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Abstract: This study proposes the S, -product capability analysis chart (S, -PCAC), which can

widely represent multiple process capabilities with asymmetric tolerances of Smaller-the-Better,
Larger-the-Better, and Nominal-the-Best characteristics. Process capability index S, is generated

based on index S ,, which uses asymmetric tolerances to reasonably measure process capabilities.

pk>
The interval estimates of the indices are derived to reliably assess process capabilities. The
Six-Sigma-based quality-level and its connection with the process yield are introduced in the
capability zone of §,,-PCAC to check if the process capabilities can meet the requirements. One

example of an entire product is given for application.

Keywords: product capability analysis chart; process capability index; asymmetric tolerances;
capability zone; Six-Sigma

1. Introduction

The process capability analysis in the manufacturing process plays a critical role in the quality
improvement program. When a process is statistically controlled, its capability can be evaluated to
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manufacture products based on specifications. By means of the process capability analysis,
manufacturing managers are able to perceive process capability levels. Both process capability
indices (PCIs) and process capability analysis charts frequently appear in the process capability
analysis [1-6]. In the multi-process environment, many experts and scholars integrate different types
of PClIs to accurately and reliably develop various analysis charts which can monitor and control
process capabilities.

Singhal [7] introduced a graphical chart with the first-generation process capability index
(yield-based index), the Smaller-the-Better (STB) capability index, and the Larger-the-Better (LTB)
capability index. The yield-based index is the minimal value of the horizontal and vertical axes,
which refines the previous chart to include capability zones, instead of the expected fallout contours.
The processes can fall into different performance categories (or capability zones) which easily
explain the state of each process and help factory managers improve the quality of each process.
Nevertheless, the yield-based index has difficulty telling the difference between the off-target
process and the on-target process. Pearn and Chen [9] introduced a modified PCAC combining the
process capability indices of the 2" and 3" generations, attempting to point out the factors that result
in process failure at centering the target. Not only the second-generation but also the third-generation
process capability indices were selected because of their sensitivity to process centering. Furthermore,
Chen et al. [10] noted that another important problem is how to adopt asymmetric tolerances to
accurately evaluate the quality of bilateral quality characteristics. According to Chen et al. [11], a
Process Capability Analysis Chart (PCAC) was employed to precisely assess the potential capability
and performance of an entire product possessing STB, LTB, and Nominal-the-Best (NTB)
characteristics using asymmetric tolerances. Reasonably, the index of asymmetric tolerances
indicates the condition of a process when the asymmetric tolerances make the process deviate from
the target.

Process yield is another criterion used in manufacturing to analyze process performance. The
yield-based index has difficulty mirroring a specific process yield. Huang et al. [12] proposed yield
index to take over the yield-based index. The yield index of the process offers a gauge of the process
yield by reason of their one-to-one relations. Further, they also proposed an entire PCAC using the
process yield index to precisely demonstrate the process performance of the backlight module.
Shortly thereafter, Chen et al. [13] constructed a contour plot called the control chart of the process
yield index with the multi-characteristic process capability analysis (MCPCA). The process yield
index is computed as a function of the accuracy index and the precision index. The accuracy index
refers to the departure rate while the precision index estimates the deviation related to the tolerances.
MCPCA yields timely information so that the management is able to easily discern a product’s
quality level and has a clear picture about which parameters need to be targeted for quality
improvement.

However, there exists a crucial problem that needs to be solved. That is, most approaches are
untrustworthy because the point estimate of PCI sampling is a random variable without assessing any
sampling errors. Several researchers have addressed this. Pearn et al. [14] developed the
third-generation index PCAC. In this model, multiple samples of the control chart urge the
distributions of the estimated third-generation index and accuracy index. Precise lower confidence
bounds are tallied and plotted. Pearn and Wu [15] mentioned that several PCACs have so overlooked
sampling errors that capability measures and groupings seem undependable. Therefore, they
proposed a decent method to transform estimated indices into lower confidence bounds as well as
plot the corresponding lower confidence bounds on PCAC. Chen and Chen [16] advanced a PCAC
taking the interval estimates of these indices into account to accurately assess a product’s
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characteristics. Chen et al. [17] came up with the process capability analysis chart. Besides, they
proposed a new estimator of the second-generation index and discussed the features of the statistical
estimation and hypothesis testing, in an effort to reliably evaluate the process capability. Chang et al.
[18] not only considered the sample errors but also employed the mathematical programming, so that
a statistical hypothesis testing model was developed to help manufacturing sections examine the
outcome of their implemented improvements. Recently, Chen and Chen [19] developed an advanced
PCAC by means of asymmetric tolerances, in order to appraise the process performance of T-Bar
Ceiling Suspension System. Moreover, this method, considering the interval estimates of the PCls,
attempted to surmount the weakness of scrutiny or sampling errors of point estimates.

