tool the Waddington or epigenetic landscape has been slowly morphing
into a framework for the qualitative and quantitative analysis of real biological systems. There are
two areas where further investigation and development are likely to bear fruit, and which we discussed
above.

First, ideas from dynamical systems theory, Morse theory, catastrophe theory, and especially
concepts related to structural stability, have important implications for the mathematical analysis of
dynamical systems.

A crucial challenge to their widespread use is, however, that (i) they are typically restricted to
gradient systems; (ii) they are only valid for deterministic systems. There is some reason to be
hopeful that analysis of deterministic systems can be meaningful for our understanding of stochastic
dynamical systems. But this may require detailed case-by-case analysis, as some hallmarks of
deterministic dynamical systems, such as certain types of bifurcations, may not translate to their
stochastic counterparts, or vice versa.

The second point relates to applying statistical mechanics to cell differentiation. There is obvious
appeal to doing so as has been detailed before. There are two shortcomings to this, however: (i)
equilibrium statistical mechanics rests on assumptions that almost certainly do not hold in the context
of living and changing systems; (ii) much of the appeal of statistical mechanics stems from the fact
that entropic considerations can point towards the state a system will be in. Defining the relevant
macrostates is problematic; and translating empirical entropy estimates into e.g., the likelihood of a
given cell-state being obtained, is not possible in the conventional framework. There is, however, as we
have sketched out here, some scope to resolve these outstanding issues by adopting a non-equilibrium
perspective, and better definitions of cellular macrostates.

The concept of a transitory landscape [62], may be an attractive way of combining the dynamical
systems perspective pioneered by Thom [28] and others [30, 63], with the statistical mechanics
perspective, especially if an appropriate non-equilibrium framework is used.
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47. P. Szymańska-Rożek, D. Villamaina, J. Miȩkisz, A. M. Walczak, Dissipation in non-steady state
regulatory circuits, Entropy, 21 (2019), e21121212.

48. M. Sasai, P. G. Wolynes, Stochastic gene expression as a many-body problem, Proc. Natl. Acad.
Sci., 100 (2003), 2374–2379.

49. A. Benecke, Gene regulatory network inference using out of equilibrium statistical mechanics,
HFSP J., 2 (2010), 183–188.

50. J. Garcia-Ojalvo, A. Martinez Arias, Towards a statistical mechanics of cell fate decisions, Curr.
Opin. Genet. Dev., 22 (2012), 619–626.

51. B. D. MacArthur, I. R. Lemischka, Statistical mechanics of pluripotency, Cell, 154 (2013), 484–
489.

52. D. Chandler, Introduction To Modern Statistical Mechanics, Oxford University Press, 1987.

53. P. Attard, Non-Equilibrium Thermodynamics And Statistical Mechanics: Foundations And
Applications, Oxford Univiversity Press, 2012.

54. S. Muñoz Descalzo, A. Martinez Arias, The structure of Wntch signalling and the resolution of
transition states in development, Semin. Cell Dev. Biol., 23 (2012), 443–449.

55. V. Bergen, M. Lange, S. Peidli, F. A. Wolf, F. J. Theis, Generalizing RNA velocity to transient
cell states through dynamical modeling, Nat. Biotechnol., 14 (2020), 1–7.

56. T. Hastie, R. Tibshirani, J. Friedman, The Elements Of Statistical Learning: Data Mining,
Inference, And Prediction, Springer, 2009.

57. S. Gao, G. V. Steeg, A. Galstyan, Efficient estimation of mutual information for strongly dependent
variables, in Artificial Intelligence and Statistics, (2015), 277–286.

58. T. W. Thorne, M. P. H. Stumpf, M. P. H. Stumpf, Inference of temporally varying Bayesian
networks, Bioinformatics, 28 (2012), 3298–3305.

Mathematical Biosciences and Engineering Volume 17, Issue 6, 7916–7930.



7930

59. S. S. Mc Mahon, A. Sim, S. Filippi, R. Johnson, J. Liepe, D. Smith, et al., Information theory and
signal transduction systems: from molecular information processing to network inference, Semin.
Cell Dev. Biol., 35 (2014), 98–108.

60. T. E. Chan, M. P. H. Stumpf, A. C. Babtie, Gene regulatory network inference from single-cell
data using multivariate information measures, Cell Syst., 5 (2017), 251–267.e3.

61. A. Smith, Formative pluripotency: the executive phase in a developmental continuum,
Development, 144 (2017), 365–373.

62. R. D. Brackston, E. Lakatos, M. P. H. Stumpf, Transition state characteristics during cell
differentiation, PLOS Comput. Biol., 14 (2018), e1006405.

63. E. D. Siggia, Inter-cellular interactions and patterns: vertebrate development and embryonic stem
cells, preprint, arXiv:1801.09142v1.

© 2020 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 17, Issue 6, 7916–7930.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Theoretical descriptions of cell fate decisions
	Qualitative dynamics of cell differentiation
	Models of epigenetic landscapes
	Statistical mechanics of cell differentiation

	Epigenetic landscapes, entropy, and cell fate transitions
	Macrostates for cell biology
	Non-stationary epigenetic landscapes
	Transition probabilities and entropy of transitions
	Transitory landscapes

	Conclusions

