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Abstract: An extended SEIQR type model is considered in order to model the COVID-19 epidemic.
It contains the classes of susceptible individuals, exposed, infected symptomatic and asymptomatic,
quarantined, hospitalized and recovered. The basic reproduction number and the final size of epidemic
are determined. The model is used to fit available data for some European countries. A more de-
tailed model with two different subclasses of susceptible individuals is introduced in order to study
the influence of social interaction on the disease progression. The coefficient of social interaction K
characterizes the level of social contacts in comparison with complete lockdown (K = 0) and the ab-
sence of lockdown (K = 1). The fitting of data shows that the actual level of this coefficient in some
European countries is about 0.1, characterizing a slow disease progression. A slight increase of this
value in the autumn can lead to a strong epidemic burst.
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1. Introduction

The Coronavirus disease 2019 (COVID-19) pandemic is now considered as the biggest global threat
worldwide. This disease is caused by severe acute respiratory syndrome coronavirus 2 (SARS-COV-
2) which belongs to a group of RNA virus causing respiratory track infection that can range mild
to lethal [1]. The first outbreak of COVID-19 was noticed in Hubei province, Wuhan, China [2] in
December 2019. Then it spread all over the world so rapidly that the World Health Organization
(WHO) revealed the COVID-19 to be a public health emergency and identified it as a pandemic on
March 11, 2020. Since December 2019, the first COVID-19 infected person was diagnosed, the
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COVID-19 quickly spread to all Chinese province and, as of 1 April 2020, to 200 countries and regions
with the number of reported infected cases and the number of documented death reached 19 million
and 717,792, respectively [3]. Among these countries, the alarming epidemic situations are in the
United States (5,032,278 total cases, 162,804 death cases), Brazil (2,917,562 total cases, 98,644 death
cases), India (2,030,001 total cases, 41,673 death cases), Russia (871,894 total cases, 14,606 death
cases), Italy (249,204 total cases, 35,187 death cases), UK (308,134 total cases, 46,413 death cases),
Spain (354,530 total cases, 28,500 death cases), Germany (215,210 total cases, 9,252 death cases),
France (195,633 total cases, 30,312 death cases), and Iran (320,117 total cases, 17,976 death cases) as
of 8th August, 2020. In particular, the number of infection cases in the United States has grown very
fast, the number of reported infected cases increases from 15 to 288,721 spending 82 days only [3].

The most alarming part of this disease spread is that the symptoms of this disease are not specific and
in many cases the infected person may be asymptomatic (who can infect other persons without showing
any symptoms of the disease). The majority of the cases initially have symptoms like common cold
which includes dry cough, fever, sore throat, loss of sense of smell, headache, shortness of breathe etc.
Moreover, the disease growth of this infection further proceed to acute respiratory distress syndrome
which can lead to even death. It is also observed in an age-stratified analysis [4] that the large number
of severe cases in particular for the age groups above 60 and having other medical issues like diabetics,
kidney problems etc. The COVID-19 virus spreads at large extend between people when they come
in close contact with each other and the virus is transmitted through expelled droplets which enter a
person’s body through various contact routes such as the mouth, eyes or nose. Contact with various
surface is another means for contracting the virus. In the absence of a definite treatment modality
like appropriate/effective medicine or vaccine, physical distancing, wearing masks, washing hands etc.
have been accepted globally as the most efficient strategies for reducing the severity and spread of this
virus and gaining control over it at some extend [5]. So, the governments of most of the countries had
decided to go for complete lockdown from mid or end of March, 2020. This complete lockdown also
affected the economy of those countries in a large extent. So, from the mid of the month of May, 2020,
all the countries have taken some policies for unlocking gradually.

Mathematical models of infectious disease dynamics nowadays became a very useful and important
tool for the analysis of dynamics of disease progression, to predict the future course of an outbreak
and to evaluate strategies to control an epidemic in recent years. The global problem of the outbreak of
COVID-19 has attracted the interest of researchers of different areas. Mathematical modeling based on
system of differential equations may provide a simple but comprehensive mechanism for the dynamics
of COVID-19 transmission. Several modeling studies have already been performed for the COVID-19
outbreak [6–11]. In [12], Lin et. al. suggested a conceptual model for the coronavirus disease started
at the end of 2019, which effectively catches the time line of the COVID-19 outbreak. A mathematical
model for reproducing the stage-based transmissibility of a novel coronavirus is proposed and analyzed
by Chen et al. in [13]. Wu et al. developed a susceptible exposed infectious recovered model (SEIR)
based on the reported data from December 31st, 2019 till January 28th, 2020, to clarify the transmis-
sion dynamics and projected national and global spread of the disease [14]. They also calculated the
basic reproduction number as around 2.68 for COVID-19. Tang et al proposed a compartmental deter-
ministic model that would combine the clinical development of the disease, the epidemiological status
of the patient and the measures for intervention. Researchers also found that the value of control repro-
duction number may be as high as 6.47, and that methods of intervention including intensive contact
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tracing followed by quarantine and isolation would effectively minimize COVID-19 cases [15]. For the
basic reproductive number (R0), Read et al. reported a value of 3.1 based on the data fitting of an SEIR
model, using an assumption of Poisson-distributed daily time increments [16]. S. Zhao et al. estimated
the mean R0 for 2019-nCoV in the early phase of the outbreak ranging from 3.3 to 5.5 (likely to be be-
low 5 but above 3 with rising rate of reported cases) [17], which appeared slightly higher than those of
SARS-CoV (R0: 2–5) [18]. A report by Cambridge University has indicated that India’s countrywide
three-week lockdown would not be adequate to prevent a resurgence of the new coronavirus epidemic
that could bounce back in months and cause several thousands of infections [19]. They suggested that
two or three lockdowns can extend the slowdown longer with five-day breaks in between or a single
49-day lockdown. Data-driven mathematical modeling plays a key role in disease prevention, planning
for future outbreaks and determining the effectiveness of control. Several data-driven modeling exper-
iments have been performed in various regions [15]. In [20], a compartmental mathematical model is
developed to understand the outbreak of COVID-19 in Mexico. This data driven analysis would let us
compare how different the outbreak will be in the two studied regions. By this approach, authorities
can plan a health care program to control the spread even with limited resources. In Rojas et al. [21],
the authors estimated the value of R0 which helped them to predict that in the city of Cali the outbreak
under current intervention of isolation and quarantine will last for 5–6 months and will need around
3500 beds on a given during the peak of the outbreak. Some other relevant works where the basic
reproduction number is estimated for different countries can be found in [22–28].

