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Abstract: This study proposes the paS -product capability analysis chart ( paS -PCAC), which can 

widely represent multiple process capabilities with asymmetric tolerances of Smaller-the-Better, 
Larger-the-Better, and Nominal-the-Best characteristics. Process capability index paS  is generated 

based on index pkS , which uses asymmetric tolerances to reasonably measure process capabilities. 

The interval estimates of the indices are derived to reliably assess process capabilities. The 
Six-Sigma-based quality-level and its connection with the process yield are introduced in the 
capability zone of paS -PCAC to check if the process capabilities can meet the requirements. One 

example of an entire product is given for application. 
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1. Introduction 

The process capability analysis in the manufacturing process plays a critical role in the quality 
improvement program. When a process is statistically controlled, its capability can be evaluated to 
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manufacture products based on specifications. By means of the process capability analysis, 
manufacturing managers are able to perceive process capability levels. Both process capability 
indices (PCIs) and process capability analysis charts frequently appear in the process capability 
analysis [1–6]. In the multi-process environment, many experts and scholars integrate different types 
of PCIs to accurately and reliably develop various analysis charts which can monitor and control 
process capabilities. 

Singhal [7] introduced a graphical chart with the first-generation process capability index 
(yield-based index), the Smaller-the-Better (STB) capability index, and the Larger-the-Better (LTB) 
capability index. The yield-based index is the minimal value of the horizontal and vertical axes, 
which refines the previous chart to include capability zones, instead of the expected fallout contours. 
The processes can fall into different performance categories (or capability zones) which easily 
explain the state of each process and help factory managers improve the quality of each process. 
Nevertheless, the yield-based index has difficulty telling the difference between the off-target 
process and the on-target process. Pearn and Chen [9] introduced a modified PCAC combining the 
process capability indices of the 2nd and 3rd generations, attempting to point out the factors that result 
in process failure at centering the target. Not only the second-generation but also the third-generation 
process capability indices were selected because of their sensitivity to process centering. Furthermore, 
Chen et al. [10] noted that another important problem is how to adopt asymmetric tolerances to 
accurately evaluate the quality of bilateral quality characteristics. According to Chen et al. [11], a 
Process Capability Analysis Chart (PCAC) was employed to precisely assess the potential capability 
and performance of an entire product possessing STB, LTB, and Nominal-the-Best (NTB) 
characteristics using asymmetric tolerances. Reasonably, the index of asymmetric tolerances 
indicates the condition of a process when the asymmetric tolerances make the process deviate from 
the target.  

Process yield is another criterion used in manufacturing to analyze process performance. The 
yield-based index has difficulty mirroring a specific process yield. Huang et al. [12] proposed yield 
index to take over the yield-based index. The yield index of the process offers a gauge of the process 
yield by reason of their one-to-one relations. Further, they also proposed an entire PCAC using the 
process yield index to precisely demonstrate the process performance of the backlight module. 
Shortly thereafter, Chen et al. [13] constructed a contour plot called the control chart of the process 
yield index with the multi-characteristic process capability analysis (MCPCA). The process yield 
index is computed as a function of the accuracy index and the precision index. The accuracy index 
refers to the departure rate while the precision index estimates the deviation related to the tolerances. 
MCPCA yields timely information so that the management is able to easily discern a product’s 
quality level and has a clear picture about which parameters need to be targeted for quality 
improvement.  

However, there exists a crucial problem that needs to be solved. That is, most approaches are 
untrustworthy because the point estimate of PCI sampling is a random variable without assessing any 
sampling errors. Several researchers have addressed this. Pearn et al. [14] developed the 
third-generation index PCAC. In this model, multiple samples of the control chart urge the 
distributions of the estimated third-generation index and accuracy index. Precise lower confidence 
bounds are tallied and plotted. Pearn and Wu [15] mentioned that several PCACs have so overlooked 
sampling errors that capability measures and groupings seem undependable. Therefore, they 
proposed a decent method to transform estimated indices into lower confidence bounds as well as 
plot the corresponding lower confidence bounds on PCAC. Chen and Chen [16] advanced a PCAC 
taking the interval estimates of these indices into account to accurately assess a product’s 
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characteristics. Chen et al. [17] came up with the process capability analysis chart. Besides, they 
proposed a new estimator of the second-generation index and discussed the features of the statistical 
estimation and hypothesis testing, in an effort to reliably evaluate the process capability. Chang et al. 
[18] not only considered the sample errors but also employed the mathematical programming, so that 
a statistical hypothesis testing model was developed to help manufacturing sections examine the 
outcome of their implemented improvements. Recently, Chen and Chen [19] developed an advanced 
PCAC by means of asymmetric tolerances, in order to appraise the process performance of T-Bar 
Ceiling Suspension System. Moreover, this method, considering the interval estimates of the PCIs, 
attempted to surmount the weakness of scrutiny or sampling errors of point estimates. 