Reviewing the development described in aforementioned studies, each article proposed a
refined tool or method which contributed valuable information that managers can use to implement
quality improvement. Nonetheless, owing to rising requirements for products’ quality, a single
instrument cannot provide managers complete and reliable information. This is because several
critical issues are difficult to be simultaneously taken into account in a model. These issues include
capability evaluation of asymmetric process, process yield, process accuracy and loss, and the
reliability of estimation. To provide comprehensive and reliable information managers can use, this
study retains the merits of the past approaches and constructs a useful and dynamic approach via a
S,. product capability analysis chart (S, -PCAC). This model has four key points. First, the

S ,.-PCAC can widely represent multiple process capabilities with asymmetric tolerances consisting
of STB, LTB, and NTB characteristics. A new index S, is generated based on the index of process

yield, which can provide a consistent and reasonable measure for processes with asymmetric
tolerances. Second, considering sampling errors, this study derives interval estimations of the used
indices to reliably assess the process capabilities. Third, based on the loss function defined in the
Taguchi method, the index, C,, is incorporated into the S, -PCAC because it is adequate to assess the

validity of the manufacturing process and process loss. Fourth, the quality-level of Six-Sigma and the
connection with process yield are introduced in the process capability zone of S, -PCAC to check if

the process capabilities can reach the preset levels. Managers are able to adopt S, -PCAC, a

practical and easy-to-use tool, attempting to evaluate and enhance manufacturing processes
constantly.

This study is divided into the following sections. In section 2, we not only begin with the
definition of index §,, but also introduce how to construct the model of S, -PCAC based on the

required quality level. Next, in section 3, we derive the confidence interval of §, from the

mathematical programming. In section 4, we adopt a multi-process product containing seven quality
characteristics as an example to illustrate S, -PCAC. Lastly, in section 5, we summarize our results

and provide the managers with reliable information in order to implement quality improvements.
2. §,, product capability analysis chart (S, -PCAC)

2.1. Review of process capabilities for multiple characteristics

Kane [20] proposed two process capability indices, C,, and C,;, to evaluate process capabilities
of STB and LTB characteristics.
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In Eq (1), USL is the upper lower specification limit while LSL is the lower specification limit;
L 1s the process mean, and o is the process standard deviation. In general conditions, one-to-one
mathematical relationships prevail over the process yield and C,, or C,, which is expressed as
%Yield =®(3C ) for i=u,l.

Based on Chen et al. [11], in the process of NTB, index C, is associated with the relative

distance between the mean and the target. C, is expressed as

C —1—max =L T=H{ )
D, ’ D,

u

where D, =USL-T, D,=T—-LSL and T is the target. Obviously, equally relative distances
create the identical values for C,. Index C, can demonstrate process accuracy as well as process
loss. In addition, Boyles [21] proposed index S, which accurately measures the process yield for

the normal process with bilateral specifications, as expressed in the following equation:

oo 5o 1t 5
LA 2 o 2 o

where @ is an accumulative density function of the standard normal distribution, N (0,1), while
@' isareversed function of ®. Actually,

USL-u T+d-u d—(,u—T)_i[l_u—Tj
o o o o d |

“4)

p—LSL _pu—(T-d) _ a’+(,u—T):i[1+,u—Tj
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In Eq (4), d =(USL—-LSL)/2 is the distance to the upper and lower limits, indicating half the
length of the specification interval. Thus, S, 1is rewritten as

