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Abstract: We propose a stage-structured model of childhood infectious disease transmission
dynamics, with the population demographics dynamics governed by a certain family and population
planning strategy giving rise to nonlinear feedback delayed effects on the reproduction ageing and rate.
We first describe the long-term aging-profile of the population by describing the pattern and stability
of equilibrium of the demographic model. We also investigate the disease transmission dynamics,
using the epidemic model when the population reaches the positive equilibrium (limiting equation).
We establish conditions for the existence, uniqueness and global stability of the disease endemic
equilibrium. We then prove the global stability of the endemic equilibrium for the original epidemic
model with varying population demographics. The global stability of the endemic equilibrium allows
us to examine the effects of reproduction ageing and rate, under different family planning strategies, on
the childhood infectious disease transmission dynamics. We also examine demographic distribution,
diseases reproductive number, infant disease rate and age distribution of disease, and as such, the work
can be potentially used to inform targeted age group for optimal vaccine booster programs.

Keywords: childhood infectious diseases; stage structured dynamical model; delay differential
equation; stability; nonlinear feedback on reproduction ageing and rate

1. Introduction

Family planning involves consideration of the number (including the choice of zero) and spacing of
children a family wishes to have. A number of factors can impact the family planning at the individual
family level. At the population level the family planning and reproduction strategy including fertility,
birth age and spacing of children, may be heavily influenced by economical conditions and societal
resources which can be weighted heavily by the age-distribution of the entire population. In developing
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countries, policies like subsidizing education raise the earning power of women and the opportunity
cost of having children, consequently lowers fertility [1]. Access to contraceptives may also yield lower
fertility rates. In developed countries, the proportion of retired people is increasing, adding burden on
the workforce population to support pensions and social programs. Increasing high skill migration may
be an effective way to increase the return to education leading to lower fertility and a greater supply of
highly skilled individuals [1], thus address the aging population problem.

A well-known example of family planning and age-distribution of population being significantly
regulated by political and social-economic consideration is the China’s one-child policy implemented
for many years. In 1973, the Chinese government issued voluntary guidelines on fertility control to
encourage later marriage, longer spacing between births, and fewer births overall [2, 3]. In 1981,
China’s National Family Planning Commission proposed a population control policy advocating one
child per couple, which was moderated in 1984, allowing most rural families a second child [2–4].
In 2002, the policy was incorporated in the Population and Family Planning Law, at the same time,
a second child was permitted in some provinces if both husband and wife were from single-child
families [2, 3, 5]. In 2013, the policy was relaxed to allow a second child if either spouse was from a
single-child family [3, 6]. In October of 2015, the Chinese government announced a two-child policy,
effective from January 1 of 2016 [7]. The new policy that allows each couple have two children was
proposed in order to help address the population aging issue. It was reported that, starting from May
2018, Chinese authorities were in the process of ending the population control policies [8].

A consequence of this recent change of the centralized population control policy after a long-term
implementation of one-child per family policy is the obvious increasing of the family size, and
substantial heterogeneity of the reproduction age and the spacing between the first and second child in
those families with two children. This generates new close contact patterns in household and
community level and thus any issue relevant to these contact patterns must be revisited. The control
and prevention of childhood infectious diseases preventable by vaccine, such as pertussis, is one of
these critical public health issues. Taking pertussis as an example, this childhood disease can be fatal
in infants but infection can be prevented in other age groups with an effective vaccine. Pertussis
vaccines wane over time, so those children who are expected to have younger siblings need to take a
booster vaccine if (I) the prevalence of disease in the older age group and/or groups (recalling the
potential heterogeneity of spacing between two children since females in multiple age groups may
consider to give birth) is expected to be high; and (II) vaccine waning make this group of these groups
less protected and more susceptible to the disease.

To the best of my knowledge, there is no study on impact of family planning and the scale of
density-regulated birth rate on the long-term population demographic distribution and childhood
disease dynamics. However, there are a few studies which imply the impact of demographic change
on infectious disease dynamics. These work include studies on demographic transition and the
dynamics of measles in China [9], the influence of demographic change on spread of infectious
diseases [10], the impact of demographic transition on rubella transmission dynamics in China [11],
the effects of demographic change and immigration on infectious diseases in Italy [12], the effects of
demographic change on disease transmission and vaccine impact in a household structured
population [13], the dynamical consequences of demographic change in a model of disease
transmission [14] and the impact of demographic change on the estimated future burden of hepatitis B
and seasonal influenza in the Netherlands [15].
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This series of studies is dedicated to developing mathematical frameworks and analyses to examine
the patterns of childhood infectious disease transmission, to identify prevalence of disease in different
age groups, when female in multiple age intervals are giving birth to the second children. In this first
paper of the series, we start with a simple stage-structured disease transmission model, and study the
impact of family planning and the scale of density-regulated birth rate on the long-term population
demographic distribution and infant disease incidence prevalence. We conduct our analyses by varying
three parameters: birth rate, reproduction age interval(s), and the scale of the sub-population density
regulation.

In particular, we introduce a multi-stage (m-stages) stratified model, where the population is divided
by age into m groups (stages) with the i-th age stage spanning the age interval of length τi. Assume that
females in the age groups, k, k+1, · · · , l-th groups give birth. For each group, we have the classical SIS
epidemic-model, where the population is divided into the susceptible and the infectious. We consider
the situation where the infectious period is much shorter than the period of each age stage. Therefore,
the infectious individuals in the i-th age group Ii go back to the susceptible class S i before advancing
to the (i + 1)-th age group. The flowcharts of the demographic model and epidemiological model are
shown in Figures 1 and 2 respectively.

Figure 1. Flow chart of the demographic model.

Figure 2. Flow chart of the epidemiological model.

Let S i(t) be the population of the susceptible of the ith age group, Ii(t) be the population of the
infectious of the ith age group. Ni(t) denotes the total population of the ith age group at time t. The
death rate of the ith age group is given by µi; σ is the recover rate; the birth rate of the ith productive
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group is a nonlinear function bi(Ni) ; βi j is the transmission rate of the disease from stage j to stage i.
The age-stratified epidemiological model is given by the following equations:

dS 1(t)
dt

=

l∑
i=k

bi(Ni(t)) −
l∑

i=k

bi(Ni(t − τ1))e−µ1τ1 − µ1S 1(t) −
m∑

i=1

β1iS 1(t)Ii(t) + σI1(t)

dS h(t)
dt

=

l∑
i=k

bi(Ni(t −
h−1∑
j=1

τ j))e−
∑h−1

j=1 µ jτ j −

l∑
i=k

bi(Ni(t −
h∑

j=1

τ j))e−
∑h

j=1 µ jτ j

− µhS h(t) −
m∑

i=1

βhiS h(t)Ii(t) + σIh(t) for 1 < h < m

dS m(t)
dt

=

l∑
i=k

bi(Ni(t −
m−1∑
j=1

τ j))e−
∑m−1

j=1 µ jτ j − µmS m(t) −
m∑

i=1

βmiS m(t)Ii(t) + σIm(t)

dIh(t)
dt

=

m∑
i=1

βhiS h(t)Ii(t) − σIh(t) − µhIh(t) for 1 ≤ h ≤ m

(1.1)

The demographic model is given by

dN1(t)
dt

=

l∑
i=k

bi(Ni(t)) −
l∑

i=k

bi(Ni(t − τ1))e−µ1τ1 − µ1N1(t)

dNh(t)
dt

=

l∑
i=k

bi(Ni(t −
h−1∑
j=1

τ j))e−
∑h−1

j=1 µ jτ j −

l∑
i=k

bi(Ni(t −
h∑

j=1

τ j))e−
∑h

j=1 µ jτ j

− µhNh(t) for 1 < h < m

dNm(t)
dt

=

l∑
i=k

bi(Ni(t −
m−1∑
j=1

τ j))e−
∑m−1

j=1 µ jτ j − µmNm(t)

. (1.2)

2. The demographic model

In this section, we investigate the dynamics of the demographic model by studying the stability of
equilibrium.