The most common mathematical formulations which represent the individual transition in a commu-
nity between ‘compartments’ describe the situation of individual infection with a significant insight.
These compartmental models for disease progression segregate a population into groups depending
on each individual’s infectious state and related population sizes with respect to time. There is a wide
range of mathematical models and approaches adopted by different researchers to develop viable math-
ematical model to understand the propagation of disease spread for COVID-19 with different model
assumptions. In our present work we have proposed and analyzed an ordinary differential equation
model to study the COVID-19 disease propagation which consists with initially six compartments
namely susceptible, exposed, infected, quarantined, hospitalised and recovered. We have divided the
exposed compartment into two sub-compartments (denoted by E1 and E2) depending on their infec-
tiousness and also divided the infected class into two sub-compartments, namely, asymptomatic (Ia)
and symptomatic (Is). Interesting and significant contribution of our work is the consideration of time
dependent rate of infection over various periods of time. This variation is adopted into the model in
order to capture the effect of lockdown, social distancing etc. which plays a crucial role to reduce the
disease spread. Next we have discussed the basic properties of our model and calculated the basic and
controlled reproduction number. Final size of the epidemic is also described. We have divided suscep-
tible, exposed and infected classes into two sub-classes each based on their classification or behaviour
which is directly responsible for the alteration of rate of disease spread. The classification or division
into two different groups may be due to the different age groups, different implementation of distancing
measures, proper and improper use of face mask and so on. Then we have calculated the reproduction
number and final size of the epidemic for the two group model. Next we have copulated the sensitivity
index to identify the parameters of greater interest and then fitted those parameter values with the data
of total cumulative cases of COVID-19 for different countries (Germany, Italy, Spain, and UK). Then
we have shown that with those best fitted parameter values our model simulation is matching well with
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the 95% confidence interval of the daywise cumulative and daily data for reported cases which proved
the viability of our model system. This also depict the fact that nature of the disease transmission is dif-
ferent for different countries depending on the protective measures and policies taken by government,
different age distribution of the population, lack of consciousness and many others.

2. Mathematical model – 1

In the following, we consider a dynamic SEIQR type model for the COVID-19 disease progression.
Basically the model consists with Susceptible (S ), Exposed (E), Infected (I), Quarantined (Q), hos-
pitalized (J) and Recovered (R) class. In the context of COVID-19, the exposed class is divided into
two subclasses namely non-infectious (E1) and infectious (E2) and the infected class is divided into two
sub- classes namely asymptomatic (Ia) and symptomatic (Is), where N = S +E1 +E2 +Ia +Is +Q+J+R
and N is not fixed since deceased individuals are not considered in the model explicitly. The model
assumptions are given as follows:
Susceptible population S (t): This subpopulation will decrease after an infection due to the interaction
with an symptomatic infected individual (Is), asymptomatic infected individual (Ia), infectious exposed
individual (E2), quarantined (Q) or hospitalised one (J). The transmission coefficients will be βIs/N,
βp1Ia/N, βp2E2/N, βp3Q/N and βp4J/N respectively. Here β is rate of infection per unit of time by
the symptomatic infected, p1, p2, p3 and p4 are the reduction factor of infectivity by Ia, E2, Q and J
respectively compared to Is and satisfy the restriction 0 ≤ p j < 1, j = 1, 2, 3, 4. The rate of change of
the susceptible population is expressed in the following equation:

dS
dt

= −
βS
N

(Is + p1Ia + p2E2 + p3Q + p4J).

Exposed polulation E(t): The exposed population (in the incubation period) is divided into two sub
classes: (i) exposed population who are at the beginning of the incubation period and cannot spread the
disease (E1(t)) and (ii) exposed population who are at the end of the incubation period and can spread
the disease (E2(t)), hence E(t) = E1(t) + E2(t). The transfer mechanism from the class S (t) to the class
E1(t) is guided by the function βS

N (Is + p1Ia + p2E2 + p3Q + p4J) and from the class E1(t) to the class
E2(t) is guided by µE1, where µ is the rate at which individuals of E1 class become infectious exposed
(E2). The population of E2 will decrease due to the transfer into the infected class with rate δ. Thus
the rate of change of the exposed population is expressed in the following two equations:

dE1

dt
=
βS
N

(Is + p1Ia + p2E2 + p3Q + p4J) − µE1

dE2

dt
= µE1 − δE2.

