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Abstract: In this paper, we propose and investigate an almost periodic SEIR model with stage struc-
ture and latency, in which time-dependent maturation and incubation periods are incorporated. Two
threshold parameters for the persistence and extinction of population and disease are introduced: the
basic reproduction ratio R̂0 for population and the basic reproduction ratio R0 for disease. If R̂0 < 1, the
population extinction state is globally attractive. In the case where R̂0 > 1, it is shown that the disease
tends to die out if R0 < 1, while remains persistent if R0 > 1. By virtue of numerical simulations, we
verify the analytic results and investigate the effects of the fluctuations of maturation and incubation
periods on disease transmission.
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1. Introduction

Throughout history, epidemics have been a serious threat to human survival and development, and
human has been committed to find effective ways to prevent and control epidemics. Mathematical
modeling provides a useful way to understand the dynamics of transmission of an infectious disease,
and in the process, it provides effective guides and strategies for the control of diseases. One of the
earliest mathematical models in epidemiology was introduced by Kermack and McKendrick [1]. The
Kermack-McKendrick model is a compartmental model based on relatively simple assumptions on the
rates of flow between different classes of members of the population [2], and it plays an important
role in characterizing the transmission dynamics of disease within a short outbreak period. Following
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the work of Kermack and McKendrick, a large number of researchers pay attention to the study of
epidemic models (see, e.g., [2–5]).

In the earlier epidemic models, the attributes of individuals such as contact patterns, models of
transmission and geographic distributions are assumed to be homogeneous. In population biology,
however, the life cycle of many populations go through different stages and the habits are different
at different stages (see, e.g., [5, 6]). During the last decades, quite a few stage-structured models
have been used to characterize the population dynamics, see, e.g., [2, 5, 7]. In epidemiology, empirical
evidence indicates that developmental stages of population have a profound impact on the transmission
dynamics of some diseases, and the individuals in some stages don’t participate in the infection cycle
and don’t have the reproductive capacity. For example, TB is highly age-dependent (see [8]), and
the population who is likely to be infected is the adult individuals since newborns are vaccinated in
many countries, but the immunity has decreased with increasing age. Moreover, the biological cycle of
some species goes through some separate and distinct stages, and the biological and epidemiological
properties of different stages are quite different. For example, the biological cycle of some salmon
species goes through three stages: egg, juvenile and adult fish, and juveniles mature in the fresh water
stream [9], so that the individuals in egg and juvenile stages do not participate in the infection cycle of
some diseases for mature individuals. It is therefore necessary to incorporate the stage structure into
the epidemic models. When the stage structure is introduced, there will be a time-delay term in the
model, see, e.g., [5].

In epidemiology, another time-delay factor which should be considered is the latency. Empirical
observation shows that many diseases have incubation period which differs from disease to disease,
and the habit at latent stage is different at infectious stage (see, e.g., [4]). Therefore, it is significant that
brings incubation period into epidemic models. During the past decades, a lot of models with latency
have been studied and used to characterize the disease transmission. An SEIRS epidemic model with
latent and immune periods was formulated and analyzed by Cooke and van den Driessche [10]. Li
and Zou [11, 12] generalized SIR model to patchy environments with incubation period. In [11], they
found that the disease exists multiple outbreaks before it goes to extinction, which is in sharp contrast
to the dynamics of classic Kermack-McKendrick SIR model.

Note that the aforementioned models are all given by autonomous systems of differential equations.
Autonomous systems of differential equations provide an appropriate characterization for the spread of
epidemics. However, certain diseases admit seasonal fluctuation and it is now well known that seasonal
changes are ubiquitous and can exert strong influence on the spread of infectious diseases. Recently,
the interaction of time delay and seasonality in epidemic models has attracted much attention. Zhao
[13] established the theory of basic reproduction ratio for periodic and time-delayed compartmental
population models, and considered a periodic SEIR model with an incubation period. More and more
attentions pay to the study of periodic epidemic models with latency since then, see e.g., [14–17].

In reality, due to the stochastic effects and the complexity of external environments, fluctuations in
nature may not exactly periodic, and hence, the parameters in an epidemic model are not necessary to
be periodic. Even if they are periodic, they are also not always share a common period. Though one
can obtain the exactly periodic parameters in controlled laboratory experiments, as noted in [18, 19],
environmental changes in nature are hardly periodic. In an almost periodic epidemic model, the time
almost periodic dependence reflects the influence of certain “seasonal” fluctuations which are roughly
but not exactly periodic. Therefore, almost periodic epidemic models are significant in the study
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of dynamics of infectious diseases. Up to now, there have been a few works concerning the global
dynamics for almost periodic epidemic models with stage structure and latency, in which the maturation
and latency periods are assumed to be constants (see, e.g., [20, 21]). However, for the time-dependent
case, the global dynamics of epidemic models dose not have an adequate characterization.

It is worth noting that for some populations, the maturation period and latency of some diseases
also depend on environment factors. For example, fish egg development time to hatching is temper-
ature dependent, see, e.g., [22, 23], and the lengths of the latent periods of some diseases for fish
are also temperature dependent, such as furunculosis [24, 25]. Based on this observation, population
and epidemiology models concerning time-dependent delay were developed in quite a few works, see,
e.g., [26–28]. In particular, Li and Zhao [29] derived and studied an SEIRS epidemic model with a
time-dependent latent period in a periodic environment. To our best knowledge, however, there is no
work at present of considering the interaction of time-dependent maturation and incubation periods in
the directly transmitted diseases models. The purpose of this paper is to study the global dynamics of
an SEIR models with maturation and incubation delays in an almost periodic environment, in which
the time delays are time-dependent.

In this paper, we employ an almost periodic time-delayed system framework to evaluate the effects
of seasonal fluctuations, stage structure and latent period on the spread of infectious disease. The
remaining parts are organized as follows. In section 2, we formulate an almost periodic SEIR model
with time-dependent time delays, and give the underlying assumptions. In section 3, we introduce the
basic reproduction ratios R̂0 and R0 for population and disease, respectively, and establish threshold-
type results on the global dynamics in terms of basic reproduction ratios. In section 4, we present some
numerical simulations to interpret the obtained theoretical results, and reveal the effect of parameters
on R0.