Reviewing the development described in aforementioned studies, each article proposed a 
refined tool or method which contributed valuable information that managers can use to implement 
quality improvement. Nonetheless, owing to rising requirements for products’ quality, a single 
instrument cannot provide managers complete and reliable information. This is because several 
critical issues are difficult to be simultaneously taken into account in a model. These issues include 
capability evaluation of asymmetric process, process yield, process accuracy and loss, and the 
reliability of estimation. To provide comprehensive and reliable information managers can use, this 
study retains the merits of the past approaches and constructs a useful and dynamic approach via a 

paS  product capability analysis chart ( paS -PCAC). This model has four key points. First, the 

paS -PCAC can widely represent multiple process capabilities with asymmetric tolerances consisting 

of STB, LTB, and NTB characteristics. A new index paS  is generated based on the index of process 

yield, which can provide a consistent and reasonable measure for processes with asymmetric 
tolerances. Second, considering sampling errors, this study derives interval estimations of the used 
indices to reliably assess the process capabilities. Third, based on the loss function defined in the 
Taguchi method, the index, Ca, is incorporated into the paS -PCAC because it is adequate to assess the 

validity of the manufacturing process and process loss. Fourth, the quality-level of Six-Sigma and the 
connection with process yield are introduced in the process capability zone of paS -PCAC to check if 

the process capabilities can reach the preset levels. Managers are able to adopt paS -PCAC, a 

practical and easy-to-use tool, attempting to evaluate and enhance manufacturing processes 
constantly.  

This study is divided into the following sections. In section 2, we not only begin with the 
definition of index paS  but also introduce how to construct the model of paS -PCAC based on the 

required quality level. Next, in section 3, we derive the confidence interval of paS  from the 

mathematical programming. In section 4, we adopt a multi-process product containing seven quality 
characteristics as an example to illustrate paS -PCAC. Lastly, in section 5, we summarize our results 

and provide the managers with reliable information in order to implement quality improvements. 

2. paS  product capability analysis chart ( paS -PCAC) 

2.1. Review of process capabilities for multiple characteristics 

Kane [20] proposed two process capability indices, Cpu and Cpl, to evaluate process capabilities 
of STB and LTB characteristics. 
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In Eq (1), USL is the upper lower specification limit while LSL is the lower specification limit; 
  is the process mean, and   is the process standard deviation. In general conditions, one-to-one 

mathematical relationships prevail over the process yield and puC  or plC , which is expressed as 

% )3( piCYield  for ., lui   

Based on Chen et al. [11], in the process of NTB, index aC  is associated with the relative 
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where TUSLDu  , LSLTDl   and T is the target. Obviously, equally relative distances 

create the identical values for aC . Index aC  can demonstrate process accuracy as well as process 

loss. In addition, Boyles [21] proposed index pkS , which accurately measures the process yield for 

the normal process with bilateral specifications, as expressed in the following equation: 
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In Eq (4), 2/)( LSLUSLd   is the distance to the upper and lower limits, indicating half the 

length of the specification interval. Thus, pkS  is rewritten as 
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Huang et al. [12] suggested a multi-process capability analysis chart (MPCAC) containing 
indices puC , plC , aC , and psC ( pkS ) as well as evaluated the integrated process capability of a 

multi-process product (backlight module) adopting STB, LTB, and NTB symmetric specifications 
respectively. On the contrary, as stated by Pearn and Shu [22], index pkS  cannot provide consistent 

and reasonable measures for processes by means of asymmetric tolerances. This study proposes a 
generalization index, paS , based on pkS , which can apply asymmetric tolerances to processes. The 

index, paS , is expressed as follows: 
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where  luA DDd ,min . Therefore, when dDD l  (symmetric case), paS  will decrease to the 

original index, pkS . For a fixed process standard deviation -  , paS  drops more quickly as   

deviates from T and gets closer to the specification limit. On the other hand, it reduces slower when 
  deviates from T and gets farther to the specification limit. The newly generalized paS  is 

supposed to acquire its maximum at T (on-target process) no matter whether the specifications 

are symmetric or asymmetric. It can be seen that the newly generalized paS  is more suitable than 

the existing pkS  to be adopted in an asymmetric case, providing greater accuracy to monitor process 

potential and performance. 