Infected polulation I(t): The infected population is divided into two subclasses (i) asymptomatic
(having no symptoms) (Ia(t)) and (ii) symptomatic (having symptoms) (Is(t)), such that I(t) = Ia(t) +

Is(t). The transfer mechanism from the class E2(t) to the class Ia(t) is guided by the function (1−σ)δE2

and from the class E2(t) to the class Is(t) is guided by the function σδE2 where σ (0 < σ < 1) is
the fraction of E2 that becomes symptomatic infected (Is). The population Ia will decrease due to the
transfer into the recovered population with a rate η and Is will decrease with a rate (ρ1 + ζ1 + ζ2 + ζ3),
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where ρ1 is the rate of mortality due to the infection, ζ1, ζ2 and ζ3 are the rate at which Is becomes
quarantined, recovered and hospitalised respectively. Thus the rate of change of the infected population
is expressed in the following two equations:

dIa

dt
= (1 − σ)δE2 − ηIa,

dIs

dt
= σδE2 − (ρ1 + ζ1 + ζ2 + ζ3)Is.

Quarantined population Q(t): This subpopulation will increase due to the transfer from the class Is(t)
with a rate ζ1 and will decrease with a rate (ξ1 + ξ2), where ξ1 and ξ2 are the rates at which Q becomes
hospitalized and recovered respectively. Thus the rate of change of the quarantined population is
expressed in the following equation:

dQ
dt

= ζ1Is − (ξ1 + ξ2)Q.

Hospitalized population J(t): This subpopulation will increase due to the transfer from the classes
Is(t) and Q(t) with rates ζ3 and ξ1 respectively and will decrease with a rate (ρ2 +ν), where ρ2 is the rate
of mortality due to the infection and ν is the rate at which the hospitalized individuals are recovered.
Thus the rate of change of the hospitalized population is expressed in the following equation:

dJ
dt

= ζ3Is + ξ1Q − (ρ2 + ν)J.

Recovered population R(t): This subpopulation will increase due to recovery from the disease from
the classes Ia(t), Is(t), Q(t) and J(t) with rates η, ζ2, ξ2 and ν respectively. Thus the rate of change of
the recovered population is expressed in the following equation:

dR
dt

= ηIa + ζ2Is + ξ2Q + νJ.

Hence, the system of differential equations that will model the dynamics of coronavirus spread is:

dS
dt

= −
βS
N

(Is + p1Ia + p2E2 + p3Q + p4J), (2.1a)

dE1

dt
=

βS
N

(Is + p1Ia + p2E2 + p3Q + p4J) − µE1, (2.1b)

dE2

dt
= µE1 − δE2, (2.1c)

dIa

dt
= (1 − σ)δE2 − ηIa, (2.1d)

dIs

dt
= σδE2 − (ρ1 + ζ1 + ζ2 + ζ3)Is, (2.1e)

dQ
dt

= ζ1Is − (ξ1 + ξ2)Q, (2.1f)

dJ
dt

= ζ3Is + ξ1Q − (ρ2 + ν)J (2.1g)
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dR
dt

= ηIa + ζ2Is + ξ2Q + νJ, (2.1h)

subjected to non-negative initial conditions S (0), E1(0), E2(0), Ia(0), Is(0),Q(0), J(0),R(0) ≥ 0.

Interpretation for the parameters involved with the model (2.1) is summarized in Table 1 for a quick
reference. A schematic diagram for the transmission of disease and progression of the individuals from
one compartment to another is provided in Figure 1.

We have written the basic model with β as constant for the simplicity of forthcoming mathematical
calculations. However, for numerical simulations and in order to fit the numerical results with available
data [3], we will consider β ≡ β(t) as a function of time in order to model the effect of lockdown. In
reality the rate of infection is not a constant throughout the epidemic outbreak rather it changes time
to time due to the variability in social behavior. Although it is difficult to obtain actual pattern of
variation with respect to time but we have considered this variation in order to model the lowering in
rate to infection due to the lowering of social contancts during the lockdown period.

Table 1. Description of parameters involved with the model (2.1). Range of parameter values
are obatined from the references [20, 21, 25, 26, 30, 31].

Parameter Interpretation Values Units
β rate of infection per unit of time by the symptomatic infected varying day−1

p1 reduction factor of infectivity by the Ia class compared to Is class 0.05–0.34 −

p2 reduction factor of infectivity by the E class compared to Is class 0.05–0.34 −

p3 reduction factor of infectivity by the Q class compared to Is class 0.05–0.34 −

p4 reduction factor of infectivity by the J class compared to Is class 0.05–0.34 −

µ rate at which individuals of E1 class become infectious exposed 0.25-0.33 day−1

δ rate at which individuals of E2 class become infected 0.5–1 day−1

σ fraction of infectious Exposed population E2 that becomes 0–1 −

Symptomatic infected (0 < σ < 1)
η rate of recovery of the asymptomatic infected individuals without 0.1–0.9 day−1

any medical intervention
ρ1 rate of mortality due to the infection for the individuals of 0.05–0.1 day−1

infected class with symptom
ζ1 rate at which the symptomatic infected individuals are quarantined 0.07 day−1

ζ2 rate of recovery of the symptomatic infected individuals 0.1 day−1

without any medical intervention
ζ3 rate of hospitalization of the symptomatic infected individuals 0.14 day−1

ξ1 rate of hospitalization of the quarantined individuals 0.14 day−1

ξ2 rate of recovery from the infection after being quarantined 0.05–0.1 day−1

ρ2 rate of mortality of hospitalized individuals 0.07 day−1

ν rate of transfer of hospitalized individuals to recovered class 0.05 day−1
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Figure 1. Schematic diagram for the progression of disease described by the model (2.1).
Solid arrows represent the transfer from one compartment to another while the dotted line
with arrow denote the compartments responsible for disease transmission. Associated rates
are mentioned accordingly.