2. The model

Let (X, d) be a metric space. A function f ∈ C(R, X) is said to be almost periodic if for any ε > 0,
the set

T ( f , ε) := {s ∈ R : d( f (t + s) − f (t)) < ε,∀t ∈ R}

is a relatively dense subset of R, that is, there exists a positive number h > 0 such that [c, c + h] ∩
T ( f , ε) , ∅, ∀c ∈ R. Let AP(R, X) := { f ∈ C(R, X) : f is an almost periodic function}. Then AP(R, X)
is a Banach space equipped with the supremum norm ‖ · ‖. A function f ∈ C(D × R, X) is said to be
uniformly almost periodic in t if f (x, ·) is almost periodic for each x ∈ D, and for any compact set
E ⊂ D, f is uniformly continuous on E × R ( [30, 31]).

We consider a disease for some population with immature and mature stages, where the immature
individuals don’t have reproductive capacity, and use G(t) and N(t) to denote the total numbers of im-
mature and mature individuals. Let α(t) represent the maturation delay. Mathematically, we assume
that α(t) is continuously differential in R. We use b(t,N) to denote the per-capita birth rate of the popu-
lation, and let d1(t) and µ(t) be the natural death rates of immature and mature individuals, respectively.
In the absence of disease, it then follows from [32] that the change of N(t) is governed by equation

dN(t)
dt

= (1 − α′(t))Λ(t − α(t),N(t − α(t)))e−
∫ t

t−α(t) d1(r)dr
− µ(t)N(t), (2.1)
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where Λ(t,N) = b(t,N)N. In order to determine the sign of 1 − α′(t), we introduce the development
rate of immature stage at time t, denoted by k(t) ≥ ε > 0 (see, e.g., [28]). It then follows that the
following relationship holds, ∫ t

t−α(t)
k(s)ds = 1. (2.2)

Differentiating equation (2.2) with respect to time t, we get

1 − α′(t) =
k(t)

k(t − α(t))
.

It then follows that there exists a ρ > 0 such that ρ < 1 − α′(t) < 1
ρ
.

We assume that only mature individuals participate in the infection cycle, and let S (t), E(t), I(t) and
R(t) represent the total numbers of the susceptible, exposed, infective and recovered populations at time
t, respectively. Moreover, we assume that there is no vertical infection. Base on these assumptions, the
schematic diagram of SEIR model is given in Figure 1. We adopt the mass action infection mechanism
that the lost of susceptible individuals by infection is at a rate proportional to the number of infectious
individuals. Then we get the following system

dS (t)
dt = (1 − α′(t))Λ(t − α(t),N(t − α(t))))e−

∫ t
t−α(t) d1(r)dr

− β(t)S (t)I(t) − µ(t)S (t),
dE(t)

dt = β(t)S (t)I(t) − µ(t)E(t) −C(t),
dI(t)

dt = C(t) − (µ(t) + d(t) + γ(t))I(t),
dR(t)

dt = γ(t)I(t) − µ(t)R(t).

(2.3)

Here, β(t) is the infection rate, d(t) represents the disease-induced death rate, γ(t) is the recovery rate,
and C(t) denotes the number of newly occurred infectious population per unit time at time t. Let τ(t)
represent the time-dependent latent period. Mathematically, we also assume that τ(t) is continuously
differential in R. In consideration of biological meanings, the following compatibility condition should
be imposed:

E(0) =

∫ 0

−τ(0)
e−

∫ 0
s µ(r)drβ(s)S (s)I(s)ds.

Moreover, we have

E(t) =

∫ t

t−τ(t)
e−

∫ t
s µ(r)drβ(s)S (s)I(s)ds.

It is then necessary to determine C(t). By the results in [29, section 2], it follows that

C(t) = (1 − τ′(t))e−
∫ t

t−τ(t) µ(r)drβ(t − τ(t))S (t − τ(t))I(t − τ(t)).

Figure 1. Compartmental model for the disease.
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Thus, the SEIR model is governed by the following system,

dS (t)
dt = (1 − α′(t))Λ(t − α(t),N(t − α(t)))e−

∫ t
t−α(t) d1(r)dr

− β(t)S (t)I(t) − µ(t)S (t),
dE(t)

dt = β(t)S (t)I(t) − (1 − τ′(t))e−
∫ t

t−τ(t) µ(r)drβ(t − τ(t))S (t − τ(t))I(t − τ(t)) − µ(t)E(t),
dI(t)

dt = (1 − τ′(t))e−
∫ t

t−τ(t) µ(r)drβ(t − τ(t))S (t − τ(t))I(t − τ(t)) − (µ(t) + d(t) + γ(t))I(t),
dR(t)

dt = γ(t)I(t) − µ(t)R(t).

(2.4)

By an argument similar to that of α(t), we get that there exists an η > 0 such that η < 1 − τ′(t) < 1
η
.

Considering the effect of environmental factors on disease transmission, we assume that b(t,N) is
uniformly almost periodic and the time-dependent coefficients of system (2.4) are all almost periodic
in t. By [32, Lemma 2.2], it follows that e−

∫ t
t−α(t) d1(r)dr and e−

∫ t
t−τ(t) µ(r)dr are almost periodic.

For the sake of convenience, we let

p(t) := (1 − α′(t))e−
∫ t

t−α(t) d1(r)dr and q(t) := (1 − τ′(t))e−
∫ t

t−τ(t) µ(r)dr.

Note that we can drop the E and R equations in model (2.4), and the system (2.4) can be rewritten as

dN(t)
dt = p(t)Λ(t − α(t),N(t − α(t))) − µ(t)N(t) − d(t)I(t),

dS (t)
dt = p(t)Λ(t − α(t),N(t − α(t)))) − β(t)S (t)I(t) − µ(t)S (t),

dI(t)
dt = q(t)β(t − τ(t))S (t − τ(t))I(t − τ(t)) − (µ(t) + d(t) + γ(t))I(t).

(2.5)

In order to investigate the dynamics of system (2.5), we make the following assumptions (see,
e.g., [5, 32]).

(A1) β(t), µ(t), d(t) and γ(t) are nonnegative and continuous functions, and inf
t∈R

µ(t) > 0.