S =1®‘{1®F(1—”—_Tﬂ+lq{1(1+ pot ﬂ} (5)
me3 2 |o d 2 |o d

Huang et al. [12] suggested a multi-process capability analysis chart (MPCAC) containing
indices C C,, C,,and C,(S,) as well as evaluated the integrated process capability of a

multi-process product (backlight module) adopting STB, LTB, and NTB symmetric specifications
respectively. On the contrary, as stated by Pearn and Shu [22], index S, cannot provide consistent

pu’ pl

and reasonable measures for processes by means of asymmetric tolerances. This study proposes a
generalization index, S, , based on S, which can apply asymmetric tolerances to processes. The

index, § ,is expressed as follows:

pa?’
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where d, = min(Du,D,). Therefore, when D, = D, =d (symmetric case), §,, will decrease to the
original index, S ,. For a fixed process standard deviation - o, §,, drops more quickly as u

deviates from T and gets closer to the specification limit. On the other hand, it reduces slower when
u deviates from T and gets farther to the specification limit. The newly generalized S, is

supposed to acquire its maximum at =T (on-target process) no matter whether the specifications
are symmetric or asymmetric. It can be seen that the newly generalized §,, is more suitable than

the existing §,, to be adopted in an asymmetric case, providing greater accuracy to monitor process

potential and performance.

2.2. Development of the S,,-PCAC
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Figure 1. §  -PCAC.

According to the MPCAC proposed by Huang et al. [12], this study selects index S, to replace
S, as well as reconstructs a §,, product capability analysis chart (S, -PCAC) to assess a
manufacturing process, the secondary lines standing for the values of index C, are outlined on the
S ,.-PCAC, in order to precisely control the process shifts and monitor the process loss. Third, the
process capability zone is mapped with bold lines on S, -PCAC following the required quality level
C

of the manufacturing process. Fourth, the interval estimates of C and S, are drawn on

pu’ pl>
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S,.-PCAC. The process capabilities reach the required level when the estimates of the confidence

intervals of the PCls are situated in the capability zone of the process. It is simple to discriminate
process performance from the sites plotted on the S, -PCAC, as shown in Figure 1. Hence, the PCls

and S, -PCAC not only strengthen the limitations of previous studies but also reliably evaluate and

effectively monitor process capabilities.
2.3. Capability zone

Linderman et al. [23] and Chen et al. [24] suggested that Six-Sigma is considered as a decent
technique of improvement and is employed by plenty of enterprises. The number of Sigma has been
regarded as a tool used by some enterprises to measure process capability. Motorola set the standard
that process variability should be above or below the mean 6¢. Furthermore, Motorola stated that the
process devoured by disruptions would deviate the mean from the target as much as 1.5¢ [25]. As a
result, based on Eq (7), when the quality level reaches k-Sigma (ko) (i.e.,d , = ko ) and the process

mean shifts at 1.50, then 6=1/k and |8|=1.5/k. The PCIs, C,,, C,, andS

follows:

are expressed as

pu’ pl> pa’
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This paper defines that the process quality reaches k-Sigma quality level, then C, > C,, (¥),
C,2C, (k) and S, =S8, , (k). In other words, PCI(k) represents the lower limit value when the

process quality reaches k-Sigma quality level. Table 1 displays the values of C,, (k), C, (k), and
S, (k) fork = 3,4,5,6.
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Table 1. The values of C w (), C k), and S o (F) and process yields.

Quality Level C, (k)

(k-Sigma) Spa (k) . Process Yield (%)
i=u,l
3-Sigma 0.61 0.50 93.319
4-Sigma 0.91 0.83 99.361
5-Sigma 1.23 1.17 99.977
6-Sigma 1.55 1.50 99.999

Additionally, based on Eq (2), let C, =1—l, where 1/a=max{(u-T)/D, (T - u)/D,}.
a