2.2. Development of the paS -PCAC 

 

Figure 1. paS -PCAC. 

According to the MPCAC proposed by Huang et al. [12], this study selects index paS  to replace 

pkS  as well as reconstructs a paS  product capability analysis chart ( paS -PCAC) to assess a 

manufacturing process, the secondary lines standing for the values of index aC  are outlined on the 

paS -PCAC, in order to precisely control the process shifts and monitor the process loss. Third, the 

process capability zone is mapped with bold lines on paS -PCAC following the required quality level 

of the manufacturing process. Fourth, the interval estimates of puC , plC , and paS  are drawn on 



7610 

Mathematical Biosciences and Engineering  Volume 17, Issue 6, 7605–7620. 

paS -PCAC. The process capabilities reach the required level when the estimates of the confidence 

intervals of the PCIs are situated in the capability zone of the process. It is simple to discriminate 
process performance from the sites plotted on the paS -PCAC, as shown in Figure 1. Hence, the PCIs 

and paS -PCAC not only strengthen the limitations of previous studies but also reliably evaluate and 

effectively monitor process capabilities. 

2.3. Capability zone 

Linderman et al. [23] and Chen et al. [24] suggested that Six-Sigma is considered as a decent 
technique of improvement and is employed by plenty of enterprises. The number of Sigma has been 
regarded as a tool used by some enterprises to measure process capability. Motorola set the standard 
that process variability should be above or below the mean 6σ. Furthermore, Motorola stated that the 
process devoured by disruptions would deviate the mean from the target as much as 1.5σ [25]. As a 
result, based on Eq (7), when the quality level reaches k-Sigma (kσ) (i.e., kd A  ) and the process 

mean shifts at 1.5σ, then k1  and k1.5 . The PCIs, puC , plC , and paS , are expressed as 

follows: 
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This paper defines that the process quality reaches k-Sigma quality level, then puC  puC ( )k , 

plC  plC ( )k  and paS  paS ( )k . In other words, PCI ( )k  represents the lower limit value when the 

process quality reaches k-Sigma quality level. Table 1 displays the values of puC ( )k , plC ( )k , and 

paS ( )k  for k =  3, 4, 5, 6. 
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Table 1. The values of puC ( )k , plC ( )k , and paS ( )k  and process yields. 

Quality Level 

(k-Sigma) 
Spa ( )k  piC ( )k  

i = u, l 

Process Yield (%) 

3-Sigma 0.61 0.50 93.319 

4-Sigma 0.91 0.83 99.361 

5-Sigma 1.23 1.17 99.977 

6-Sigma 1.55 1.50 99.999 

Additionally, based on Eq (2), let 
a

Ca

1
1 , where  lu DTDTa )(,)(max1   . 

According to Chen et al. [11], the values of   for each Ca. are [T + (1/a)*Du ] and [T − (1/a)*Dl ]. 

The incline of the relevant secondary line is )1()1(1  aam  as the mean is larger than the target 

( T ); the slope of the relevant secondary line is )1()1(2  aam  as the mean is smaller than 

the target ( T ). Owing to 121 mm , secondary lines XmY 1 and XmY 2  are symmetrical 

with line Y X , as shown in Figure 1. As we can see, Ca refers to process accuracy. In general, Ca 

cannot be too tiny because a smaller Ca represents that the mean deviates from the target, and that 
will incur a great amount of process loss. For NTB quality type, when the process loss is taken into 
consideration (e.g., aCa 11 , and the quality level is required to reach k-Sigma, as shown in 

Table 1), we can define a set kS  and mark a capability zone with bold lines on paS -PCAC as 

follows： 

Nominal-the-Best : =kS 1 1
( , ) ( , ) ( ), / , 0, 0

1 1pa pa

a a
X Y S X Y S k Y X X Y

a a

   
       

          (9) 

Similarly, for the unilateral process, if the quality level reaches k-Sigma, the capability zones 
can be respectively plotted on the horizontal and vertical axes with bold lines according to the values 
of puC  and plC , as depicted in Table 1. The capability zone of STB and LTB quality type can be 

show as following sets: 

Smaller-the-Better :  ( , ) ( ), 0u puS X Y X C k Y                    (10) 