(A2) b(t,N) is continuous, and satisfies inf
t∈R

b(t, 0) > 0 and ∂b(t,N)
∂N < 0, ∀N ≥ 0, t ∈ R.

(A3) There exists a constant K∗ > 0 such that µ(t) > p(t)b(t−α(t),K) holds for all t ∈ R when K ≥ K∗.

Let α∗ = sup
t∈R

α(t), τ∗ = sup
t∈R

τ(t), and L = max{α∗, τ∗}. We define CL := C([−L, 0],R3). The norm of

CL is defined by ‖ϕ‖ = max
θ∈[−L,0]

‖ϕ(θ)‖R3 . Define positive cone C+
L := C([−L, 0],R3

+). It is clear that the

interior of C+
L , Int(C+

L ) = C([−L, 0], Int(R3
+)), is nonempty. Then the ordering on CL generated by C+

L is
defined as follows,

ϕ ≤ ψ⇔ ϕi(θ) ≤ ψi(θ), ∀θ ∈ [−L∗, 0], 1 ≤ i ≤ 3,
ϕ < ψ⇔ ϕi(θ) ≤ ψi(θ), ϕ , ψ, ∀θ ∈ [−L∗, 0], 1 ≤ i ≤ 3,
ϕ � ψ⇔ ϕi(θ) < ψi(θ), ∀θ ∈ [−L∗, 0], 1 ≤ i ≤ 3.

For a continuous function f ∈ C([−L,T ),R3) (T > 0), define ft ∈ CL by ft(θ) = f (t + θ), ∀θ ∈ [−L, 0],
t ∈ [0,T ).

Lemma 2.1. Let (A1)-(A3) hold. Then system (2.5) admits a unique nonnegative and bounded solution
on [0,∞) with the initial datum φ ∈ C+

L .
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Proof. For any φ = (φ1, φ2, φ3) ∈ C+
L , we define G(t, φ) = (G1(t, φ),G2(t, φ),G3(t, φ)) as follows,

G(t, φ) =


p(t)Λ(t − α(t), φ1(−α(t))) − µ(t)φ1(0) − d(t)φ3(0)
p(t)Λ(t − α(t), φ1(−α(t)))) − β(t)φ2(0)φ3(0) − µ(t)φ2(0)
q(t)β(t − τ(t))φ2(−τ(t))φ3(−τ(t)) − (µ(t) + d(t) + γ(t))φ3(0)

 .
Note that G(t, φ) is continuous and Lipschitzian with respect to φ in each compact subset of C+

L . It then
follows from [33, Theorems 2.2.1 and 2.2.3] that system (2.5) admits a unique solution w(t, φ) on its
maximal interval of existence with initial condition w0 = φ ∈ C+

L . Moreover, Gi(t, φ) ≥ 0 whenever
φ = (φ1, φ2, φ3) ≥ 0 and φi(0) = 0, ∀1 ≤ i ≤ 3. It then follows from [34, Theorem 5.2.1] that the
solution w(t, φ) of system (2.5) with w0 = φ ∈ C+

L is nonnegative for all t ≥ 0 in its maximal interval of
existence.

Define

Y =

{
ϕ ∈ C([−L, 0],R4

+) : ϕ2(0) =

∫ 0

−τ

e−
∫ 0

s µ(r)drβ(s)ϕ1(s)ϕ3(s)ds
}
.

By an argument similar to that in [13], we obtain that for any ϕ ∈ Y , system (2.4) admits a unique
nonnegative solution u(t, ϕ) = (S (t), E(t), I(t),R(t)) satisfying initial condition u0 = ϕ. Recall that
N(t) = S (t) + E(t) + I(t) + R(t), and it satisfies

dN(t)
dt
≤ p(t)Λ(t − α(t),N(t − α(t))) − µ(t)N(t). (2.6)

Assumptions (A3) together with comparison principle indicate that C([−L, 0], [0,K∗]) is positively in-
variant for equation (2.6), and hence, C([−L, 0], [0,K∗]3) is positively invariant for system (2.5). Thus,
the solutions of system (2.5) with initial data in C+

L exist globally on [0,∞), and are also ultimately
bounded. �

3. The threshold dynamics

In this section, we establish threshold-type results on the global dynamics of system (2.5) or (2.4)
in terms of basic reproduction ratios.

We first establish the basic reproduction ratio R̂0 for population equation (2.1) in the absence of
disease. Let Cα∗ := C([−α∗, 0],R) and C+

α∗ := C([−α∗, 0],R+). Note that equation (2.1) has a trivial zero
solution. Linearizing equation (2.1) at the zero solution, we obtain the following linearized equation,

dN(t)
dt

= r(t)N(t − α(t)) − µ(t)N(t), (3.1)

where r(t) := p(t)b(t − α(t), 0). By the general theory of linear functional differential equations in [33,
Section 8.1], it follows that for any ϕ ∈ Cα∗ , system (3.1) has a unique solution N(t, s, ϕ) (t ≥ s) with
initial condition Ns = ϕ.

Let F1(t)ϕ := r(t)ϕ(−α(t)), ∀ϕ ∈ Cα∗ , and V1(t) := µ(t). Then linear equation (3.1) can be written as

dN(t)
dt

= F1(t)Nt − V1(t)N(t),
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where Nt(θ) = N(t + θ), ∀θ ∈ [−α∗, 0]. Refer to [32], we define the next generation operator L̂ as

[L̂φ](t) =

∫ ∞

0
e−

∫ t
t−s V1(σ)dσF1(t − s)φ(t − s + ·)ds.

Motivated by [13, 20], the basic reproduction ratio R̂0 is defined as R̂0 := r(L̂), the spectral radius of
L̂. Let N(t, φ) denote the solution of equation (2.1) with initial condition N0 = φ ∈ C+

α∗ , it then follows
from [32, Theorem 3.5] that the following threshold-type result holds.

Lemma 3.1. Let (A1)-(A3) hold, then the following statements are valid:

(i) If R̂0 < 1, then lim
t→∞

N(t, φ) = 0, ∀φ ∈ C+
α∗;

(ii) If R̂0 > 1, then there exists an ε > 0 such that lim inf
t→∞

N(t, φ) ≥ ε holds for all φ ∈ C+
α∗ with

φ(0) > 0.