2.1. Positivity and boundedness

A viable mathematical model for epidemiology must ensure that the solutions of the model un-
der consideration remain non-negative once started from an interior point of the positive cone and
remains bounded at all future time. The model considered here is not a completely new rather sev-
eral close versions are available in various articles on mathematical epidemiology. However, for the
completeness we just state the relevant result and a brief outline for the proof is provided at the
appendix. For this purpose we consider that the model (2.1) is subjected to the initial conditions
(S (0), E1(0), E2(0), Ia(0), Is(0),Q(0), J(0),R(0)) ∈ R8

+, where positive cone of R8 is R8
+ = {(x1, ..., x8) :

xi ≥ 0, i = 1, ..., 8}. First we prove that the solution of the system (2.1) remains within R8
+ at all future

time once started from a point within R8
+ following the approach outlined in [29].

Theorem 1. The system (2.1) is invariant in R8
+.

Proof. See appendix.

In order to close the model (2.1), we can introduce the compartment for number of COVID related
deaths as follows

dD
dt

= ρ1Is + ρ2J. (2.2)

Now if we write ND = S + E1 + E2 + Ia + Is + Q + J + R + D, then from (2.1) and (2.2), we find

d
dt

ND = 0 ⇒ ND = const. (2.3)

With the previous urgument we can prove D(t) ≥ 0 and hence 0 < N ≤ ND implies N is bounded
above, consequently all the constituent variables are also bounded.
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2.2. Basic and controlled reproduction numbers

In this section, first we find the basic reproduction number for the model (2.1) in the absence of
any control measures, namely, quarantine and hospitalization. For this purpose we assume that the
model consists with Susceptible, Exposed, Infected and Recovered class only. The Quarantined and
Hospitalized classes are not considered for the time being. Based upon this assumption we can write
the following reduced model:

dS
dt

= −
βS
N

(Is + p1Ia + p2E2), (2.4a)

dE1

dt
=

βS
N

(Is + p1Ia + p2E2) − µE1, (2.4b)

dE2

dt
= µE1 − δE2, (2.4c)

dIa

dt
= (1 − σ)δE2 − ηIa, (2.4d)

dIs

dt
= σδE2 − (ρ1 + ζ2)Is, (2.4e)

dR
dt

= ηIa + ζ2Is, (2.4f)

subjected to non-negative initial conditions S (0), E1(0), E2(0), Ia(0), Is(0),R(0) ≥ 0. For this model
N = S + E1 + E2 + Ia + Is + R. Here we calculate the basic reproduction number for above model
following the next generation matrix approached as introduced in [32]. The disease free equilibrium
point is given by (N, 0, 0, 0, 0, 0), the derivation of basic reproduction number is based upon the stability
condition of disease free equilibrium point for the model (2.4). First we rearrange the compartments of
the model (2.4) such that first four equations are related to infected compartments from epidemiological
point of view (i.e., E1, E2, Ia and Is). Susceptible and recovered compartments will be placed at the
end. From (2.4), we can write

d
dt

X = F1 −V1, (2.5)

where X = [E1, E2, Ia, Is, S ,R]T ≡ [x1, x2, x3, x4, x5, x6]T . Here the matrix F1 consists of the terms
involved with the appearence of new infection at all the compartments and V1 contains the terms
representing entry and exit of all other individuals, rather than direct infection, at all compartments.
Explicit expressions for F1 andV1 are given at the appendix.

For the calculation of basic reproduction number now we need to evaluate two matrices F1 and V1,
which are defined by

F1 =

[
∂ f1i

∂x j

]
X0

, V1 =

[
∂v1i

∂x j

]
X0

, 1 ≤ i, j ≤ 4, (2.6)

where X0 = (0, 0, 0, 0,N, 0)T . Here we should mention that F1 ≡ [ f11, f12, f13, f14, f15, f16]T andV1 ≡

[v11, v12, v13, v14, v15, v16]T to avoid any confusion. The largest eigenvalue of the next generation matrix
F1V−1

1 is the basic reproduction number for the model (2.4), (see [32, 33]). The matrices F1, V1 and
F1V−1

1 are given at the appendix.
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The basic reproduction number for the model (2.4) is denoted by R[1]
0 and is given by

R
[1]
0 = β

[
p2

δ
+

(1 − σ)p1

η
+

σ

ρ1 + ζ2

]
. (2.7)

Here the superscript ‘[1]’ stands for the first model considered in this manuscript, that is for the model
(2.1). This basic reproduction number is the sum of three terms, which represents the number of sec-
ondary infections produced by an infectious exposed individual, an asymptomatic infected individual,
and a symptomatic infected individual respectively. βp2S E2

N is the incidence of an exposed individuals
who are at the end of the incubation period and can spread the disease. The number of secondary
infection produced by an individual of E2 compartment in an entirely susceptible population is βp2 per
unit of time. An individual spents an average 1

δ
units of time in E2 compartment. Hence the number

of secondary infection produced by an individual of E2 compartment is βp2
δ

. The number of secondary
infections produced by the individuals of Ia and Is compartments in an entirely susceptible population,
per unit of time, are β(1−σ)p1 and βσ respectively. The average time units spend by the asymptomatic
and symptomatic infectious individuals with their respective compartments are 1

η
and 1

ρ1+ζ2
. Hence the

number of secondary infection produced by the individuals of Ia and Is comparments are β(1−σ)p1
η

and
βσ

ρ1+ζ2
respectively.

Henceforth we follow the similar notation and approach to calculate other relevant reproduction
numbers without providing detailed description, the expressions for large matrices are provided at the
appendix. Now we calculate the controlled reproduction number for the model (2.1).