According to Chen et al. [11], the values of u for each C, are [T + (1/a)*D, ] and [T — (1/a)*Dy ].
The incline of the relevant secondary line is m,=(a+1)/(a—1) as the mean is larger than the target
(u2T); the slope of the relevant secondary line is m, =(a—1)/(a+1) as the mean is smaller than
the target (u <7 ). Owing to m, xm, =1, secondary lines Y =mX and Y =m,X are symmetrical

with line Y = X, as shown in Figure 1. As we can see, C, refers to process accuracy. In general, C,
cannot be too tiny because a smaller C, represents that the mean deviates from the target, and that
will incur a great amount of process loss. For NTB quality type, when the process loss is taken into
consideration (e.g., C,>1-1/a, and the quality level is required to reach k-Sigma, as shown in

Table 1), we can define a set S, and mark a capability zone with bold lines on §,, -PCAC as

follows :

Nominal-the-Best : S, = {(X ,Y)

S (X128 (), ey x <4 xs0r>0 9)
P P a+1 a-1

Similarly, for the unilateral process, if the quality level reaches k-Sigma, the capability zones
can be respectively plotted on the horizontal and vertical axes with bold lines according to the values
of C, and C,, as depicted in Table 1. The capability zone of STB and LTB quality type can be

show as following sets:

Smaller-the-Better : S, = {(X, N|x=c, k.Y = 0} (10)

Larger-the-Better : S, = {(X, Y)|X =0,y>C, (k)} (11)

As aresult, the capability zones on S, -PCAC (the gray zones in Figure 1) can help managers

check whether all process capabilities can satisfy the required quality levels. Then, the process
capability can be evaluated based on the intersection of the process capability interval estimation
area of each quality characteristic and the capability zone. The evaluation rules are as follows:

(1) When the intersection of the interval estimation area of the index and the gray area in Figure 1
is a nonempty set, it means that the process capability of the quality characteristic has reached the
quality level and the process capability needs to be maintained.

Mathematical Biosciences and Engineering Volume 17, Issue 6, 7605-7620.
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(2) When the intersection of the interval estimation area of the index and the gray area in Figure 1
is a nonempty set and the white zone is included, it means that the process capability of the quality
characteristic cannot meet the quality requirements and needs to be improved.

According to the above evaluation rules, the industries can easily determine whether the process
capability of all the quality characteristics of the whole product meets the quality level requirements.

3. Interval estimates of PCls

As mentioned in the discussion of the literature section of this paper, some limitations of the
existing approaches include (1) they are unreliable since sampling errors are neglected and (2) the
approaches are only applicable in case of full inspection. Point estimate is prone to resulting in
uncertain sampling errors, so that it may lead to the probability of misjudgment [26-31]. To
overcome these limitations, the proposed §,,-PCAC takes into account the interval estimates of

S., C

pa? pu
characteristics, and STB characteristics. This can be explained as follows. The index S, is viewed

and C,, which reliably measure a product with the NTB asymmetric tolerances, LTB

as a function of process parameters 4 and o denoted by S, (u#,0). We derive the confidence

interval of S, (u,0) via the following mathematical programming (MP):

Max S, (u,0) Min S, (u,0)
o a,spsa, for US,, o aspsa, for LS,,. (12)
b <o<b, b <o<bh,

The upper limit of confidence interval (denoted by US ,,) and lower limit of confidence interval
(denoted by LS, ) are computed separately in accordance with the maximum and minimum values
of the objective function S, (x#,0) under the constraints a, < u<a, and b <o <b,. (a,a,)

and (b,,b,) are the confidence intervals of x and o, respectively. These two constraints compose
the feasible solution area (FSA) of the MP model, that is, FSA(u,0) = {a1 <u<a,b<o< bz}. It is

obvious to see that the maximum value of S, (4,0) must be at the minimum value b, of o while

the minimum value of S, (x#,0) must be at the maximum value b,. S, ( y,a) is re-expressed as
follows based on the Eqs (6) and (7). Let S, (4,0)=f(#,0) when pu=>T , and

S, (1,0)=g(p,0) when u<T.

f(y,@%@—l{;@ Ly T A i) },m

o D, 2 | o »
S, (u,0)= | | :d T: | :d - . (13)
)= 0 oo La| 1At e AL e
g0 =3 {2 _0'( D, ] 2 _0'( D, ]}”

We can draw the figure of S, (#,0) under the fixed o, as shown in Figure 2.