Lemma 3.1 shows that if R̂0 < 1, then the population will die out whether the disease breaks out or
not. In the following, we investigate the threshold dynamics for system (2.5) in the case where R̂0 > 1.
We first define the basic reproduction ratio R0 for system (2.5). In order to ensure the existence of the
disease-free almost periodic solution, we further make the following assumption.

(A4) ∂Λ(t,N)
∂N > 0 for all N ≥ 0 and t ≥ 0.

It then follows from [32, Theorem 3.7] that equation (2.1) admits a unique positive almost periodic
solution N∗(t), and lim

t→∞
|N(t, ϕ)−N∗(t)| = 0 for all ϕ ∈ C+

α∗ with ϕ(0) > 0, and hence, system (2.5) admits
a unique nontrivial positive disease-free almost periodic solution E∗(t) = (N∗(t),N∗(t), 0). Assumption
(A4) implies that the birth rate function is monotone. For a non-monotone case Λ(t,N) = a(t)e−b(t)N N,
the condition that (2.1) exists a globally stable almost periodic solution can be found in [32].

Linearizing system (2.5) at E∗(t), we then have the equation for infectious class as follows,

dI(t)
dt

= k(t)I(t − τ(t)) − h(t)I(t), (3.2)

where
k(t) = q(t)β(t − τ(t))N∗(t − τ(t)), h(t) = (µ(t) + d(t) + γ(t)).

Let Cτ∗ := C([−τ∗, 0],R) and C+
τ∗ := C([−τ∗, 0],R+). By the general theory of linear functional

differential equations in [33, Section 8.1], it follows that for any ϕ ∈ Cτ∗ , system (3.2) admits a unique
solution I(t, s, ϕ) (t ≥ s) with Is = ϕ. We define the evolution family U(t, s) on Cτ∗ of equation (3.2) as

U(t, s)ϕ = It(s, ϕ), ∀ϕ ∈ Cτ∗ , t ≥ s, s ∈ R,

where It(s, ϕ)(θ) = I(t + θ, s, ϕ), ∀θ ∈ [−τ∗, 0]. Let ω(U) be the exponential growth bound of the
evolution family U(t, s), that is,

ω(U) = inf{ω ∈ R : ∃K0 ≥ 1 such that ‖U(t + s, s)‖ ≤ K0eωt, ∀s ∈ R, t ≥ 0}.

Lemma 3.2. [32, Theorem 3.2] The following statements are valid:

(i) There exists an almost periodic function a(t) such that e
∫ t

0 a(s)ds is a solution of (3.2).
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(ii) ω(U) = lim
t→∞

1
t

∫ t

0
a(s)ds.

(iii) Let u(t, φ) be the unique solution of (3.2) with initial condition u0 = φ. Then for any φ ∈ Int(C+
τ∗),

there holds ω(U) = lim
t→∞

ln u(t,φ)
t .

Let Û(t, s) denote the evolution family on CL := C([−L, 0],R) of equation (3.2) and ω(Û) be its
exponential growth bound. We have the following observation.

Proposition 3.3. ω(Û) = ω(U).

Proof. Note that L ≥ τ∗, if L = τ∗, then the conclusion is natural, and we just need to prove the case
that L > τ∗. By the definition of ω(Û), for any δ > 0, there exists Kδ > 1 such that

‖Û(t + s, s)φ‖CL ≤ Kδe(ω(Û)+δ)t‖φ‖CL , ∀t ≥ 0, s ∈ R, φ ∈ CL.

For any ϕ ∈ Cτ∗ , we can find a φ ∈ CL such that ‖ϕ‖Cτ∗
= ‖φ‖CL and ϕ(θ) = φ(θ), ∀θ ∈ [−τ∗, 0]. Thus,

we have

‖U(t + s, s)ϕ‖Cτ∗
≤ ‖Û(t + s, s)φ‖CL ≤ Kδe(ω(Û)+δ)t‖φ‖CL = Kδe(ω(Û)+δ)t‖ϕ‖Cτ∗

, ∀t ≥ 0, s ∈ R.

By the definition of ω(U), we get ω(U) ≤ ω(Û) + δ.
On the other hand, the definition of ω(U) shows that for any δ > 0, there exists Lδ > 1 such that

I(t + s, s, ϕ) ≤ ‖U(t + s, s)ϕ‖Cτ∗
≤ Lδe(ω(U)+δ)t‖ϕ‖Cτ∗

, ∀t ≥ 0, s ∈ R, ϕ ∈ Cτ∗ .

For any φ ∈ CL, there exists ϕ ∈ Cτ∗ such that

I(t + s, s, φ) = I(t + s, s, ϕ) ≤ Lδe(ω(U)+δ)t‖ϕ‖Cτ∗
≤ Lδe(ω(U)+δ)t‖φ‖CL ,

and hence,
‖Û(t + s, s)φ‖CL = ‖It+s(s, φ)‖CL ≤ LδHe(ω(U)+δ)t‖φ‖CL ,

where H = max
0≤θ≤L
{Lδe(ω(U)+δ)θ}. Thus, ‖Û(t + s, s)‖ ≤ LδHe(ω(U)+δ)t. By the definition of ω(Û), we get

ω(Û) ≤ ω(U) + δ.
In above proof, letting δ → 0+, we obtain that ω(U) ≤ ω(Û) and ω(Û) ≤ ω(U), and hence,

ω(Ũ) = ω(U). �

Let V2(t) = h(t) and F2 be a map defined as follows,

F2(t)φ = k(t)φ(−τ(t)), ∀φ ∈ Cτ∗ .

It then follows that equation (3.2) can be written as

dI(t)
dt

= F2(t)It − V2(t)I(t).

Let Ψ−V2(t, s), t ≥ s, be the evolution family of linear equation

dI(t)
dt

= −V2(t)I(t).
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A simple computation shows that

Ψ−V2(t, s) = e−
∫ t

s h(r)dr, ∀t ≥ s, s ∈ R.