The model (2.1) can be written as follows

d
dt

X = F2 −V2,

X = [E1, E2, Ia, Is,Q, J, S ,R]T ≡ [x1, x2, x3, x4, x5, x6, x7, x8]T with six compartments contribute to the
propagation of infection. We can define following two matrices

F2 =

[
∂ f2i

∂x j

]
X0

, V2 =

[
∂v2i

∂x j

]
X0

, 1 ≤ i, j ≤ 6, (2.8)

where X0 = (0, 0, 0, 0, 0, 0,N, 0).
The controlled reproduction number for the model (2.1) is given by

R[1]
c = β

[
p2

δ
+

p1(1 − σ)
η

+
σ

ρ1 + ζ1 + ζ2 + ζ3
+

p3ζ1σ

(ρ1 + ζ1 + ζ2 + ζ3)(ξ1 + ξ2)

+
p4σζ3

(ρ1 + ζ1 + ζ2 + ζ3)(ρ2 + ν)
+

p4σξ1ζ1

(ρ1 + ζ1 + ζ2 + ζ3)(ξ1 + ξ2)(ρ2 + ν)

]
. (2.9)

The different terms involved with R[1]
c can be explained in a similar way as given above, interested

readers can see [34, 35] for detailed discussion. It is important to mention here that substituting ζ1 =

ζ3 = 0 we can find the basic reproduction number R[1]
0 from the controlled reproduction number R[1]

c .
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2.3. Final sizes of epidemic

In order to determine the final size of the epidemic, we find three relevant quantites S f , R f and
D f . Here S f is the final size of the susceptible compartment at the end of outbreak, theoretically it is
defined by limt→∞ S (t) = S f [34, 35]. Let t f denotes the time at which the number of infected is zero
that is at the end of epidemic outbreak and consequently S f , R f and D f can be considered as the values
of S (t), R(t) and D(t) at t = t f . First we calculate the final size of the susceptible compartment that is
S f . We integrate the equation for S (i.e., (2.1a)) between t = 0 to t = t f ( = ∞) and find

ln
S 0

S f
=

β

N

∫ t f

0
(Is + p1Ia + p2E2 + p3Q + p4J)dt, (2.10)

where S 0 and S f denotes initial and final size of the susceptible population.
Now we assume that the model (2.1) is subjected to the initial condition that S 0, E10 > 0 and all

other components are absent at the initial time point t = 0. Consequently S 0+E10 = N. Now integrating
(2.1c) between t = 0 and t = t f and with the assumption that E20 = E2 f = 0, we find∫ t f

0
E2dt =

µ

δ

∫ t f

0
E1dt. (2.11)

Similarly from (2.1d) we find the following result,∫ t f

0
Iadt =

(1 − σ)δ
η

∫ t f

0
E2dt =

µ(1 − σ)
η

∫ t f

0
E1dt. (2.12)

Proceeding in a similar way, from Eqs (2.1e)–(2.1g) and using above results we find,∫ t f

0
Isdt =

µσ

ρ1 + ζ1 + ζ2 + ζ3

∫ t f

0
E1dt, (2.13)

∫ t f

0
Qdt =

ζ1µσ

(ξ1 + ξ2)(ρ1 + ζ1 + ζ2 + ζ3)

∫ t f

0
E1dt, (2.14)

and ∫ t f

0
Jdt =

ζ3

ρ2 + ν

∫ t f

0
Isdt +

ξ1

ρ2 + ν

∫ t f

0
Qdt,

=
µσ

(ρ2 + ν)(ρ1 + ζ1 + ζ2 + ζ3)

[
ζ3 +

ξ1ζ1

ξ1 + ξ2

] ∫ t f

0
E1dt. (2.15)

Now if we add two equations (2.1a) and (2.1b), and then integrating we find

N − S f = µ

∫ t f

0
E1dt, (2.16)

where S 0 = N and we assume E10, E1 f = 0. Now using the results (2.11)–(2.15), from (2.10) we find

ln
S 0

S f
=

β

N

[
p2

δ
+

p1(1 − σ)
η

+
σ

ρ1 + ζ1 + ζ2 + ζ3

(
1 +

p3ζ1

ξ1 + ξ2

)
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p3σ

(ρ2 + ν)(ρ1 + ζ1 + ζ2 + ζ3)

(
ζ3 +

ξ1ζ1

ξ1 + ξ2

)]
µ

∫ t f

0
E1dt. (2.17)

Finally using (2.16) and the expression for R[1]
c , we obtain the final size of the epidemic as follows

ln
S 0

S f
= R[1]

c

(
1 −

S f

N

)
. (2.18)

At the begining of the epidemic without any loss of generality we can assume that the entire pop-
ulation is susceptible and hence N = S 0. Using S f

S 0
≡

S f

N = x in above equation we get the following
equation

Φ(x) ≡ ln x + R[1]
c (1 − x) = 0. (2.19)

This equation possesses a solution within the interval (0, 1) when R[1]
c > 1 and root of the equation

Φ(x) = 0 gives the final size of the epidemic. On the other hand the question of final size of the
epidemic will not arise in case of R[1]

c ≤ 1 as there is no root of the equation Φ(x) = 0 within (0, 1).
This claim can be verified from the Figure 2.

Figure 2. Plot of Φ(x) for three different values of R[1]
c : R[1]

c = 2 (blue), R[1]
c = 1 (red) and

R
[1]
c = 0.6 (yellow).