Linearizing (1.2) at the zero equilibrium gives

dN1(t)
dt

=

l∑
i=k

b′i(0)Ni(t) −
l∑

i=k

b′i(0)Ni(t − τ1)e−µ1τ1 − µ1N1(t)

dNh(t)
dt

=

l∑
i=k

b′i(0)Ni(t −
h−1∑
j=1

τ j)e−
∑h−1

j=1 µ jτ j −

l∑
i=k

b′i(0)Ni(t −
h∑

j=1

τ j)e−
∑h

j=1 µ jτ j − µhNh(t) for 1 < h < m

dNm(t)
dt

=

l∑
i=k

b′i(0)Ni(t −
m−1∑
j=1

τ j)e−
∑m−1

j=1 µ jτ j − µmNm(t)

(2.1)
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Let λ be eigenvalue of the linear system (2.1). By calculation, the characteristic equation is given by

l∑
i=k

b′i(0)
(1 − e−(λ+µi)τi)e−λ

∑i−1
j=1 τ j−

∑i−1
j=1 µ jτ j

µi + λ
= 1 (2.2)

Now we make the following assumption:
(A1) The birth function takes the form bi(x) = pixq(x) where q(x) is a non-negative monotone

decreasing function.
Note that pi is the maximal number of children a female in age group i could give per unit time, q(x)

is the function which implies the restriction of resources, so assumption (A1) reflects the ecological
consideration that the reproduction is linear in x only for small densities and decreases as a consequence
of intra specific competition. For example, one well known birth function which takes the form in
assumption (A1) is the Ricker function b(x) = pxe−qx.

With this assumption, we have the following theorem on local stability of the zero equilibrium.

Theorem 1. Under assumptions (A1), if
∑l

i=k piq(0) e
−

∑i−1
j=1 µ jτ j (1−e−µiτi )

µi
> 1, then the zero equilibrium is

unstable; if
∑l

i=k piq(0) e
−

∑i−1
j=1 µ jτ j (1−e−µiτi )

µi
< 1, the zero equilibrium is stable.

Proof. Let G(λ) :=
∑l

i=k b′i(0)gi(λ), where gi(λ) =
(1−e−(λ+µi)τi )e

−λ
∑i−1

j=1 τ j−
∑i−1

j=1 µ jτ j

µi+λ
. Then the characteristic

equation (2.2) can be written as G(λ) = 1. Calculating the derivative gives g′i(λ) < 0 on (−µi,∞).
Furthermore, gi(λ) → 0 as λ → ∞ and gi(λ) → +∞ as λ → −µi. From assumption (A1), we have
b′i(0) = piq(0) > 0. Therefore, G(λ) is monotone decreasing on (−µ,∞) where µ = min{µi, i =

k, k + 1, ..., l}. Moreover, G(λ)→ 0 as λ→ ∞ and G(λ)→ +∞ as λ→ −µ.

If G(0) =
∑l

i=k piq(0) e
−

∑i−1
j=1 µ jτ j (1−e−µiτi )

µi
> 1, G(λ) > 1, since G(λ) is monotone decreasing on (−µ,∞)

and limλ→∞G(λ) = 0, the characteristic equation has a positive real root. So the zero equilibrium is

unstable. If G(0) =
∑l

i=k piq(0) e
−

∑i−1
j=1 µ jτ j (1−e−µiτi )

µi
< 1, G(λ) < 1, since G(λ) is monotone decreasing on

(−µ,∞), limλ→∞G(λ) = 0 and limλ→−µ G(λ) = +∞, the characteristic equation has a positive real root.
So the zero equilibrium is stable. �

Suppose that there is a positive equilibrium (N∗1 ,N
∗
2 , ...,N

∗
m), then we have

l∑
i=k

bi(N∗i ) −
l∑

i=k

bi(N∗i )e−µ1τ1 − µ1N∗1 = 0

l∑
i=k

bi(N∗i )e−
∑h−1

j=1 µ jτ j −

l∑
i=k

bi(N∗i )e−
∑h

j=1 µ jτ j − µhN∗h = 0 for 1 < h < m

l∑
i=k

bi(N∗i )e−
∑m−1

j=1 µ jτ j − µmN∗m = 0

(2.3)
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From Eq (2.3) we derive

N∗1 =
1
µ1

l∑
i=k

bi(N∗i )(1 − e−µ1τ1)

N∗h =
1
µh

l∑
i=k

bi(N∗i )e−
∑h−1

j=1 µ jτ j(1 − e−µhτh) for 1 < h < m

N∗m =
1
µm

l∑
i=k

bi(N∗i )e−
∑m−1

j=1 µ jτ j

(2.4)

The conditions for existence of this positive equilibrium is given in the following theorem.

Theorem 2. Under assumption (A1) with limx→∞ q(x) = 0, the positive equilibrium (N∗1 ,N
∗
2 , ...,N

∗
m)

exists and is unique if
∑l

i=k piq(0) e
−

∑i−1
j=1 µ jτ j (1−e−µiτi )

µi
> 1.

Proof. From Eq (2.4),

N∗h =
µ1e−

∑h−1
j=1 µ jτ j(1 − e−µhτh)

µh(1 − e−µ1τ1)
N∗1 (2.5)

for k ≤ h ≤ l. Equation (2.5) and the first equation in (2.4) imply that

µ1N∗1
1 − e−µ1τ1

=

l∑
i=k

bi(
µ1e−

∑i−1
j=1 µ jτ j(1 − e−µiτi)

µi(1 − e−µ1τ1)
N∗1) (2.6)

From assumption (A1), bi(x) = pixq(x), so Eq (2.6) becomes

1 =

l∑
i=k

pi
e−

∑i−1
j=1 µ jτ j(1 − e−µiτi)

µi
q(
µ1e−

∑i−1
j=1 µ jτ j(1 − e−µiτi)

µi(1 − e−µ1τ1)
N∗1) (2.7)

So the positive equilibrium exists if there exists a positive N∗1 such that Eq (2.7) holds. Now let G(x) =∑l
i=k pi

e
−

∑i−1
j=1 µ jτ j (1−e−µiτi )

µi
q(µ1e

−
∑i−1

j=1 µ jτ j (1−e−µiτi )
µi(1−e−µ1τ1 ) x). Since q(x) is monotone decreasing with respect to x, G(x)

is monotone decreasing function. Furthermore, limx→∞G(x) = 0. So G(x) = 1 has a unique positive

solution if and only if G(0) > 1,i.e.,
∑l

i=k piq(0) e
−

∑i−1
j=1 µ jτ j (1−e−µiτi )

µi
> 1. �

Note that Theorems 1 and 2 imply that the positive equilibrium exists and is unique if and only if
the zero equilibrium is unstable.