Larger-the-Better :  ( , ) 0, ( )l plS X Y X Y C k                      (11) 

As a result, the capability zones on paS -PCAC (the gray zones in Figure 1) can help managers 

check whether all process capabilities can satisfy the required quality levels. Then, the process 
capability can be evaluated based on the intersection of the process capability interval estimation 
area of each quality characteristic and the capability zone. The evaluation rules are as follows: 

(1) When the intersection of the interval estimation area of the index and the gray area in Figure 1 
is a nonempty set, it means that the process capability of the quality characteristic has reached the 
quality level and the process capability needs to be maintained. 
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(2) When the intersection of the interval estimation area of the index and the gray area in Figure 1 
is a nonempty set and the white zone is included, it means that the process capability of the quality 
characteristic cannot meet the quality requirements and needs to be improved. 

According to the above evaluation rules, the industries can easily determine whether the process 
capability of all the quality characteristics of the whole product meets the quality level requirements. 

3. Interval estimates of PCIs 

As mentioned in the discussion of the literature section of this paper, some limitations of the 
existing approaches include (1) they are unreliable since sampling errors are neglected and (2) the 
approaches are only applicable in case of full inspection. Point estimate is prone to resulting in 
uncertain sampling errors, so that it may lead to the probability of misjudgment [26–31]. To 
overcome these limitations, the proposed paS -PCAC takes into account the interval estimates of 

paS , puC , and plC , which reliably measure a product with the NTB asymmetric tolerances, LTB 

characteristics, and STB characteristics. This can be explained as follows. The index paS  is viewed 

as a function of process parameters   and   denoted by ),( paS . We derive the confidence 

interval of ),( paS  via the following mathematical programming (MP): 
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The upper limit of confidence interval (denoted by paUS ) and lower limit of confidence interval 

(denoted by paLS ) are computed separately in accordance with the maximum and minimum values 

of the objective function ),( paS  under the constraints 21 aa    and 21 bb  . ),( 21 aa  

and ),( 21 bb are the confidence intervals of   and  , respectively. These two constraints compose 

the feasible solution area (FSA) of the MP model, that is,  2121 ,),( bbaaFSA   . It is 

obvious to see that the maximum value of  ,paS   must be at the minimum value 1b  of   while 

the minimum value of ),( paS must be at the maximum value 2b .  ,paS    is re-expressed as 

follows based on the Eqs (6) and (7). Let ),(),(  fS pa   when T , and 

),(),(  gS pa   when T . 

.

,1
2

1
1

2

1

3

1
),(

,1
2

1
1

2

1

3

1
),(

),(
1

1









































 
















 






























 
















 







T
D

Td

D

Td
g

T
D

Td

D

Td
f

S

l

A

l

A

u

A

u

A

pa
















      (13) 

We can draw the figure of ),( paS under the fixed , as shown in Figure 2. 
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Figure 2. Relationship between paS  and process mean μ. 

In Figure 2, we can see the optimal solution of ),( paS is dependent on the relative position 

between the interval ),( 21 aa  and the process target T. In order to clearly explain the relevance of 

the position between interval ),( 21 aa  and the process target T, this study classifies three cases as 

follows. 

Case I： 1 2a T a   is composed of two situations: 

(1) When   is located in ),( 2aT  (i.e. 2T a  ), we know    , ,paS f    . 

Therefore, the upper limit of confidence   1 2max ,paUS f b T a    . Since  1,f b  strictly 

decreases as  increases, we can find  1,paUS f T b . Similarly, we have 

),(}),(min{ 2222 bafaTbfLS pa   . 

(2) When   is located in ),( 1 Ta  (i.e. 1a T  ), we see that    , ,paS g    . 

Therefore, }),(max{ 11 TabgUS pa   . Since  1,g b  strictly increases as increases, we 

have  1,paUS g T b . Similarly, the     2 1 1 2min , ,paLS g b a T g a b     . 

Case II： 1 2T a a   

),( paS  is equal to ),( f  because of T . We can find 

  1 1 2max ,paUS f b T a a     .  1,f b  strictly decreases as  increases such that 

 1 1,paUS f a b . Similarly, we have     2 1 2 2 2min , ,paLS f b T a a f a b      .  

Case III： 1 2a a T   

),( paS  is equal to ),( g  because of T . We can find 

  1 1 2max ,paUS g b a a T     .  1,g b strictly increases as  increases such that 

 2 1,paUS g a b . Similarly, we obtain ),(}),(min{ 21212 bagTaabgLS pa   . 