To understand the final size of the deceased compartment we need to calculate D f and R f . Clearly
R0 = 0 and D0 = 0, hence by integrating the equations for recovered and deceased compartments
between t = 0 to t = t f we find

R f =

∫ t f

0
(ηIa + ζ2Is + ξ2Q + νJ)dt, (2.20)

and

D f =

∫ t f

0
(ρ1Is + ρ2J)dt. (2.21)
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Using the results (2.12)–(2.15), we find from above two equations,

R f =

[
µ(1 − σ) +

µσ

ρ1 + ζ1 + ζ2 + ζ3

(
ζ2 +

ξ2ζ1

ξ1 + ξ2
+

νζ3

ρ2 + ν
+

νξ1ζ1

(ρ2 + ν)(ξ1 + ξ2)

)] ∫ t f

0
E1dt, (2.22)

and

D f =

[
µσ

ρ1 + ζ1 + ζ2 + ζ3

(
ρ1 +

ρ2

ρ2 + ν

(
ζ3 +

ξ1ζ1

ξ1 + ξ2

))] ∫ t f

0
E1dt. (2.23)

If we define

ω =
µ(1 − σ) +

µσ

ρ1+ζ1+ζ2+ζ3

(
ζ2 +

ξ2ζ1
ξ1+ξ2

+
νζ3
ρ2+ν

+
νξ1ζ1

(ρ2+ν)(ξ1+ξ2)

)
µσ

ρ1+ζ1+ζ2+ζ3

(
ρ1 +

ρ2
ρ2+ν

(
ζ3 +

ξ1ζ1
ξ1+ξ2

)) , (2.24)

then
R f

D f
= ω. (2.25)

3. Mathematical model – 2

In the following, we have divided the susceptible population (S ), Exposed population (cannot
spread infection (E1) and can spread infection (E2)), asymptomatic infective (Ia) and symptomatic
infective (Is) of model (2.1) into two subclasses, namely S 1, S 2, E11, E21, E12, E22, Ia1 , Ia2 , Is1 , Is2

respectively based on their classification or behaviour which is directly responsible for the alteration
of rate of disease spread. The classification or division into two different groups may be due to the
different age groups, different implementation of distancing measures, proper and improper use of
face mask and so on, related to the human behaviours. The total population size can be written as
N = S 1 + S 2 + E11 + E21 + E12 + E22 + Ia1 + Ia2 + Is1 + Is2 + Q + J + R and N is not fixed since deceased
compartment is not included in the model. The assumptions for the extended model formulation are
given as follows:

Susceptible population S (t): This subpopulation is divided into two subclasses S 1 and S 2. The pop-
ulation in the compartment S 1 will decrease after an infection due to the interaction with an symp-
tomatic infected individual (Is1 , Is2) with transmission coefficients β11Is1/N, β12Is2/N respectively,
asymptomatic infected individual (Ia1 , Ia2) with transmission coefficients β11 p11Ia1/N, β12 p21Ia2/N
respectively, infectious exposed individual (E12, E22) with transmission coefficients β11 p12E12/N,
β12 p22E22/N respectively, quarantine (Q) with transmission coefficients βQQ/N or hospitalised one (J)
with transmission coefficients βJ J/N. Here β11, β12 are rates of infection per unit of time by the symp-
tomatic infected Is1 , Is2 respectively, βQ, βJ are rates of infection per unit of time by the quarantined and
hospitalized population (Q, J) respectively , p11, p12, p21 and p22 are the reduction factor of infectivity
by Ia1 , E12, Ia2 and E22 respectively compared to Is1 and Is2 and satisfy the restriction 0 ≤ pi j < 1,
i, j = 1, 2. S 2 will decrease after an infection due to the interaction with an symptomatic infected
individual (Is1 , Is2) with transmission coefficients β21Is1/N, β22Is2/N respectively, asymptomatic in-
fected individual (Ia1 , Ia2) with transmission coefficients β21 p31Ia1/N, β22 p41Ia2/N respectively, infec-
tious exposed individual (E12, E22) with transmission coefficients β21 p32E12/N, β22 p42E22/N respec-
tively, quarantine (Q) with transmission coefficients βQQ/N or hospitalised one (J) with transmission
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coefficients βJ J/N. Here β21, β22 are rates of infection per unit of time by the symptomatic infected
Is1 , Is2 respectively, βQ, βJ are rates of infection per unit of time by the quarantined and hospitalized
population (Q, J) respectively, p31, p32, p41 and p42 are the reduction factor of infectivity by Ia1 , E12,
Ia2 and E22 respectively compared to Is1 and Is2 and satisfy the restriction 0 ≤ pi j < 1, i = 3, 4, j = 1, 2.
The rate of change of the susceptible population is expressed in the following two equations:

dS 1

dt
= −

S 1

N
[
β11(Is1 + p11Ia1 + p12E12) + β12(Is2 + p21Ia2 + p22E22) + βQQ + βJ J

]
,

dS 2

dt
= −

S 2

N
[
β21(Is1 + p31Ia1 + p32E12) + β22(Is2 + p41Ia2 + p42E22) + βQQ + βJ J

]
.

The rate of change of two groups of the exposed compartments, who are not infectious, is described
by the follwoing two equations

dE11

dt
=

S 1

N
[
β11(Is1 + p11Ia1 + p12E12) + β12(Is2 + p21Ia2 + p22E22) + βQQ + βJ J

]
− µ1E11,

dE21

dt
=

S 2

N
[
β21(Is1 + p31Ia1 + p32E12) + β22(Is2 + p41Ia2 + p42E22) + βQQ + βJ J

]
− µ2E21,

where µ1 and µ2 are the rates at which E11 and E21 progress to the infectious exposed compartments
E12 and E22 respectively. The infectious exposed individuals leave the respective classes at rates δ1 and
δ2, hence their rate of change with respect to time is given by

dE12

dt
= µ1E11 − δ1E12,

dE22

dt
= µ2E21 − δ2E22.