For the next, we study stability of this positive equilibrium.
We denote by C+

m the non-negative cone of the Banach space of continuous functions Cm = {ϕ =

(ϕ1, ϕ2, ..., ϕm) : [−r, 0] → Rmcontinuous}, where r = max{τ1, τ2, ..., τm}, i.e. C+
m = {ϕ ∈ Cm : ϕi(θ) ≥

0 f or θ ∈ [−r, 0], i = 0, 1, 2, ...,m}. By using the method of steps, it can be shown that for each
ϕ ∈ C+

m, there is a unique solution of (1.2) π(ϕ, t) = (N1(ϕ, t),N2(ϕ, t), ...,Nm(ϕ, t)) ∈ R+
m through ϕ that

is well defined and satisfies π(ϕ; .)|[−r,0] = ϕ.
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In fact, by taking integral and making substitutions, system (1.2) can be written as

N1(t) =

∫ τ1

0
e−µ1θ

l∑
i=k

bi(Ni(t − θ))dθ

Nh(t) =

∫ ∑h
j=1 τ j

∑h−1
j=1 τ j

l∑
i=k

bi(Ni(t − θ))e−
∑h−1

j=1 µ jτ j−µh(θ−
∑h−1

j=1 τ j)dθ 1 < h < m

Nm(t) =

∫ ∞

∑m−1
j=1 τ j

l∑
i=k

bi(Ni(t − θ))e−
∑m−1

j=1 µ jτ j−µm(θ−
∑m−1

j=1 τ j)dθ

(2.8)

In what follows, we give a preliminary result, then we give a theorem on global stability of the
positive equilibrium.

Lemma 1. Under assumption (A1), if the birth functions bi(x) are bounded for i = k, k + 1, ..., l, for
every ϕ ∈ C+

m with ϕi(0) > 0, i = 1, 2, ...,m, the solution π(ϕ; t) of (1.2) is bounded above for t > 0.

Proof. Let N(t) =
∑m

i=1 Ni(t). By adding up the m equations in Eq (1.2), we obtain

dN
dt

=

l∑
i=k

bi(Ni(t)) −
m∑

i=1

µiNi(t)

≤

l∑
i=k

bi(Ni(t)) − µN(t)

where µ is the smallest death rate in the m age groups, i.e., µ = min{µi, i = 1, 2, ...,m}. Since the birth
functions bi(x) are bounded for i = k, k + 1, ..., l, there are Mi for i = 1, 2, ...,m such that bi(Ni(t)) ≤ Mi.
Let M =

∑l
i=k Mi, then dN

dt ≤ M − µN(t), which means that dN
dt < 0 when N > M

µ
. So N is bounded, i.e.,

there is N̄ such that N(t) ≤ N̄ for t ≥ 0. Therefore, Ni(t) ≤ N̄ for t ≥ 0 for i = 1, 2, ...,m. The solution
π(ϕ; t) is bounded for t > 0. �

Theorem 3. Under assumption (A1) with limx→∞ q(x) = 0, if
∑l

i=k piq(0) e
−

∑i−1
j=1 µ jτ j (1−e−µiτi )

µi
> 1 and∑l

i=k
|b′i (N

∗
i )|e

−
∑i−1

j=1 µ jτ j (1+e−µiτi )
µi

< 1, then the positive equilibrium (N∗1 ,N
∗
2 , ...,N

∗
m) is locally stable.

Proof. The linearized equations at the endemic equilirbium (N∗1 ,N
∗
2 , ...,N

∗
m) of system (1.2) is given by

dN1(t)
dt

=

l∑
i=k

b′i(N
∗
i )Ni(t) −

l∑
i=k

b′i(N
∗
i )Ni(t − τ1)e−µ1τ1 − µ1N1(t)

dNh(t)
dt

=

l∑
i=k

b′i(N
∗
i )Ni(t −

h−1∑
j=1

τ j)e−
∑h−1

j=1 τ j −

l∑
i=k

b′i(N
∗
i )Ni(t −

h∑
j=1

τ j)e−
∑h

j=1 τ j − µhNh(t) for 1 < h < m

dNm(t)
dt

=

l∑
i=k

b′i(N
∗
i )Ni(t −

m−1∑
j=1

τ j)e−
∑m−1

j=1 µ jτ j − µmNm(t)

(2.9)
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Let λ be eigenvalue of the linear system (2.9). By calculation, the characteristic equation is given by
l∑

i=k

b′i(N
∗
i )

(1 − e−(λ+µi)τi)e−λ
∑i−1

j=1 τ j−
∑i−1

j=1 µ jτ j

µi + λ
= 1 (2.10)

Suppose that the characteristic equation (2.10) has an eigenvalue with non-negative real part, i.e., there
exits λ = x + iy such that x ≥ 0, then∣∣∣∣∣∣∣b′i(N∗i )

(1 − e−(λ+µi)τi)e−λ
∑i−1

j=1 τ j−
∑i−1

j=1 µ jτ j

µi + λ

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣b′i(N∗i )
(1 − e−(x+iy+µi)τi)e−(x+iy)

∑i−1
j=1 τ j−

∑i−1
j=1 µ jτ j

µi + x + iy

∣∣∣∣∣∣∣
≤

∣∣∣b′i(N∗i )
∣∣∣
∣∣∣1 − e−(x+iy+µi)τi

∣∣∣ ∣∣∣∣e−(x+iy)
∑i−1

j=1 τ j−
∑i−1

j=1 µ jτ j

∣∣∣∣
|µi + x + iy|

≤
∣∣∣b′i(N∗i )

∣∣∣
∣∣∣1 − e−(x+µi)τi(cos yτi − i sin yτi)

∣∣∣ ∣∣∣∣e−∑i−1
j=1 µ jτ j

∣∣∣∣
|µi + x + iy|

=
∣∣∣b′i(N∗i )

∣∣∣ √
(1 − e−(x+µi)τi cos yτi)2 + (e−(x+µi)τi sin yτi)2

∣∣∣∣e−∑i−1
j=1 µ jτ j

∣∣∣∣√
(x + µi)2 + y2

≤
∣∣∣b′i(N∗i )

∣∣∣ √
1 + e−2(x+µi) − 2e−(x+µi)τi cos yτi

∣∣∣∣e−∑i−1
j=1 µ jτ j

∣∣∣∣
µi

≤
∣∣∣b′i(N∗i )

∣∣∣ √1 + e−2(x+µi) + 2e−(x+µi)τi

∣∣∣∣e−∑i−1
j=1 µ jτ j

∣∣∣∣
µi

=
∣∣∣b′i(N∗i )

∣∣∣ (1 + e−(x+µi)τi)e−
∑i−1

j=1 µ jτ j

µi

≤
∣∣∣b′i(N∗i )

∣∣∣ (1 + e−µiτi)e−
∑i−1

j=1 µ jτ j

µi

(2.11)

Therefore, Eq (2.10) and inequality (2.11) indicate that

1 =

∣∣∣∣∣∣∣
l∑

i=k

b′i(N
∗
i )