Mathematical Biosciences and Engineering Volume 17, Issue 6, 7605-7620.
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Figure 2. Relationship between §,, and process mean .

In Figure 2, we can see the optimal solution of §,, (x,0)is dependent on the relative position

between the interval (a,,a,) and the process target T. In order to clearly explain the relevance of
the position between interval (a,,a,) and the process target T, this study classifies three cases as
follows.

Casel : g, <T <a, is composed of two situations:

(1) When u is located in (T,a,) (ie. T<u<a,), we know Spa(,u,O'):f(,u,O') .
Therefore, the upper limit of confidence US,, = max{ F(ub)|T<us< az} . Since f(p,b)) strictly
decreases as  u increases, we can find US,, =f (T ,bl) . Similarly, we have
LS, =min{f(u,b,)[T < p<a,} = f(a,,b,).

(2) When u is located in (a@,T) (ie.aq <u<T), we see that S, (u,a) = g(y,a) .
Therefore, US,, = max{g(u,b, )|a1 <u<T}. Since g( ,u,bl) strictly increases as y increases, we
have US,, =g(T,b). Similarly, the LS, :1*nin{g(y,bz)|a1 S,uST} =g(a,.b,).

Casell : T<a, <a,

S . (u,0) is equal to  f(u,0) because of wu>T . We ~can find
us,, =max{ f ( u,b1)|T <a < ,uéaz} . f ( ,u,bl) strictly decreases as u increases such that
US,, = f(a,b). Similarly, we have LS, =rnin{f(,u,b2)|T<a1 Syﬁaz} = f(a,,b,).

Caselll . a,<a,<T

S ,.(1,0) is equal to g(u,0) because of u<T . We can find
us,, :max{ g( y7A b1)|a1 Su<a,<T } ) g( ,u,bl) strictly increases as g increases such that
US,, =g(a,,b,). Similarly, we obtain LS, = min{g(u,b,)|a, < < a, <T}=g(a,b,).

The above MP model is calculated based on the sample data of the in-control process. In the

short term, the XS control chart can be employed to monitor whether the process is stable; after the

Mathematical Biosciences and Engineering Volume 17, Issue 6, 7605-7620.
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process is stable, the chart data can be controlled to conduct a process capability evaluation. In the
long term, the stable process capability can be evaluated by simple random sampling, in order to
solve the problem of cost and timeliness [32-35]. Let X,,...,X, be a random sample obtained from

an in-control process with the normal distribution. A natural estimate of S, (x#,0) may be received
from replacing (1) the unrevealed process mean p with the sample mean X = (X, + X, +---+ X,)/n
and (2) the unrevealed process standard deviation o with the sample standard deviation
S = [Z(X = X) / (n—l)]]/z, respectively. Hence, the MP model may be re-expressed as shown in
Eqgs (12) and (13):

Max  S,,(X,S) Min  S,.(X,S)
a, <X <a, for US,,, a,<X<a, for LS, . (14)
s.t. s.t.
b <S<b, b, <S<b,

The estimates of upper and lower limits of confidence interval are denoted by LS L and US v

respectively.
f'()?,S):lqu L afy o X =T L) [y XT X =T
_ 3 2 | S D, 2 | S D,
Spa(X,S)z = . - - . - . (15)
g(X.85) =ro Lo L) X1\ Lol dufy XT | 7 7
3 28 D, 2 S D, )]

For a normal process, the (1—-a/2)% confidence interval estimator of process L 1is
(X - ty, (n—1)- S/\/;,)? +1,, (n—-1)- S/\/;) and (1—a/2)% confidence interval estimator of process

G is (\/(n—l)Sz 22 (=1 [(n-1)S*/ Zf,a/4(n—1)), where ¢ (n—1) is distributed as a Student's
t-distribution with n—1 degrees of freedom while y°(n—1) is distributed as a chi-square

distribution with n—1 degrees of freedom. We can derive the (1-«a)% confidence interval estimator
ofthe FSA(u,0) according to the Cartesian product:

FSA(u,0) ={[4, < u<a,]n[h <o <b,]}

g S g eS| eenst  [eens ||
n N Xy (n=1) Xy (n=1)