Let AP(R,R) be the order Banach space of all continuous almost periodic functions from R to R
equipped with the supremum norm and the positive cone AP(R,R+). Following [20], let φ ∈ AP(R,R+)
denote the initial distribution of infectious individuals. For any given s ≥ 0, F2(t − s)φt−s, t ≥ s,
represents the distribution of newly infectious individuals at time t − s, which is produced by the
infectious individuals at time t − s − τ(t) and still in the infectious compartment at time t − s.
Then Ψ−V2(t, t − s)F2(t − s)φt−s denotes the distribution of those infectious individuals who were
newly reproduced at time t − s − τ(t) and remain in the infectious compartment at time t. Thus,∫ ∞

0
Ψ−V2(t, t − s)F2(t − s)φt−sds represents the distribution of accumulative new infectious individuals

at time t produced by all those infectious individuals introduced at all previous time to t and still in the
infectious compartment at time t. Define the next generation operator L as

[Lφ](t) =

∫ ∞

0
e−

∫ t
t−s V2(σ)dσF2(t − s)φ(t − s + ·)ds, ∀φ ∈ AP(R,R), t ∈ R.

Motivated by [13, 20, 29], the basic reproduction ratio R0 is defined as R0 := r(L), the spectral radius
of L.

Consider the following linear almost periodic equation with a parameter ρ > 0:
dI(t)

dt
=

1
ρ

F2(t)It − V2(t)I(t), t ≥ s,

Is = φ ∈ C+
τ∗ .

(3.3)

Let U(t, s, ρ) be the evolution family of equation (3.3) and ω(U(ρ)) be its exponential growth bound.
Then we have the following result, which comes from [20, Theorems 3.8 and 3.10].

Lemma 3.4. R0 − 1 has the same sign as ω(U). Furthermore, if R0 > 0, then ρ = R0 is the unique
solution of ω(U(ρ)) = 0.

We now establish a threshold-type result on the global dynamics of system (2.5) in terms of R0. Let
X0 = {ψ = (ψ1, ψ2, ψ3) ∈ C+

L : ψ3(0) > 0}. We first show the global extinction.

Theorem 3.5. Let (A1)-(A4) hold. In the case where R̂0 > 1, if R0 < 1, then the disease-free almost
periodic solution (N∗(t),N∗(t), 0) of system (2.5) is globally attractive in X0.

Proof. Let (N(t, φ), S (t, φ), I(t, φ)) be the solution of system (2.5) with initial datum φ ∈ X0. The global
stability of N∗(t) for (2.1) indicates that for any δ > 0, there exists t0 > 0 such that

N(t, φ) < N∗(t) + δ, ∀t ≥ t0.

Let Ûδ(t, s) denote the evolution family on C([−L, 0],R+) associated with the following perturbed linear
almost periodic equation:

dI(t)
dt

= q(t)β(t − τ(t))(N∗(t − τ(t)) + δ)I(t − τ(t)) − h(t)I(t). (3.4)
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Since R0 < 1, Lemma 3.4 together with Proposition 3.3 yield ω(U) = ω(Û). Thus, we can restrict
δ small enough such that ω(Ûδ) < 0. Again by Lemma 3.2, there exists an almost periodic function

a∗δ ∈ AP(R,R) such that y(t) = e
∫ t

0 a∗δ(µ)dµ is a solution of (3.4), and ω(Ûδ) = lim
t→∞

∫ t
0 a∗δ(µ)dµ

t < 0. By the
third equation of system (2.5), we have that I(t, φ) satisfies

dI(t)
dt
≤ q(t)β(t − τ(t))(N∗(t − τ(t)) + δ)I(t − τ(t)) − h(t)I(t)

for all t ≥ t0. Choose a positive constant M such that I(t, φ) ≤ My(t), ∀t ∈ [t0−L, t0]. By the comparison
theorem for delay differential equations ( [34, Theorem 5.1.1]), we obtain

I(t, φ) ≤ My(t) = Me
∫ t

0 a∗δ(r)dr, ∀t ≥ t0.

Note that
lim
t→∞

e
∫ t

0 a∗δ(r)dr = lim
t→∞

(
e

1
t

∫ t
0 a∗δ(r)dr

)t
= 0.

Hence, we deduce that I(t, φ) → 0 as t → ∞. Using the chain transitive arguments similar to those in
the proof of [21, Theorem 4.2], we further obtain lim

t→∞
(N(t) − N∗(t)) = 0 and lim

t→∞
(S (t) − S ∗(t)) = 0. �

Theorem 3.6. Let (A1)-(A4) hold. In the case where R̂0 > 1, if R0 > 1, then there exists ε > 0 such
that the solution (N(t, φ), S (t, φ), I(t, φ)) of system (2.5) with initial datum φ ∈ X0 satisfies

lim inf
t→∞

(N(t, φ), S (t, φ), I(t, φ)) ≥ (ε, ε, ε).

Proof. We use the skew-product semiflows approach to prove the desired uniform persistence. Let

Γ(t) = (p(t),Λ(t), α(t), µ(t), β(t), q(t), τ(t), d(t), γ(t))

and H(Γ) be the closure of {Γs : s ∈ R} under the compact open topology, where Γs is defined by
Γs(t) = Γ(t + s), ∀t ∈ R. It then follows from [31, Theorem 1.6] that H(Γ) is compact. Define
ζt(Θ) = Θt, for all Θ ∈ H(Γ) and t ∈ R. Then ζt : H(Γ)→ H(Γ) is a compact, almost periodic minimal
and distal flow (see [35, Section VI.C]). Consider a family of almost periodic systems,

dN(t)
dt = p̄(t)Λ̄(t − ᾱ(t),N(t − ᾱ(t))) − µ̄(t)N(t) − d̄(t)I(t),

dS (t)
dt = p̄(t)Λ̄(t − ᾱ(t),N(t − ᾱ(t)))) − β̄(t)S (t)I(t) − µ̄(t)S (t),

dI(t)
dt = q̄(t)β̄(t − τ̄(t))S (t − τ̄(t))I(t − τ̄(t)) − (µ̄(t) + d̄(t) + γ̄(t))I(t),

(3.5)

where (p̄, Λ̄, ᾱ, µ̄, β̄, q̄, τ̄, d̄, γ̄) = Θ ∈ H(Γ). Let

∂X0 := X \ X0, Z := X × H(Γ), Z0 := X0 × H(Γ), ∂Z0 := Z \ Z0.