(1 − e−(λ+µi)τi)e−λ
∑i−1

j=1 τ j−
∑i−1

j=1 µ jτ j

µi + λ

∣∣∣∣∣∣∣
≤

l∑
i=k

∣∣∣∣∣∣∣b′i(N∗i )
(1 − e−(λ+µi)τi)e−λ

∑i−1
j=1 τ j−

∑i−1
j=1 µ jτ j

µi + λ

∣∣∣∣∣∣∣
≤

l∑
i=k

∣∣∣b′i(N∗i )
∣∣∣ (1 + e−µiτi)e−

∑i−1
j=1 µ jτ j

µi

(2.12)

which contradicts with the assumption that
∑l

i=k
|b′i (N

∗
i )|e

−
∑i−1

j=1 µ jτ j (1+e−µiτi )
µi

< 1. So the characteristic
equation (2.10) has no eigenvalue with non-negative real part, the positive equilibrium (N∗1 ,N

∗
2 , ...,N

∗
m)

is locally stable.
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�

Theorem 4. Under assumption (A1) with limx→∞ q(x) = 0 and the birth functions bi(x) bounded for
i = k, k + 1, ..., l, assume that µh = µ and τh = τ for some µ > 0, τ > 0 and all k ≤ h ≤ l. If∑l

i=k
|b′i (N

∗
i )|e

−
∑i−1

j=1 µ jτ j (1+e−µiτi )
µi

< 1, then the positive equilibrium (N∗1 ,N
∗
2 , ...,N

∗
m) is globally stable. i.e.,

limt→∞ π(ϕ; t) = (N∗1 ,N
∗
2 , ...,N

∗
m) for ϕ ∈ C+

m with ϕi(0) > 0.

Proof. Let {Ni(t)} be a solution of Eq (1.2). Since it’s bounded, we can define

δi = lim inf
t→∞

Ni(t), γi = lim sup
t→∞

Ni(t)

Let h be such that k ≤ h ≤ l, i.e. Nh is a productive group. There exists a sequence {tn} and a
sequence {sn} such that limn→∞ Nh(tn) = γh and limn→∞ Nh(sn) = δh. So there exists some ε > 0 such
that δi − ε < Ni(tn) < γi + ε and δi − ε < Ni(sn) < γi + ε for n large enough for all k ≤ i ≤ l.

From the integrated equation (2.8),

Nh(tn) <
∫ ∑h

j=1 τ j

∑h−1
j=1 τ j

l∑
i=k

pi(γi + ε)q(δi − ε)e−
∑h−1

j=1 µ jτ j−µh(θ−
∑h−1

j=1 τ j)dθ

Let n→ ∞ and ε → 0, the inequality becomes

γh ≤

∫ ∑h
j=1 τ j

∑h−1
j=1 τ j

l∑
i=k

piγiq(δi)e−
∑h−1

j=1 µ jτ j−µh(θ−
∑h−1

j=1 τ j)dθ

=

l∑
i=k

piγiq(δi)e−
∑h−1

j=1 µ jτ j+µh
∑h−1

j=1 τ j

∫ ∑h
j=1 τ j

∑h−1
j=1 τ j

e−µhθdθ

=

l∑
i=k

piγiq(δi)
(1 − e−µhτh)e−

∑h−1
j=1 µ jτ j

µh
q(δi)

(2.13)

Now let A :=
∑l

i=k piγiq(δi), Eq (2.13) implies that

A =

l∑
i=k

piγiq(δi) ≤
l∑

i=k

piA
(1 − e−µiτi)e−

∑i−1
j=1 µ jτ j

µi
q(δi)

which further implies that
l∑

i=k

piq(δi)
(1 − e−µiτi)e−

∑i−1
j=1 µ jτ j

µi
≥ 1 (2.14)

Let B :=
∑l

i=k piN∗i q(N∗i ), from Eq (2.4)

B =

l∑
i=k

piN∗i q(N∗i ) =

l∑
i=k

piB
(1 − e−µiτi)e−

∑i−1
j=1 µ jτ j

µi
q(N∗i )

so
l∑

i=k

pi
(1 − e−µiτi)e−

∑i−1
j=1 µ jτ j

µi
q(N∗i ) = 1 (2.15)
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From assumption (A1), q(x) is monotone decreasing, then Eqs (2.14) and (2.15) imply that there exists
h1 such that k ≤ h1 ≤ l and δh1 ≤ N∗h1

. From the integrated equation (2.8),

Nh(sn) >
∫ ∑h

j=1 τ j

∑h−1
j=1 τ j

l∑
i=k

pi(δi − ε)q(γi + ε)e−
∑h−1

j=1 µ jτ j−µh(θ−
∑h−1

j=1 τ j)dθ

Following similar calculation as inequalities (2.13) and (2.14), we obtain

l∑
i=k

piq(γi)
(1 − e−µiτi)e−

∑i−1
j=1 µ jτ j

µi
≤ 1. (2.16)

From assumption (A1), q(x) is monotone decreasing, then Eqs (2.15) and (2.16) imply that there exists
h2 such that k ≤ h2 ≤ l and γh2 ≥ N∗h2

.
By substituting variables, from Eqs (2.4) and (2.8) we obtain

(Nk(t) − N∗k )e
∑k−1

j=1 µ jτ j =

∫ ∑k
j=1 τ j

∑k−1
j=1 τ j

l∑
i=k

(bi(Ni(t − θ) − bi(N∗i ))e−µk(θ−
∑k−1

j=1 τ j)dθ (2.17)

and

(Nh(t) − N∗h)e
∑h−1

j=1 µ jτ j =

∫ ∑k−1
j=1 τ j+τh

∑k−1
j=1 τ j

l∑
i=k

(bi(Ni(t − θ) − bi(N∗i ))e−µh(θ−
∑k−1

j=1 τ j)dθ (2.18)

Since µh = µ and τh = τ for k ≤ h ≤ l, Eqs (2.17) and (2.18) imply that

(Nk(t) − N∗k )e
∑k−1

j=1 µ jτ j = (Nh(t) − N∗h)e
∑h−1

j=1 µ jτ j (2.19)

for k ≤ h ≤ l.
Scenario 1: γk = N∗k
In this scenario, since the positive equilibrium is locally stable, δk = γk = N∗k , and limt→∞ Nk(t) =

N∗k . From Eq (2.19), limt→∞ Nh(t) = N∗h for all k ≤ h ≤ l.
Scenario 2: γk > N∗k
In this scenario, since the positive equilibrium is locally stable, δk > N∗k , then Nk(t) > N∗k for t large

enough. From Eq (2.19), Nh1(t) > N∗h1
for t large enough, which means that δh1 ≥ N∗h1

. Since we have
δh1 ≤ N∗h1

from previous discussion, δh1 = N∗h1
. Therefore, δh1 = γh1 = N∗h1

, i.e., limt→∞ Nh1(t) = N∗h1
.