That is, the estimators of (a,,a,)and (b,,b,)are expressed as

P X_t%(n—l)S_ﬂSy+t%(n—l)S A (l;l—l)Sz o< (Zn_l)S2 (17)
Jn Vn Xy (n=1) X}y (n=1)

Mathematical Biosciences and Engineering Volume 17, Issue 6, 7605-7620.
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_ t,(n=1)-S _ t,(n=1)-S
>1-PR X +— X——
+ Tn <u|v T > 1
Sl VNS O G VN S | G- S S
zi%m—l) z;(n—l) 2 2 '

(@,,6,) = (X ~t,,(n=1)-S/n X +1,,(n=1)-§/n),

They result in

(18)

(b, b) = Jn =15 220 =1) 1 Jn =15 22, s (=D ).
Further, we can obtain the estimates of upper and lower limits of confidence interval, LS L, and

US ,a» Dy following the analyses described in cases I~IIL. The solutions of the MP model based on

the sample data are illustrated in Table 2.

Table 2. The estimates of confidence interval of §,, based on the sample data.

Case I.(1) Case 1.(2) Case I1 Case 111
Solutions R - = R = =
a,<T<X<a, a, <X<T<a, I'<a £X<a, a<X<a<T
LS, JACN g'(a,,b,) f'(@y,b,) g'(a.b,)
US,, £1(T.by) g'(T.b) (b)) g'(yh)

For unilateral process specifications, indices C,, and C, are applied to assess process
capability. The 100(1-a)% lower and upper confidence limits, C; and C, for C, andC,,
satisfy P(C,<C, <C,)=1-a, for ie{l,u}.Thatis,

P(C,scp,):1—%,P(cuscp,.):%,for iellu}. (19)

Based on Chou et al. [36] as well as Pearn and Chen [37], the uniformly minimum-variance
unbiased estimators (UMVUEs) for indices C,, andC,, are viewed as C . and 5p, respectively.

The estimators are displayed as follows:

(20)

Mathematical Biosciences and Engineering Volume 17, Issue 6, 7605-7620.
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And

_USL-X ¢ X - LSL

¢ YLK A
P 3S # 3S

) (21)
where b, =[2/f 1717 f121/TI(f —1)/2],and f =n—1 is regarded as a correction factor. Estimator
3/nC /b, for ie{u,l} isdistributed as non-center ¢ distribution #'(n—1;6) with n—1I degrees of

freedom and non-center parameter o :3\/ZCPZ.. The 100(1-a)% lower and upper confidence

limits are seen below:

b ~ b -
C, = #z;ﬂ/z (n-13vnC,),C, =t ,(n—1;3JnC ), for ie{lu}. (22)
n

3Jn

4. Illustrative example and discussion

To illustrate the application of S, -PCAC, this study takes a multi-process product with seven

quality characteristics as an example. Assume the sample data of each quality characteristic is
obtained from an independent process with normal distribution. Under the condition that a-risk is
0.05 and the sample size is 30, process specifications and confidence intervals of capability indices
for seven process characteristics are presented in Table 3.

Table 3. Calculations for the process capabilities of a multi-process product.

Quality . o A A N N
o LSL T USL X S (a,,a,) (b,,b,) (LS,,,US,) (C,C) C,
Characteristics

N1 1.140 1.146 1.150 1.146 0.001 (1.145,1.146) (0.001,0.001) (0.875,1.724) 0.917

N2 3.400 3.500 3.600 3.510 0.020 (3.500,3.520) (0.015,0.028) (1.022,2.159) 0.900

N3 51.000 52.000 53.000 51.700 0.350 (51.530,51.870) (0.270,0.492) (0.489,1.136) 0.700

L1 7.500 8.000 0.120 (1.031,1.792)

L2 6.500 7.800 0.500 (0.626,1.137)

S1 8.000 6.000 1.000 (0.467,0.890)

S2 30.000 25.000 1.400 (0.878,1.542)

The required quality level of the product should be at least 4-Sigma and the process yield should
be no less than 99.38%. Based on Eqs (9)—(11) with 4-sigma quality level, the capability zone can be
show as follows:

Nominal-the-Best : S, = {(X ,Y)

Spa(X,Y)20.9l,%s Y/XS%,XZO,YZO}

Smaller-the-Better : S, = {(X,Y)|X >0.83,Y = 0}
Larger-the-Better: S, = {(X, Y)|X =0,Y > 0.83}
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As listed in Table 1, the corresponding indices are S’pa =0.91, épu =0.83, andépl =0.83.