The above MP model is calculated based on the sample data of the in-control process. In the 
short term, the XS control chart can be employed to monitor whether the process is stable; after the 
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process is stable, the chart data can be controlled to conduct a process capability evaluation. In the 
long term, the stable process capability can be evaluated by simple random sampling, in order to 
solve the problem of cost and timeliness [32–35]. Let nXX ,,1   be a random sample obtained from 

an in-control process with the normal distribution. A natural estimate of ),( paS  may be received 

from replacing (1) the unrevealed process mean μ with the sample mean nXXXX n )( 21    

and (2) the unrevealed process standard deviation σ with the sample standard deviation 

  212 )1()(  nXXS i , respectively. Hence, the MP model may be re-expressed as shown in 

Eqs (12) and (13): 
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The estimates of upper and lower limits of confidence interval are denoted by paSL ˆ and paSU ˆ  

respectively. 
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For a normal process, the (1−α/2)% confidence interval estimator of process μ is 
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44
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2   nSnnSn   , where )1( nt  is distributed as a Student's 

t-distribution with n−1 degrees of freedom while )1(2 n  is distributed as a chi-square 

distribution with n−1 degrees of freedom. We can derive the )%1(   confidence interval estimator 
of the ),( FSA  according to the Cartesian product: 
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That is, the estimators of ),( 21 aa and ),( 21 bb are expressed as 
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Further, we can obtain the estimates of upper and lower limits of confidence interval, paSL ˆ and 

paSU ˆ , by following the analyses described in cases I~III. The solutions of the MP model based on 

the sample data are illustrated in Table 2. 

Table 2. The estimates of confidence interval of paS  based on the sample data. 

For unilateral process specifications, indices puC  and plC  are applied to assess process 

capability. The )%1(100   lower and upper confidence limits, lC  and uC  for puC  and plC , 

satisfy ,1)(  upil CCCP  for },{ uli . That is, 

2
1)(


 pil CCP ,

2
)(


 piu CCP , for },{ uli .                    (19) 

Based on Chou et al. [36] as well as Pearn and Chen [37], the uniformly minimum-variance 

unbiased estimators (UMVUEs) for indices puC  and plC  are viewed as puC
~

 and plC
~

 respectively. 

The estimators are displayed as follows: 

pufpu CbC ˆ~
 , and plfpl CbC ˆ~

 ,                        (20) 

Solutions 
Case I.(1) Case I.(2) Case II Case III 

21 ˆˆ aXTa   21 ˆˆ aTXa  21 ˆˆ aXaT   TaXa  21 ˆˆ  

paSL ˆ  )ˆ,ˆ( 22 baf   )ˆ,ˆ( 21 bag  )ˆ,ˆ( 22 baf   )ˆ,ˆ( 21 bag  

paSU ˆ  )ˆ,( 1bTf   )ˆ,( 1bTg  )ˆ,ˆ( 11 baf   )ˆ,ˆ( 12 bag  
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4. Illustrative example and discussion 

To illustrate the application of paS -PCAC, this study takes a multi-process product with seven 

quality characteristics as an example. Assume the sample data of each quality characteristic is 
obtained from an independent process with normal distribution. Under the condition that α-risk is 
0.05 and the sample size is 30, process specifications and confidence intervals of capability indices 
for seven process characteristics are presented in Table 3. 

Table 3. Calculations for the process capabilities of a multi-process product. 

Quality  

Characteristics 
LSL T USL X  S )ˆ,ˆ( 21 aa  )ˆ,ˆ( 21 bb  )ˆ,ˆ( papa SUSL  ),( ul CC  

aĈ

N1 1.140 1.146 1.150 1.146 0.001 (1.145, 1.146) (0.001,0.001) (0.875,1.724)  0.917

N2 3.400 3.500 3.600 3.510 0.020 (3.500, 3.520) (0.015,0.028) (1.022,2.159)  0.900

N3 51.000 52.000 53.000 51.700 0.350 (51.530,51.870) (0.270,0.492) (0.489,1.136)  0.700

L1 7.500   8.000 0.120    (1.031,1.792)  

L2 6.500   7.800 0.500    (0.626,1.137)  

S1   8.000 6.000 1.000    (0.467,0.890)  

S2   30.000 25.000 1.400    (0.878,1.542)  

The required quality level of the product should be at least 4-Sigma and the process yield should 
be no less than 99.38%. Based on Eqs (9)–(11) with 4-sigma quality level, the capability zone can be 
show as follows: 

Nominal-the-Best : =kS
3 5

( , ) ( , ) 0.91, / , 0, 0
5 3paX Y S X Y Y X X Y

 
     

 
 

Smaller-the-Better :  ( , ) 0.83, 0uS X Y X Y    

Larger-the-Better :  ( , ) 0, 0.83lS X Y X Y    
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As listed in Table 1, the corresponding indices are ˆ 0.91paS  , ˆ
puC  0.83, and ˆ 0.83plC  . 