From Eq (2.19), limt→∞ Nh(t) = N∗h for all k ≤ h ≤ l.
Scenario 3: γk < N∗k
Then δk < N∗k and Nk(t) < N∗k for t large enough. From Eq (2.19), Nh2(t) < N∗h2

for t large enough,
which implies that γh2 ≤ N∗h2

. Since we have γh2 ≥ N∗h2
from previous discussion, γh2 = N∗h2

. i.e.,
limt→∞ Nh2(t) = N∗h2

. From Eq (2.19), limt→∞ Nh(t) = N∗h for all k ≤ h ≤ l.
From discussion above, limt→∞ Nh(t) = N∗h for all k ≤ h ≤ l. Then by the integral equation (2.8),

limt→∞ Nh(t) = N∗h for all 1 ≤ h ≤ m. �
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3. The epidemic model

Now we focus on the epidemic model, which is an ODE system given by

dIh(t)
dt

=

m∑
i=1

βhi(Nh(t) − Ih(t))Ii(t) − σIh(t) − µhIh(t) for 1 ≤ h ≤ m (3.1)

Note that Eq (3.1) is derived from the last equation in (1.1) by replacing S h(t) by Nh(t) − Ih(t).
Suppose that the population has reached the positive equilibrium, then system (3.1) is given by

dIh(t)
dt

=

m∑
i=1

βhi(N∗h − Ih(t))Ii(t) − σIh(t) − µhIh(t) for 1 ≤ h ≤ m (3.2)

Let I = (I1, I2, ..., Im)T , the flow of the solution of system (3.2) with initial value I0 = (I0
1 , I

0
2 , ..., I

0
m) is

given by φt(I0). Let V = (0,N∗1) × (0,N∗2) × ... × (0,N∗m). We have the following conclusion

Theorem 5. If I0
i ∈ (0,N∗i ), then φti(I0) ∈ (0,N∗i ), i.e., V is invariant under the flow φt.

Proof. Suppose that there is a smallest t0 such that there is j ∈ {1, 2, ...,m} such that I j(t0) = 0. Since
I(t) is not constant 0, we have dI j(t)

dt |t=t0 =
∑m

i=1 βhi(N∗h − Ih(t0))Ii(t0) > 0. On the other hand, since t0 is
the smallest s.t. I j(t0) = 0, dI j(t)

dt |t=t0 = limε→0
I j(t0−ε)−I j(t0)

−ε
≤ 0, which is a contradiction. So I j(t) > 0 for

all 1 ≤ j ≤ m and all t > 0 with initial value in V .
Similarly, suppose that there is a smallest t0 such that there is j ∈ {1, 2, ...,m} such that I j(t0) = N∗j ,

then from Eq (3.2), dI j

dt |t=t0 = −σIh(t0) − µhIh(t0) < 0. On the other hand, since t0 is the smallest
s.t.I j(t0) = N∗j ,

dI j(t)
dt |t=t0 = limε→0

I j(t0−ε)−I j(t0)
−ε

≥ 0, which is a contradiction. So I j(t) < 0 for all 1 ≤ j ≤ m
and all t > 0 with initial value in V . �

3.1. Disease-free equilibrium of the epidemic model

Equation (3.2) has (0, 0, ..., 0) as the disease-free equilibrium. Linearization around this equilibrium
gives the following linear system

dIh(t)
dt

=

m∑
i=1

βhiN∗h Ii(t) − σIh(t) − µhIh(t) (3.3)

for 1 ≤ h ≤ m Following the method in [16], we get

F =


β11N∗1 β12N∗1 · · · β1mN∗1
β21N∗2 β22N∗2 · · · β2mN∗2
...

...
. . .

...

βm1N∗m βm2N∗m · · · βmmN∗m


and

V =


σ + µ1 0 · · · 0

0 σ + µ2 · · · 0
...

...
. . .

...

0 0 · · · σ + µm


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Then we have

FV−1 =



β11N∗1
σ+µ1

β12N∗1
σ+µ2

· · ·
β1mN∗1
σ+µm

β21N∗2
σ+µ1

β22N∗2
σ+µ2

· · ·
β2mN∗2
σ+µm

...
...

. . .
...

βm1N∗m
σ+µ1

βm2N∗m
σ+µ2

· · ·
βmmN∗m
σ+µm


In particular, if we assume that βi j = αiλ j, it can be calculated from induction that the characteristic
equation of FV−1 is given by λm−1(λ −

∑m
i=1

αiλiN∗i
σ+µi

) = 0, then

R0 = ρ(FV−1) =

m∑
i=1

αiλiN∗i
σ + µi

The following theorem follows

Theorem 6. Assume that βi j = αiλ j. Then when
∑m

i=1
αiλiN∗i
σ+µi

< 1, the disease-free equilibrium of

system (3.2) is stable; when
∑m

i=1
αiλiN∗i
σ+µi

> 1, the disease-free equilibrium of system (3.2) is unstable.

For the assumption βi j = αiλ j, if we assume that the population is homogeneously mixed, αi can be
interpreted as susceptibility of age group i and λ j can be interpreted as infectivity of age group j.

3.2. Endemic equilibrium of the epidemic model

Suppose system (3.2) has a nontrivial equilibrium (I∗1, I
∗
2, ..., I

∗
m), by plugging in the Eq (3.2) we

derive
m∑

i=1

βhi(N∗h − I∗h)I∗i − σI∗h − µhI∗h = 0 (3.4)

for 1 ≤ h ≤ m. In particular, if we assume that βi j = αiλ j, then Eq (3.4) can be written as

(N∗h − I∗h)
m∑

i=1

αhλiI∗i − σI∗h − µhI∗h = 0 (3.5)

for 1 ≤ h ≤ m. From Eq (3.5) we get
m∑

i=1

λiI∗i =
(σ + µh)I∗h
αh(N∗h − I∗h)

(3.6)

for 1 ≤ h ≤ m. and
σ + µh

αh(N∗h/I
∗
h − 1)

=
σ + µ1

α1(N∗1/I
∗
1 − 1)

Now let Mi =
N∗i
I∗i
− 1 and li =

σ+µi
αi

, then
li

Mi
=

l1

M1

Plugging I∗i =
N∗i

Mi+1 into Eq (3.6) with h = 1, we have

m∑
i=1

λiN∗i
Mi + 1

=
l1

M1
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It follows that
m∑

i=1

λiN∗i
li + l1/M1

= 1

Now define G : (0,N∗1) −→ R by

G(x) =

m∑
i=1

λiN∗i
li + l1/M

(3.7)

where M =
N∗1
x − 1. Then I∗1 is a solution of G(x) = 1.

Note that G(x) is monotone non-increasing with respect to x, G(x) −→ 0 as x −→ N∗1 and G(x) −→∑m
i=1

λiN∗i
li

as x −→ 0. So G(x) = 1 has a solution in (0,N∗1) if and only if
∑m

i=1
λiN∗i

li
> 1, and the solution

is unique by monotonicity of G(x).

Note that R0 =
∑m

i=1
λiN∗i

li
. We conclude that

Theorem 7. Assume that βi j = αiλ j. The endemic equilibrium of system (3.2) exists and is unique if
and only if R0 =

∑m
i=1

λiN∗i
li
> 1.

Now we state the following theorem on global stability of the endemic equilibrium.

Theorem 8. Assume that βi j = αiλ j.Let V = (0,N∗1)× (0,N∗2)× ...× (0,N∗m). If R0 > 1, then the endemic
equilibrium {I∗i } of system (3.2) attracts all the forward orbits going through V.

Proof. Let F : V −→ Rm be defined by Fh(I1, I2, ..., Im) =
∑m

i=1 βhi(N∗h − Ih)Ii − σIh − µhIh.
It suffices to prove that

(H1) System (3.2) is cooperative, i.e., ∂Fh
∂I j
≥ 0 for h , j.

(H2) F is irreducible in the sense that the matrix [∂Fh
∂I j

] is irreducible.

(H3) Solutions of Eq (3.2) with initial value (I0
1 , I

0
2 , ..., I

0
m) such that

∣∣∣I0
h

∣∣∣ ≤ N∗h are bounded.