Then Z0 and ∂Z0 are relatively open and closed in Z, respectively. For any given (φ,Θ) ∈ Z, let
x(t, φ,Θ) = (N(t,Θ), S (t,Θ), I(t,Θ)) be the unique solution of system (3.5) with initial condition
x0(φ,Θ) = φ. It is easy to see that for any given Θ ∈ H(Γ), both X and X0 are positively invariant
for solutions of (3.5). Let xt(φ,Θ)(θ) := x(t +θ, φ,Θ), ∀θ ∈ [−L, 0], we define a skew-product semiflow

Π : R+ × Z → Z,

(t, φ,Θ) 7→ (xt(φ,Θ), ζt(Θ)).
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We use the notation Πt(φ,Θ) = Π(t, φ,Θ). Obviously, ΠtZ0 ⊆ Z0, ∀t ≥ 0. Recall that the solutions of
(2.5) are ultimately bounded in X, and hence, so does (3.5), which implies that Πt is point dissipative
on Z. By [36, Theorem 3.4.8], it follows that Πt : Z → Z admits a global compact attractor V̂.

Define
M∂ := {(φ,Θ) ∈ ∂Z0 : Πt(φ,Θ) ∈ ∂Z0,∀t ≥ 0}.

We now show that
M∂ = {(N, S , 0,Θ) ∈ Z : N ≥ 0, S ≥ 0,Θ ∈ H(Γ)}. (3.6)

For any (φ̂, Θ̂) ∈ {(N, S , 0,Θ) ∈ Z : N ≥ 0, S ≥ 0,Θ ∈ H(Γ)}, the solution

x(t, φ̂, Θ̂) = (N(t, Θ̂), S (t, Θ̂), I(t, Θ̂))

satisfies I(t, Θ̂) = 0 for all t ≥ 0 and Θ̂ ∈ H(Γ), and hence, (φ̂, Θ̂) ∈ M∂. This indicates that
{(N, S , 0,Θ) ∈ Z : N ≥ 0, S ≥ 0,Θ ∈ H(Γ)} ⊂ M∂. For any given (φ̃, Θ̃) ∈ M∂, xt(φ̃, Θ̃) ∈ ∂X0

holds for all t ≥ 0. We further show that I(t, Θ̃) = 0 for all t ≥ 0. Assume, for the sake of contradic-
tion, that there exists t1 ≥ 0 such that I(t1, Θ̃) > 0. It then follows from the second equation of (3.5)
that I(t, Θ̃) > 0 for all t ≥ t1, which contradicts the fact that (N(t, Θ̃), S (t, Θ̃), I(t, Θ̃)) ∈ ∂X0. Since
I(t, Θ̃) = 0 for all t ≥ 0, we have

(φ̃, Θ̃) ∈ {(N, S , 0,Θ) ∈ Z : N ≥ 0, S ≥ 0,Θ ∈ H(Γ)},

and hence, M∂ ⊂ {(N, S , 0,Θ) ∈ Z : N ≥ 0, S ≥ 0,Θ ∈ H(Γ)}. This proves (3.6).
Note that for each Θ ∈ H(Γ), in the case where R̂0 > 1, the following equation,

dN(t)
dt

= p̄(t)Λ̄(t − ᾱ(t),N(t − ᾱ(t))) − µ̄(t)N(t), (3.7)

admits a positive almost periodic solution N∗(t,Θ), which is uniformly asymptotically stable. Let
M = {(N∗0(Θ),N∗0(Θ), 0,Θ) : Θ ∈ H(Ω)}, where N∗0(Θ)(θ) = N∗(θ,Θ), ∀θ ∈ [−L, 0]. By the uniqueness
and continuity of solutions, it follows that N∗t (Θ) = N∗0(ζt(Θ)). Hence, M is a compact and invariant
set for Πt : Z → Z.

For any given (φ,Θ) ∈ M∂, let ω(φ,Θ) be the omega limit set of (φ,Θ) for Πt. Let (φ̌, Θ̌) ∈ ω(φ,Θ)
be given. Then there exists a sequence tn → ∞ such that lim

n→∞
Πtn(φ,Θ) = (φ̌, Θ̌). Note that Πtn(φ,Θ) =

(xtn(φ,Θ), ζtn(Θ)) and lim
n→∞
‖xtn(φ,Θ) − (N∗tn(Θ),N∗tn(Θ), 0)‖ = 0. Since N∗0(Θ) is continuous in Θ, and

H(Γ) is compact, it follows that N∗0(Θ) is uniformly continuous in Θ ∈ H(Γ). This indicates that
N∗tn(Θ) = N∗0(ζtn(Θ))→ N∗0(Θ̌) as n→ ∞. Hence, (φ̌, Θ̌) = (N∗0(Θ̌),N∗0(Θ̌), 0, Θ̌) ∈ M. Thus, ω(φ,Θ) ⊆
M. It then follows thatM is a compact and isolated invariant set for Πt in ∂Z0, ∪(φ,Σ)∈M∂

ω(φ,Θ) ⊆ M,
and no subset ofM forms a cycle for Πt in ∂Z0.

Since R0 > 1, Lemma 3.4 shows that ω(U) > 0. We let ω(Ū) be the exponential growth bound of
the evolution family of system (3.2) with (k, τ, h) replaced by (k̄, τ̄, h̄) on C([−L, 0],R), where

k̄(t) = q̄(t)β̄(t − τ̄(t))N∗(t − τ̄(t),Θ), h̄(t) = (µ̄(t) + d̄(t) + γ̄(t)).

It then follows from Proposition 3.3 that ω(Ū) = ω(Û) = ω(U) > 0. We use ω(Ûϑ) to denote the
exponential growth bound associated with the following linear equation on C([−L, 0],R),

dI(t)
dt

= k̄ρ(t)I(t − τ̄(t)) − h̄(t)I(t),

Mathematical Biosciences and Engineering Volume 17, Issue 6, 7732–7750.