Meanwhile, both process accuracy and process loss are considered. Index Ca is required to achieve 
0.75. Thus, the bold lines of the capable zones and the confidence intervals of corresponding indices 
can be plotted on the paS -PCAC, as shown in Figure 3. 

 

Figure 3. Capability zone. 

Based on the evaluation rules and considering the above seven quality characteristics of the 
multi-process product, the process capabilities are illustrated as follows: 

(1) Quality characteristics 1N , 2N , and 3N  belong to the NTB type with bilateral specifications. 

The 95% confidence interval of 2N  is situated in the capability zone. The process capability of 

quality characteristic 2N  is capable. 1N  and 3N  are not entirely situated in the process capability 

zone, which indicates that the process capabilities of 1N  and 3N  do not reach the 4-Sigma 

requirement. Thus, it is necessary to take action to improve their process quality, but 3N  in 

particular should identify all assignable causes to increase the quality level. That can be done by 
moving the mean of the process to its target and decreasing its variation. 

(2) Quality characteristics 1S  and 2S  fall into the STB type with unilateral specifications. 

Quality characteristic 2S  reaches the required 4-Sigma level, whereas the confidence interval of 1S  

is not situated in the capability zone on the X-axis. Therefore, it is necessary to take action to uplift 
the process capabilities.  

(3) Quality characteristics 1L  and 2L  are categorized into the LTB type with unilateral 

specifications. The confidence interval of 2L  is not situated on the bold line of the capability zone 

on the Y-Axis. To enhance the process quality, it is necessary to reduce the variation of the process or 
deviate the mean from the lower specification limit. As for quality characteristic 1L , it currently 

meets the 4-Sigma requirement, but it should be continuously monitored. 
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5. Conclusions 

To monitor the process capabilities of a multi-process product, managers have to obtain 
sufficient and reliable information in order to implement quality improvements. This study attempts 
to improve several insufficiencies to enable managers to make such informed decisions. First, this 
study reconstructed an efficient method via the paS -PCAC, which not only represented multiple 

process capabilities with asymmetric bilateral specifications by PCIs paS and Ca but also used PCIs 

puC and plC to assess multiple process capabilities categorized into the STB and LTB types 

displayed on the horizontal and vertical axes respectively. This study selected index paS , superior to 

index pkS , especially when evaluating process capabilities with asymmetric bilateral specifications. 

Second, as stated by Cheng [26] as well as Pearn and Chen [37], a large degree of uncertainty or risk 
needs to be taken into account regarding capability assessments for sampling errors. To reliably 
evaluate the quality of an entire product consisting of multiple characteristics, the proposed 

paS -PCAC considered the interval estimates of the used indices. Third, based on the loss function 

stated in the Taguchi method [38–42], it can be learned that as long as the mean is closer to the target, 
the quality will be the better and the loss will be less. Index Ca was incorporated into the paS -PCAC 

because it is adequate to assess the accuracy of the manufacturing process. Lastly, the quality-level of 
Six-Sigma and the connection with process yield were introduced in the capability zone of 

paS -PCAC to check whether the process capabilities could reach the preset level. The paS -PCAC 

explained the multi-characteristics process capabilities and distinguished the process accuracy from 
the locations of the interval estimates of PCIs. Furthermore, with respect to the unsatisfactory 
processes, actions for quality improvement were taken to enhance the entire process capabilities. 
Consequently, our proposed model is a valuable tool for managers to improve their manufacturing 
processes. Finally, when the process distribution is abnormal, the model proposed in this study is not 
applicable. This is the research limitation of this paper. The confidence interval derived by the 
mathematical programming method in this article is easier than the traditional confidence interval, so 
it is more suitable for the industry which emphasizes timeliness. As to how much higher 
than100(1 )%  it should be, it is a more complicated issue. It is recommended to refer to the 

method proposed Chen et al. [34] for discussion. This study will list it as a future research topic. 
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