Then by Theorems 1.5 and 2.4 in [17], (H1) and (H2) imply that system (3.2) doesn’t have a non-
constant periodic solution. By Theorem 1.1 in [17], (H1) and (H2) also imply that the solution flows of
Eq (3.2) going through V have positive derivatives. Then by Theorem 4.1 in [17] and (H3) we conclude
that almost all forward orbits of V converge to the endemic equilibrium {I∗i }.

(H1) ∂Fh
∂I j

= βh j(N∗h − Ih) > 0 for h , j.

(H2) ∂Fh
∂Ih

= βhh(N∗h − Ih) −
∑m

i=1 βhiIi − σ − µh. Now let A = [∂Fh
∂I j

]. Ah j = ∂Fh
∂I j

> 0 for h , j by (H1).
Suppose there is 1 ≤ h ≤ m such that Ahh ≤ 0, A2

hh =
∑m

i=1 AhiAih > 0. Therefore, for each pair of
indices h and j, there exists a natural number n such that An

h j is positive, which implies that the matrix
A is irreducible.

(H3) It can be derived directly from Theorem 5. �

Now if we look back on the original epidemic model (3.1), we have the following Theorem from
Theorem 8.

Theorem 9. Under assumption (A1) with limx→∞ q(x) = 0, assume that βi j = αiλ j and µh = µ,
τh = τ for some µ > 0, τ > 0 and all k ≤ h ≤ l.Let V = (0,N∗1) × (0,N∗2) × ... × (0,N∗m). If∑l

i=k
|b′i (N

∗
i )|e

−
∑i−1

j=1 µ jτ j (1+e−µiτi )
µi

< 1 and R0 > 1, then {I∗i } attracts all the forward orbits going through V in
system (3.1).
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Proof. From Theorem 4, limt→∞ Nh(t) = N∗h for all 1 ≤ h ≤ m. Denote Φ(t, s, x0) the solution of
system (3.1) with x(s) = x0, and denote Θ(t, x0) the solution of system (3.2) with y(0) = x0. Then
by Proposition 1.1 in [18], Φ is asymptotically autonomous semiflow with limit semiflow Θ. Let
OΦ(s, x) = {Φ(t, s, x) : t ≥ s}, x ∈ V , then OΦ(s, x) has compact closure in V since it’s bounded.
Let ω = ω(s, x) which is the ω-limit set of OΦ(s, x). By Theorem 1.8 in [18], we conclude that ω is
non-empty, compact and connected, and it attracts Φ(t, s, x). Moreover, ω is invariant for the semiflow
Θ and is chain recurrent for Θ.

Now suppose thatω , {I∗i }. There exists x = (x1, x2, ..., xm) ∈ ω such that x , {I∗i }. Let ε = d(x, {I∗i }).
Since ω is compact, there exists T > 0 such that d(Θ(t, x0), {I∗i }) < ε

2 for all x0 ∈ ω and t ≥ T .
By the definition of chain recurrence, there is an ( ε2 ,T ) chain from x to x, i.e., there is a sequence
{x = x1, x2, ..., xn+1 = x; t1, t2, ..., tn} for xi ∈ ω and ti ≥ T such that d(Θ(ti, xi), xi+1) < ε

2 . Then
d(Θ(tn, xn), x) < ε

2 , which indicates that d(x, {I∗i }) ≤ d(Θ(tn, xn), x) + d(Θ(tn, xn), {I∗i }) <
ε
2 + ε

2 = ε,
which contradicts with ε = d(x, {I∗i }). Therefore, ω = {I∗i }, i.e., {I∗i } attracts all the forward orbits going
through V in system (3.1). �

4. Impact of change of productive age and birth rates on infant disease rate

In this section, we assume that the birth rate of age group i is given by bi(Ni) = piNie−qN , we’ll
analyze how do demographic distribution N∗i

N and infant disease rate at endemic equilibrium I∗1
N∗1

change
with birth parameters pi, q and productive age k.

By plugging bi(Ni) = piNie−qN into Eq (2.4), we have

l∑
i=k

piN∗i e−qN =
µhN∗h

e−
∑h−1

j=1 µ jτ j(1 − e−µhτh)

for 1 ≤ h ≤ m.
N∗i
N∗h

=
µhe−

∑i−1
j=1 µ jτ j(1 − e−µiτi)

µie−
∑h−1

j=1 µ jτ j(1 − e−µhτh)
for 1 < i, h < m. Combine the above two formulas, we have

l∑
i=k

pi
µhe−

∑i−1
j=1 µ jτ j(1 − e−µiτi)

µie−
∑h−1

j=1 µ jτ j(1 − e−µhτh)
N∗he−qN =

µhN∗h
e−

∑h−1
j=1 µ jτ j(1 − e−µhτh)

Thus
l∑

i=k

pie−
∑i−1

j=1 µ jτ j(1 − e−µiτi)
µi

= eqN

Solving for N gives

N =
1
q

In
l∑

i=k

pie−
∑i−1

j=1 µ jτ j(1 − e−µiτi)
µi

(4.1)

From Eq (2.4), we define

Q :=
µ1N∗1

1 − e−µ1τ1
=

µhN∗h
e−

∑h−1
j=1 µ jτ j(1 − e−µhτh)

=
µmN∗m

e−
∑m−1

j=1 µ jτ j
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for 1 ≤ h ≤ m. It follows that

N∗1 =
1 − e−µ1τ1

µ1
Q

N∗h =
e−

∑h−1
j=1 µ jτ j(1 − e−µhτh)

µh
Q for 1 < h < m

N∗m =
e−

∑m−1
j=1 µ jτ j

µm
Q

(4.2)

By plugging Eq (4.2) into N =
∑m

h=1 N∗h , we have

N = (
1 − e−µ1τ1

µ1
+

m−1∑
h=1

e−
∑h−1

j=1 µ jτ j(1 − e−µhτh)
µh

+
e−

∑m−1
j=1 µ jτ j

µm
)Q (4.3)

Equations (4.2) and (4.3) give

N∗1
N

=

1−e−µ1τ1

µ1

1−e−µ1τ1

µ1
+

∑m−1
h=1

e
−

∑h−1
j=1 µ jτ j (1−e−µhτh )

µh
+ e

−
∑m−1

j=1 µ jτ j

µm

N∗h
N

=

e
−

∑h−1
j=1 µ jτ j (1−e−µhτh )

µh

1−e−µ1τ1

µ1
+

∑m−1
h=1

e
−

∑h−1
j=1 µ jτ j (1−e−µhτh )

µh
+ e

−
∑m−1

j=1 µ jτ j

µm

for 1 < h < m

N∗m
N

=

e
−

∑m−1
j=1 µ jτ j

µm

1−e−µ1τ1

µ1
+

∑m−1
h=1

e
−

∑h−1
j=1 µ jτ j (1−e−µhτh )

µh
+ e

−
∑m−1

j=1 µ jτ j

µm

(4.4)

It’s obvious from Eq (4.4) that change of pi, q and k don’t make a change on the demographic
distribution N∗h

N for 1 ≤ h ≤ m.

Proposition 10. Assume that the birth rate of age group i is given by bi(Ni) = piNie−qN . The stablized
demographic distribution N∗h/N doesn’t change with birth parameters pi, q and reproductive age k.