The governing equations for the two groups of asymptomatic and symptomatic infected classes are
given as follows:

dIa1

dt
= (1 − σ1)δ1E12 − η1Ia1 ,

dIa2

dt
= (1 − σ2)δ2E22 − η2Ia2 ,

dIs1

dt
= σ1δ1E12 − (ρ11 + ζ11 + ζ12 + ζ13)Is1 ,

dIs2

dt
= σ2δ2E22 − (ρ21 + ζ21 + ζ22 + ζ23)Is2 ,

where the parameters σ j, ρ j1, ζ j1, ζ j2 and ζ j3 ( j = 1, 2) have the similar interpretation as that of σ, ρ1,
ζ1, ζ2 and ζ3 as described in Table 1 for model (2.1).

Distinction for quarantined, hospitalized and recovered compartments are not required as first two
groups are under indirect and direct medical interventions and recovered individuals have no direct role
to play with the disease spread. Finally including the governing equations for quarantined, hospitalized
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and recovered compartments and using previous equations we get the final two-group infection model
as follows,

dS 1

dt
= −

S 1

N
[
β11(Is1 + p11Ia1 + p12E12) + β12(Is2 + p21Ia2 + p22E22) + βQQ + βJ J

]
, (3.1a)

dS 2

dt
= −

S 2

N
[
β21(Is1 + p31Ia1 + p32E12) + β22(Is2 + p41Ia2 + p42E22) + βQQ + βJ J

]
, (3.1b)

dE11

dt
=

S 1

N
[
β11(Is1 + p11Ia1 + p12E12) + β12(Is2 + p21Ia2 + p22E22) + βQQ + βJ J

]
− µ1E11, (3.1c)

dE21

dt
=

S 2

N
[
β21(Is1 + p31Ia1 + p32E12) + β22(Is2 + p41Ia2 + p42E22) + βQQ + βJ J

]
− µ2E21, (3.1d)

dE12

dt
= µ1E11 − δ1E12, (3.1e)

dE22

dt
= µ2E21 − δ2E22, (3.1f)

dIa1

dt
= (1 − σ1)δ1E12 − η1Ia1 , (3.1g)

dIa2

dt
= (1 − σ2)δ2E22 − η2Ia2 , (3.1h)

dIs1

dt
= σ1δ1E12 − (ρ11 + ζ11 + ζ12 + ζ13)Is1 , (3.1i)

dIs2

dt
= σ2δ2E22 − (ρ21 + ζ21 + ζ22 + ζ23)Is2 , (3.1j)

dQ
dt

= ζ11Is1 + ζ21Is2 − (ξ1 + ξ2)Q, (3.1k)

dJ
dt

= ζ12Is1 + ζ22Is2 + ξ1Q − (ρ2 + ν)J, (3.1l)

dR
dt

= η1Ia1 + η2Ia2 + ζ13Is1 + ζ23Is2 + ξ2Q + νJ. (3.1m)

Here ρ11, ρ21, ξ1 and ρ2 are the disease related death rates for the compartments Is1 , Is2 , Q and J
respectively. A schematic diagram is presented in Figure 3 without the rate constants in order to avoid
clumsiness.

Before analyzing the above model, here we explain how the model (2.1) can be derived from the
model (3.1) under suitable assumptions. For this purpose first adding the Eqs (3.1e) and (3.1f), we find

d
dt

(E12 + E22) = (µ1E11 + µ2E21) − (δ1E12 + δ2E22).

If we assume µ1 = µ2 = µ and δ1 = δ2 = δ, then we find

d
dt

(E12 + E22) = µ(E11 + E21) − δ(E12 + E22),

which is Eq (2.1c) if we write (E11 + E21) = E1 and (E12 + E22) = E2 respectively.
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Figure 3. Schematic diagram for the disease progression described by the model (3.1). Solid
arrows represent the transfer from one compartment to another while the dotted line with
arrow denote the compartments responsible for disease transmission.

Similarly, with the previous assumptions on parameters and variables, and additional assumptions
σ1 = σ2 = σ, η1 = η2 = η and Ia1 + Ia2 = Ia, we can derive (2.1d) by adding (3.1g) and (3.1h). We can
also derive (2.1e) from the Eqs (3.1i) and (3.1j) using the similar procedure.

Derivation of Eq (2.1a) by adding Eqs (3.1a) and (3.1b) is little bit tricky. Adding (3.1a) and (3.1b),
and rearranging the terms, we can write

d
dt

(S 1 + S 2) = −
S 1

N
(β11Is1 + β12Is2) −

S 2

N
(β21Is1 + β22Is2) −

S 1

N
(β11 p11Ia1 + β12 p21Ia2)

−
S 2

N
(β21 p31Ia1 + β22 p41Ia2) −

S 1

N
(β11 p12E12 + β12 p22E22)

−
S 2

N
(β11 p12E12 + β12 p22E22) −

S 1 + S 2

N
βQQ −

S 1 + S 2

N
βJ J.

Firstly, if we assume β11 = β12 = β21 = β22 = β, βQ = p3β, βJ = p4β, then we can write

d
dt

(S 1 + S 2) = −
β(S 1 + S 2)

N
(Is1 + Is2) −

βS 1

N
(p11Ia1 + p21Ia2) −

βS 2

N
(p31Ia1 + p41Ia2)

−
βS 1

N
(p12E12 + p22E22) −

βS 2

N
(p12E12 + p22E22) −

β(S 1 + S 2)
N

(p3Q + p4J).