Meanwhile, both process accuracy and process loss are considered. Index C,is required to achieve
0.75. Thus, the bold lines of the capable zones and the confidence intervals of corresponding indices
can be plotted on the S, -PCAC, as shown in Figure 3.

Ca=03 Ca=073 Ca=0873 Ca=1

Ca=0.873

Figure 3. Capability zone.

Based on the evaluation rules and considering the above seven quality characteristics of the
multi-process product, the process capabilities are illustrated as follows:

(1) Quality characteristics N,, N, , and N, belong to the NTB type with bilateral specifications.
The 95% confidence interval of N, is situated in the capability zone. The process capability of
quality characteristic N, 1is capable. N, and N, are not entirely situated in the process capability
zone, which indicates that the process capabilities of N, and N, do not reach the 4-Sigma
requirement. Thus, it is necessary to take action to improve their process quality, but N, in
particular should identify all assignable causes to increase the quality level. That can be done by

moving the mean of the process to its target and decreasing its variation.
(2) Quality characteristics S, and S, fall into the STB type with unilateral specifications.

Quality characteristic S, reaches the required 4-Sigma level, whereas the confidence interval of S,

is not situated in the capability zone on the X-axis. Therefore, it is necessary to take action to uplift
the process capabilities.
(3) Quality characteristics L, and L, are categorized into the LTB type with unilateral

specifications. The confidence interval of L, is not situated on the bold line of the capability zone

on the Y-Axis. To enhance the process quality, it is necessary to reduce the variation of the process or
deviate the mean from the lower specification limit. As for quality characteristic L,, it currently

meets the 4-Sigma requirement, but it should be continuously monitored.
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5. Conclusions

To monitor the process capabilities of a multi-process product, managers have to obtain
sufficient and reliable information in order to implement quality improvements. This study attempts
to improve several insufficiencies to enable managers to make such informed decisions. First, this
study reconstructed an efficient method via the S, -PCAC, which not only represented multiple

process capabilities with asymmetric bilateral specifications by PCIs S, and C, but also used PClIs
C, and C, to assess multiple process capabilities categorized into the STB and LTB types

displayed on the horizontal and vertical axes respectively. This study selected index S, , superior to

pa?

index S, , especially when evaluating process capabilities with asymmetric bilateral specifications.

Second, as stated by Cheng [26] as well as Pearn and Chen [37], a large degree of uncertainty or risk
needs to be taken into account regarding capability assessments for sampling errors. To reliably
evaluate the quality of an entire product consisting of multiple characteristics, the proposed
S,.-PCAC considered the interval estimates of the used indices. Third, based on the loss function

stated in the Taguchi method [38—42], it can be learned that as long as the mean is closer to the target,
the quality will be the better and the loss will be less. Index C, was incorporated into the S, -PCAC

because it is adequate to assess the accuracy of the manufacturing process. Lastly, the quality-level of
Six-Sigma and the connection with process yield were introduced in the capability zone of
S,.-PCAC to check whether the process capabilities could reach the preset level. The S, -PCAC
explained the multi-characteristics process capabilities and distinguished the process accuracy from
the locations of the interval estimates of PCIs. Furthermore, with respect to the unsatisfactory
processes, actions for quality improvement were taken to enhance the entire process capabilities.
Consequently, our proposed model is a valuable tool for managers to improve their manufacturing
processes. Finally, when the process distribution is abnormal, the model proposed in this study is not
applicable. This is the research limitation of this paper. The confidence interval derived by the
mathematical programming method in this article is easier than the traditional confidence interval, so

it is more suitable for the industry which emphasizes timeliness. As to how much higher
than100(1-«)% it should be, it is a more complicated issue. It is recommended to refer to the

method proposed Chen et al. [34] for discussion. This study will list it as a future research topic.
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