Note that change of pi, q and k does have an impact on the total number N and N∗h , though they
don’t influence the ratio N∗h/N.

It can be seen from Eq (4.1) that N increases as pi increases, decreases as q or k increases, so does
N∗h for all 1 ≤ h ≤ m.

Now we study the impact of changes of pi, q and k on the infant disease rate I∗1
N∗1

.
In the last section, we get that when R0 > 1, there is a endemic equilibrium of system 3.2 where I∗1

satisfies
∑m

i=1
λi

N∗i
N N

li+
l1

M1

= 1 where li =
σ+µi
αi

and Mi =
N∗i
I∗i
− 1. By taking derivative with respect to q, we get

m∑
i=1

λi
N∗i
N

dN
dq (li + l1

M1
) + l1

M2
1

dM1
dq λiN∗i

(li + l1
M1

)2
= 0
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So
dM1

dq
= −

m∑
i=1

λi
N∗i
N

dN
dq (li + l1

M1
)

(li + l1
M1

)2
/

m∑
i=1

l1
M2

1
λiN∗i

(li + l1
M1

)2
> 0 (4.5)

which means that N∗1
I∗1

increases as q increases, so I∗1
N∗1

decreases as q increases.
Similarly, we have

dM1

dpi
= −

m∑
i=1

λi
N∗i
N

dN
dpi

(li + l1
M1

)

(li + l1
M1

)2
/

m∑
i=1

l1
M2

1
λiN∗i

(li + l1
M1

)2
< 0 (4.6)

which means that N∗1
I∗1

decreases as pi increases, so I∗1
N∗1

increases as pi increases.

If k gets larger, N gets smaller as discussed above, N∗i
N doesn’t change, since we have

∑m
i=1

λi
N∗i
N N

li+
l1

M1

= 1,

l1
M1

decreases thus M1 =
N∗1
I∗1

increases. So I∗1
N∗1

gets smaller. By the same argument, if k gets smaller, I∗1
N∗1

gets larger.
In conclusion, we have

Proposition 11. Assume that the birth rate of age group i is given by bi(Ni) = piNie−qN . With all the
other parameters fixed, the infant disease rate at endemic equilibrium I∗1

N∗1
increases as birth rate pi

increases, and decreases as the productive age k or q increases.

5. Impact of change of productive age and birth rates on disease distribution

In this section, we assume that R0 > 1 and the birth rate of age group i is given by bi(Ni) = piNie−qN ,
we’ll analyze how does disease distribution I∗i

I∗ at endemic equilibrium change with birth parameters pi

and q.

From Eq (3.6) we define H := αh(N∗h/I
∗
h−1)

σ+µh
for any 1 ≤ h ≤ m, then

I∗h =
αh

(σ + µh)H + αh

N∗h
N

N (5.1)

and

I∗ =

m∑
j=1

I∗j =

m∑
j=1

α j

(σ + µ j)H + α j

N∗j
N

N (5.2)

Therefore,
I∗h
I∗

=

αh
(σ+µh)H+αh

N∗h
N∑m

j=1
α j

(σ+µ j)H+α j

N∗j
N

(5.3)

Let Qh :=
∑m

j=1
α j(σ+µ j)

((σ+µ j)H+α j)2

N∗j
N −

σ+µh
(σ+µh)H+αh

∑m
j=1

α j

(σ+µ j)H+α j

N∗j
N

Proposition 12. Assume that R0 > 1 and the birth rate of age group i is given by bi(Ni) = piNie−qN .
With all the other parameters fixed, how I∗h

I∗ changes with q, pi and k depends on the sign of Qh: I∗h
I∗
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increases as q increases if Qh > 0 and decreases as q increases if Qh < 0; I∗h
I∗ decreases as pi increases

if Qh > 0 and increases as pi increases if Qh < 0. In particular, if 1 ≤ h ≤ m is such that αh
σ+αh

<
α j

σ+α j

for all j , h, I∗h
I∗ decreases as q increases and increases as pi increases; if 1 ≤ h ≤ m is such that

αh
σ+αh

>
α j

σ+α j
for all j , h, I∗h

I∗ increases as q increases and decreases as pi increases.

Proof. From Eq (5.3) and the conclusion we get that
N∗j
N doesn’t change with q, pi or k

d(
I∗h
I∗

)/dq

=
d( αh

(σ+µh)H+αh

N∗h
N )/dq

∑m
j=1

α j

(σ+µ j)H+α j

N∗j
N − d(

∑m
j=1

α j

(σ+µ j)H+α j

N∗j
N )/dq αh

(σ+µh)H+αh

N∗h
N

(
∑m

j=1
α j

(σ+µ j)H+α j

N∗j
N )2

=
−

αh
((σ+µh)H+αh)2

N∗h
N (σ + µh)dH

dq

∑m
j=1

α j

(σ+µ j)H+α j

N∗j
N +

∑m
j=1

α j

((σ+µ j)H+α j)2

N∗j
N (σ + µ j)dH

dq
αh

(σ+µh)H+αh

N∗h
N

(
∑m

j=1
α j

(σ+µ j)H+α j

N∗j
N )2

=
(
∑m

j=1
α j(σ+µ j)

((σ+µ j)H+α j)2

N∗j
N −

σ+µh
(σ+µh)H+αh

∑m
j=1

α j

(σ+µ j)H+α j

N∗j
N ) αh

(σ+µh)H+αh

dH
dq

N∗h
N

(
∑m

j=1
α j

(σ+µ j)H+α j

N∗j
N )2

=
Qh

αh
(σ+µh)H+αh

dH
dq

N∗h
N

(
∑m

j=1
α j

(σ+µ j)H+α j

N∗j
N )2

From last section d( N∗h
I∗h

)/dq > 0, which implies that dH
dq > 0. So we have d( I∗h

I∗ )/dq > 0 if Qh > 0

and d( I∗h
I∗ )/dq < 0 if Qh < 0, which means that I∗h

I∗ increases as q increases if Qh > 0 and decreases
as q increases if Qh < 0. In particular, if 1 ≤ h ≤ m is such that αh

σ+αh
<

α j

σ+α j
for all j , h, then

σ+µh
(σ+µh)H+αh

>
σ+µ j

(σ+µ j)H+α j
, which implies that Qh < 0 thus d( I∗h

I∗ )/dq < 0, I∗h
I∗ decreases as q increases; if

1 ≤ h ≤ m is such that αh
σ+αh

>
α j

σ+α j
for all j , h, then σ+µh

(σ+µh)H+αh
<

σ+µ j

(σ+µ j)H+α j
, which implies that Qh > 0

thus d( I∗h
I∗ )/dq > 0, I∗h

I∗ increases as q increases.

Similarly, we have

d(
I∗h
I∗

)/dpi =
Qh

αh
(σ+µh)H+αh

dH
dpi

N∗h
N

(
∑m

j=1
α j

(σ+µ j)H+α j

N∗j
N )2

From last section we have d( N∗h
I∗h

)/dpi < 0, which implies that dH
dpi

< 0. So we have d( I∗h
I∗ )/dpi < 0 if

Qh > 0 and d( I∗h
I∗ )/dpi > 0 if Qh < 0, which means that I∗h

I∗ decreases as pi increases if Qh > 0 and
increases as pi increases if Qh < 0. In particular, if 1 ≤ h ≤ m is such that αh

σ+αh
<

α j

σ+α j
for all j , h,

then σ+µh
(σ+µh)H+αh

>
σ+µ j

(σ+µ j)H+α j
, which implies that Qh < 0 thus d( I∗h

I∗ )/dpi > 0, I∗h
I∗ increases as pi increases;

if 1 ≤ h ≤ m is such that αh
σ+αh

>
α j

σ+α j
for all j , h, then σ+µh

(σ+µh)H+αh
<

σ+µ j

(σ+µ j)H+α j
, which implies that

Qh > 0 thus d( I∗h
I∗ )/dpi < 0, I∗h

I∗ decreases as pi increases.