7743

where
k̄ρ(t) = q̄(t)β̄(t − τ̄(t))(N∗(t − τ̄(t),Θ) − ρ) and ρ < inf

t∈R
N∗(t).

Hence, we can choose a sufficiently small constant ρ > 0 such that ω(Ûρ) > 0.
Next, we claim that

lim sup
t→∞

d(Πt(φ,Θ),M) ≥ ρ, ∀(φ,Θ) ∈ Z0.

Assume, by contradiction, that for some (φ̄, Θ̄) ∈ Z0, Θ̄ = ( p̄1, Λ̄1, ᾱ1, µ̄1, β̄1, q̄1, τ̄1, d̄1, γ̄1), there holds

lim sup
t→∞

d(Πt(φ̄, Θ̄),M) < ρ.

It then follows that there exists t2 > 0 such that S (t, φ̄, Θ̄) ≥ N∗(t, Θ̄) − ρ, ∀t ≥ t2. Thus, I(t, φ̄, Θ̄)
satisfies

dI(t)
dt
≥ k̄1

ρ(t)I(t − τ̄1(t)) − h̄1(t)I(t), ∀t ≥ t2, (3.8)

where
k̄1(t) = q̄1(t)β̄1(t − τ̄1(t))(N∗(t − τ̄1(t), Θ̄) − ρ), h̄1(t) = (µ̄1(t) + d̄1(t) + γ̄1(t)).

By virtue of Lemma 3.2, there exists an almost periodic function a∗(t, Θ̄) such that Î(t, Θ̄) = e
∫ t

0 a∗(r,Θ̄)dr

is a solution of
dI(t)

dt
= k̄1

ρ(t)I(t − τ̄1(t)) − h̄1(t)I(t), (3.9)

and

ω(Ũρ) = lim
t→∞

1
t

∫ t

0
a∗(r, Θ̄)dr > 0,

where Ũρ(t, s) (t ≥ s) denotes the evolution family of equation (3.9) on C([−L, 0],R). Since (φ̄, Θ̄) ∈ Z0

indicates that there exists a t3 > t2 + L such that I(t3 + θ, φ̄, Θ̄) ∈ Int(R+), ∀θ ∈ [−L, 0], we can take
ξ > 0 small enough such that I(t3 + θ, φ̄, Θ̄) ≥ ξ Î(t3 + θ, Θ̄), ∀θ ∈ [−L, 0]. By the comparison principle,
as applied to system (3.8), it then follows that

I(t, φ̄, Θ̄) ≥ ξ Î(t, Θ̄) = ξe
∫ t

0 a∗(r,Θ̄)dr, ∀t ≥ t3.

Moreover, since

lim
t→∞

e
∫ t

0 a∗(r,Θ̄)dr = lim
t→∞

(
e

1
t

∫ t
0 a∗(r,Θ̄)dr

)t
= ∞,

we get lim
t→∞

I(t, φ̄, Θ̄) = ∞, a contradiction.
Recall that M is an isolated invariant set for Πt in ∂Z0, the claim above shows that M is also an

isolated invariant set for Πt in Z. The above claim also indicates that W s(M) ∩ Z0 = ∅, where the set

W s(M) := {(φ,Θ) ∈ Z : ω(φ,Θ) , ∅, ω(φ,Θ) ⊂ M}

represents the stable set of M for Πt. By the continuous-time version of [37, Theorem 1.3.1 and
Remark 1.3.1], the skew-product semiflow Πt : Z → Z is uniformly persistent with respect to Z0. That
is, there exists ε > 0 such that for any (φ,Θ) ∈ Z0, lim inf

t→∞
d(Πt(φ,Θ), ∂Z0) ≥ ε. Since Πt is compact for

any t > L, it follows that Πt is asymptotically smooth. By [38, Theorem 3.7 and Remark 3.10], we get
that Πt : Z0 → Z0 admits a global attractor V̂0.
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It remains to prove the practical uniform persistence. Since V̂0 ∈ Z0 and ΠtV̂0 = V̂0, it follows
that φ2(0) > 0 for all (φ1, φ2, φ3,Θ) ∈ V̂0. From the invariance of V̂0, we get that φi(0) > 0 for i = 1, 3.
Obviously, lim

t→∞
d(Πt(φ,Θ), V̂0) = 0 for all (φ,Θ) ∈ Z0. Define a continuous function g : Z → [0,∞) by

g(φ,Θ) = min
i=1,2,3

{φi(0)}, ∀(φ,Θ) = (φ1, φ2, φ3,Θ) ∈ Z.

It is easy to see that g(φ,Θ) > 0 for all (φ,Θ) ∈ V0. The compactness of V0 implies that
inf

(φ,Θ)∈V0
g(φ,Θ) = min

(φ,Θ)∈V0
g(φ,Θ) > 0. Consequently, we conclude that there exists an ε > 0 such

that lim inf
t→∞

(N(t,Θ), S (t,Θ), I(t,Θ)) ≥ (ε, ε, ε) for any (φ,Θ) ∈ Z0. �

4. Numerical simulations

In this section, we carry out some numerical simulations to illustrate the theoretical results obtained
in previous sections, and numerically analyze the influence of the almost periodic time delays on the
disease transmission. The numerical computation of R̂0 and R0 is based on Lemmas 3.2 and 3.4, see
the numerical simulations in [32] for detail.

For the sake of simplicity, we first suppose that all the parameters except τ(t) are independent of
time t. In our numerical simulations, we take b(t,N) = c

z+N Day−1, where c, z > 0, which is a classical
birth rate function. Other examples of birth rate functions Λ(t,N) in the biological literature can be
found in, e.g., [5]. In this case, the population change in the absence of disease is governed by

dN(t)
dt

=
c

z + N(t − α)
e−d1αN(t − α) − µ(t)N(t). (4.1)

Corresponding to equation (3.1), the linearized equation of (2.1) at trivial solution is

dN(t)
dt

=
c
z

e−d1αN(t − α) − µN(t).