�
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6. Family planning strategies

In this section, we study how family planning strategies influence demographic distribution at
equilibrium, basic reproduction number and infant disease rate.

For simplicity, we assume that there are only two productive age groups, the kth and (k + 1)th
group. We also assume that the birth function takes a more general form bi(Ni) = piq(Nk + Nk+1)Ni for
i = k, k + 1, where q is a decreasing function. Since the maximal children each female has per unit
time in age group i, given by pi, are dependent on each other, more precisely, pk + pk+1 = b for some
constant b, which is the maximal children each female has per unit time, we assume that pk = bα and
pk+1 = b(1 − α), then α indicates the tendency to have children at an earlier age. We study how α

influence demographic distribution at equilibrium, basic reproduction number and infant disease rate.

6.1. Impact of family planning strategy on demographic distribution at equilibrium

From Eq (2.4), we have

N∗1 =
1
µ1

(bαq(N∗k + N∗k+1)N∗k + b(1 − α)q(N∗k + N∗k+1)N∗k+1)(1 − e−µ1τ1)

N∗h =
1
µh

(bαq(N∗k + N∗k+1)N∗k + b(1 − α)q(N∗k + N∗k+1)N∗k+1)e−
∑h−1

j=1 µ jτ j(1 − e−µhτh) for 1 < h < m

N∗m =
1
µm

(bαq(N∗k + N∗k+1)N∗k + b(1 − α)q(N∗k + N∗k+1)N∗k+1)e−
∑m−1

j=1 µ jτ j

(6.1)

Further calculation gives

Q =
µ1N∗1

1 − e−µ1τ1
=

µhN∗h
e−

∑h−1
j=1 µ jτ j(1 − e−µhτh)

=
µmN∗m

e−
∑m−1

j=1 µ jτ j

where
Q = bαq(N∗k + N∗k+1)N∗k + b(1 − α)q(N∗k + N∗k+1)N∗k+1

This implies that α doesn’t influence the demographic distribution at equilibrium.

6.2. Impact of family planning strategy on the basic reproduction number and infant disease rate

Define

ai,k =
µke−

∑i−1
j=1 µ jτ j(1 − e−µiτi)

µie−
∑k−1

j=1 µ jτ j(1 − e−µkτk)

for 1 < i, k < m. By plugging bi(Ni) = piq(Nk + Nk+1)Ni into the equation for N∗k in Eq (6.1), we obtain

q((1 + ak+1,k)N∗k ) =
µk

(bα + b(1 − α)ak+1,k)e−
∑k−1

j=1 (1 − e−µkτk)
(6.2)

Define F(α) := bα + b(1 − α)ak+1,k, then F′(α) = b(1 − ak+1,k). From Eq (6.2), we have the following
conclusions: If ak+1,k > 1, then F′(α) < 0, q is monotone increasing with respect to α, thus N∗k is
monotone decreasing with respect to α; if ak+1,k < 1, then F′(α) > 0, q is monotone decreasing with
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respect to α, thus N∗k is monotone increasing with respect to α; if ak+1,k = 1, then F′(α) = 0, q doesn’t
change with α, thus N∗k doesn’t change with α.
Note that the basic reproduction number is given by

R0 =

m∑
i=1

αiλiN∗i
σ + µi

=

m∑
i=1

αiλi
N∗i
N∗k

σ + µi
N∗k (6.3)

So we have the following proposition.

Proposition 13. If ak+1,k > 1, R0 decreases as α increases; if ak+1,k < 1, R0 increases as α increases; if
ak+1,k = 1, R0 doesn’t change with α.

Proposition 13 implies that if ak+1,k > 1, the basic reproduction number decreases when more people
are having children at an early age, if ak+1,k < 1, the basic reproduction number increases when more
people are having children at an early age, if ak+1,k = 1, the basic reproduction number doesn’t depend
on tendency on birth age.
From previous calculation, we have

m∑
i=1

λi
N∗i
N∗k

Nk∗

li + l1
M1

= 1 (6.4)

where li =
σ+µi
αi

, M1 =
N∗1
I∗1
− 1. It implies that I∗1

N∗1
is monotone increasing with respect to N∗k . So we have

the following

Proposition 14. If ak+1,k > 1, I∗1
N∗1

decreases as α increases; if ak+1,k < 1, I∗1
N∗1

increases as α increases; if

ak+1,k = 1, I∗1
N∗1

doesn’t change with α.

Proposition 14 implies that if ak+1,k > 1, the infant disease rate decreases when more people are
having children at an early age, if ak+1,k < 1, the infant disease rate increases when more people are
having children at an early age, if ak+1,k = 1, the infant disease rate doesn’t depend on tendency of birth
age.

7. Conclusions

We proposed a stage-structured model of childhood infectious disease transmission dynamics. The
population demographics dynamics is governed by a certain family and population planning strategy
which gives rise to nonlinear feedback delayed effects on the reproduction ageing and rate.

The long-term aging-profile of the population is described by the pattern and stability of
equilibrium of the demographic model. For this demographic model, conditions on the birth functions
and death rate were given to guarantee the existence and stability of the positive equilibrium. This
implies conditions on birth function and age dependent death rate to reach a stable population. We
also investigate the disease transmission dynamics, using the epidemic model when the population
reaches the positive equilibrium (limiting equation). We establish conditions for the existence,
uniqueness and global stability of the disease endemic equilibrium and prove the global stability of
the endemic equilibrium for the original epidemic model with varying population demographics.
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Birth function, age-dependent death rate, recover rate and transmission coefficients are all involved in
these conditions.

The global stability of the endemic equilibrium allows us to examine the effects of reproduction
ageing and rate, under different family planning strategies, on the childhood infectious disease
transmission dynamics. We find that increasing birth rate increases the infant disease rate and
reproduction aging decreases the infant disease rate. We also find that reproduction ageing and rate
doesn’t change the demographic distribution at equilibrium.

We investigate impacts of family planning strategies on demographic distribution at equilibrium,
basic reproduction number for childhood disease and infant disease rate. We find the conditions under
which planning to have a child at an early age helps to decrease/increase the basic reproduction number
and infant diseases rate. We also examine demographic distribution, diseases reproductive number,
infant disease rate and age distribution of disease.

For original contributions, the model we propose is new as it is stage structured and the growth
through age stages is described by time delay leading to nonlinear feedback, the idea of studying the
impact of population policy and family planning strategy on disease transmission dynamics is also
novel. This model can be modified to fit specific childhood diseases for specific purposes. For
example, it can be modified to study the impact of China’s second-child policy on pertussis
transmission dynamics by incorporating more compartments to distinguish children from one-child
and two-children families. The work can also be potentially used to inform targeted age group for
optimal vaccine booster programs.
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