For φ ∈ AP(R,R+), the next generation operator L̂ for population model in the absence of disease is
defined as

[L̂φ](t) =

∫ ∞

0

c
z

e−µse−d1(s+α)φ(t − s − α)ds.
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Figure 2. The graph of R̂0 versus r.
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Figure 3. The population change when
R̂0 > 1.
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Figure 4. Long-term behavior of the solution of system (2.5) when R0 = 2.509 > 1.
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Figure 5. Long-term behavior of the solution of system (2.5) when R0 = 0.878 < 1.

We take z = 20, α = 365 Day, d1 = 1
365×20 Day−1 and µ = 1

365×5 Day−1. Thanks to Lemma 3.4, it

easily follows that R̂0 is in scale with c, that is, R̂1
0

c1
=

R̂2
0

c2
, where ci > 0 (i = 1, 2), R̂1

0 and R̂2
0 are the

basic reproduction ratios corresponding to c = c1 and c = c2, respectively. The graph of R̂0 versus
c is presented in Figure 2. We choose c = 0.02, in this case we have R̂0 = 1.736 > 1, and Figure
3 shows that the population is uniformly persistent in the absence of disease. A direct computation,
furthermore, shows that the equilibrium solution of equation (4.1) is ce

−d1α

µ
− z, and hence, the disease-

free equilibrium is ( ce
−d1α

µ
− z, ce

−d1α

µ
− z, 0). Thus, the linearized equation of infectious class equation at

disease-free equilibrium reads

dI(t)
dt

= (1 − τ′(t))e−µτ(t)β · (
ce
−d1α

µ
− z)I(t − τ(t)) − (µ + d + γ)I(t). (4.2)

Let β = 0.002 Day−1, d = 0.001 Day−1, γ = 0.01 Day−1 and τ(t) = 30 + 12 cos( 2πt
365 ) + sin(

√
2t

365 ) Day.
By numerical computation, we obtain R0 = 2.509 > 1. The numerical simulations further show that
the disease is uniformly persistent, see Figure 4. Similar to the relationship between R̂0 and c, it is easy
to see that R0 is in scale with β. We choose β = 0.0007 Day−1, it follows that R0 = 0.878 < 1, and
the numerical simulations indicate that the disease will vanish, see Figure 5. Clearly, the numerical
simulations are consistent with the threshold results obtained in section 3.

By Lemma 3.4, we can easily obtain the effect of parameters µ, β, c, d1, α, z, d and γ on R0, see
Table 1. If τ is a positive constant, moreover, then the numerical simulations in [20] shows that R0 is
decreasing with respect to τ. We now are interested in the sensitivity of R0 on the fluctuation of latent
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Table 1. The effect of parameters on R0 (“+”: R0 is increasing with respect to the parameter;
“-”: R0 is decreasing with respect to the parameter).

Parameter the effect on R0

µ -
β +

c +

d1 -
α -
z -
d -
γ -

period. Let τ(t) = 30 + a · (12 cos( 2πt
365 ) + sin(

√
2t

365 )) Day, a ∈ [0, 4]. It is clear that if a = 0, then latent
period is a constant delay, and the amplitude of latent period is increasing with respect to a. Let other
parameters remain unchanged, the relationship between R0 and a is presented in Figure 6. It indicates
that increasing the amplitude of latent period has a positive effect on disease transmission, but the effect
is negligible. Note that µ = 1

365×5 Day −1, it causes that the amplitude of e−µτ(t) is very small. Choose
µ = 0.02 Day −1, c = 2, and other parameters remain unchanged. By numerical simulations, in this
case, we obtain that the effect of a on R0 should not be ignored, see Figure 7.

In order to consider the effect of the fluctuation of maturation delay α(t) on R0, we let d1 = 0.02
Day−1, c = 0.05, τ(t) = τ = 30 Day, α(t) = 30 + b · (12 cos( 2πt

365 ) + sin(
√

2t
365 )) Day, b ∈ [0, 4], and other

parameters remain unchanged. Figure 8 shows the relationship between R0 and b. It indicates that the
amplitude of maturation period has a little effect on the disease transmission, and R0 is increasing with
respect to the amplitude of maturation period.

In our numerical simulations, we numerically analyze the effects of the fluctuations of maturation
and incubation periods on disease transmission. It is shown that both the amplitudes of maturation
and latent periods have a little effect on the disease transmission, and R0 is increasing with respect to
them. But if the death rates µ and d1 are very small, then the effect can be negligible. Furthermore, by
numerical computations, we obtain that the mean values of eµτ(t) and ed1α(t) are increasing with respect
to a and b, respectively, which may cause that R0 is increasing with respect to a and b.
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Figure 6. The graph of R0 versus a (case
1).
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2).
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Figure 8. The graph of R0 versus b.

5. Discussion

It is well-known in epidemiology that seasonal changes have profound effects on disease transmis-
sion. With the combination of environmental factors, stage structure and incubation period of disease,
we formulate and study an almost periodic epidemic model with time-dependent delays. The almost
periodicity reflects the influence of certain seasonal variations which are approximatively but not ex-
actly periodic, and allows one to consider general seasonal fluctuations. For this mathematical model,
we first introduce the basic reproduction ratio R̂0 for population, it can be regarded as an index of re-
productive ability of population. By the theory developed in [32], we present the threshold dynamics
for population in the absence of disease. Furthermore, in the case where R̂0 > 1, we introduce the
basic reproduction ratio R0 for disease, it provides an index of transmission intensity. With the recent
theory developed in [20], we can characterize the basic reproduction ratio R0 by the exponential growth
bound associated with a linear functional differential equation (3.2). By the skew-product semiflow,
comparison arguments and persistence theory, we show that the sign of R0 − 1 completely determines
the extinction and persistence of the disease. More precisely, the disease will be eliminated if R0 < 1,
while the disease persists in the population if R0 > 1.

In the final section, we carry out some numerical simulations to illustrate the theoretical results
obtained in previous sections, and numerically analyze the influence of the parameters of model on
the disease transmission. Note that, in particular, the maturation delay and incubation period are time-
dependent, we are interested in the dependence between R0 and the amplitudes of maturation and latent
periods. Numerical simulations indicate that both the amplitudes of maturation and latent periods have
a little effect on the disease transmission, and R0 is increasing with respect to them. But if the death
rates µ and d1 are very small, then the effect can be neglected.
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