Further if we assume p j1 = p1, p j2 = p2, j = 1, 2, 3, 4, we can write from above equation

d
dt

(S 1 + S 2) = −
β(S 1 + S 2)

N
(Is1 + Is2) −

βp1(S 1 + S 2)
N

(Ia1 + Ia2)

−
βp2(S 1 + S 2)

N
(E12 + E22) −

β(S 1 + S 2)
N

(p3Q + p4J).
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Finally writing S 1 + S 2 = S , and using previous assumptions related to E2, Ia and Is, we can write
above equation as

dS
dt

= −
βS
N

(Is + p1Ia + p2E2 + p3Q + p4J).

With the other necessary assumptions on the remaining parameters and variables we can derive the
model (2.1) from (3.1). Once the two group of individiuals are non-distinguishable, then the model
(2.1) results in from the model (3.1).

3.1. Controlled reproduction number

For simplicity of forthcoming calculations, we can write the first two Eqs (3.1a)–(3.1b) into the
matrix form as follows:

d
dt

S̄ = −
1
N

diagS̄
[
BĪs + B1 Īa + B2Ē2 + BQQ + BJ J

]
, (3.2)

where

S̄ =

[
S 1

S 2

]
, Īs =

[
Is1

Is2

]
, Ē2 =

[
E12

E22

]
, diagS̄ =

[
S 1 0
0 S 2

]
, (3.3)

and

B =

[
β11 β12

β21 β22

]
, B1 =

[
β11 p11 β12 p21

β21 p31 β22 p41

]
, B2 =

[
β11 p12 β12 p22

β21 p32 β22 p42

]
, BQ =

[
βQ

βQ

]
, BJ =

[
βJ

βJ

]
.(3.4)

Using above approach, we can write (3.1c)– (3.1d) into a compact form as follows

d
dt

Ē1 =
1
N

diagS̄
[
BĪs + B1 Īa + B2Ē2 + BQQ + BJ J

]
− diag(µ1, µ2)Ē1, (3.5)

where

Ē1 =

[
E11

E21

]
, diag(µ1, µ2) =

[
µ1 0
0 µ2

]
. (3.6)

Similarly, Eqs (3.1e)–(3.1f), (3.1g)–(3.1h) and (3.1i)–(3.1j) can be written as

d
dt

Ē2 = diag(µ1, µ2)Ē1 − diag(δ1, δ2)Ē2, (3.7)

d
dt

Īa = diag((1 − σ1)δ1, (1 − σ2)δ2)Ē2 − diag(η1, η2)Īa, (3.8)

and

d
dt

Īs = diag(σ1δ1, σ2δ2)Ē2 − diag(ρ11 + ζ11 + ζ12 + ζ13, ρ21 + ζ21 + ζ22 + ζ23)Īs, (3.9)
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respectively.
In order to calculate the controlled reproduction number for the model (3.1), we follow the similar

approach as we have used for the model (2.1). Without giving much description, here we just define
the relevant matrices as follows,

F3 =


S 1
N

(
β11(Is1 + p11Ia1 + p12E12) + β12(Is2 + p21Ia2 + p22E22) + βQQ + βJ J

)
S 2
N

(
β21(Is1 + p31Ia1 + p32E12) + β22(Is2 + p41Ia2 + p42E22) + βQQ + βJ J

)
θ8×1

 , (3.10)

V3 =



µ1E11

µ2E21

δ1E12 − µ1E11

δ2E22 − µ2E21

η1Ia1 − (1 − σ1)δ1E12

η2Ia2 − (1 − σ2)δ2E22

(ρ11 + ζ11 + ζ12 + ζ13)Is1 − σ1δ1E12

(ρ21 + ζ21 + ζ22 + ζ23)Is2 − σ2δ2E22

(ξ1 + ξ2)Q − (ζ11Is1 + ζ21Is2)
(ρ2 + ν)J − ζ12Is1 − ζ22Is2 − ξ1Q



. (3.11)

Evaluating the Jacobian matrices, at (N1,N2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (the disease free equilibrium
point), corresponding to F3 and V3, we can find F3 and V3, their explicit expressions are provided at
the appendix. The controlled reproduction number is the largest eigenvalue of the matrix F3V−1

3 .
In terms of the matrices introduced above, we can rewrite F3 and V3 as partitioned matrices analo-

gous to the matrices F2 and V2 as in the previous section. F3 and V3 can be rewritten as

F3 =



θ2×2
B2N
N

B1N
N

BN
N

BQN

N
BJN
N

θ2×2 θ2×2 θ2×2 θ2×2 θ2×1 θ2×1

θ2×2 θ2×2 θ2×2 θ2×2 θ2×1 θ2×1

θ2×2 θ2×2 θ2×2 θ2×2 θ2×1 θ2×1

θ1×2 θ1×2 θ1×2 θ1×2 θ1×1 θ1×1

θ1×2 θ1×2 θ1×2 θ1×2 θ1×1 θ1×1


, (3.12)

V3 =



diag(µ1, µ2) θ2×2 θ2×2 θ2×2 θ2×1 θ2×1

−diag(µ1, µ2) diag(δ1, δ2) θ2×2 θ2×2 θ2×1 θ2×1

θ2×2 −diag((1 − σ1)δ1, (1 − σ2)δ2) diag(η1, η2) θ2×2 θ2×1 θ2×1

θ2×2 −diag(σ1δ1, σ2δ2) θ2×2 diag(α1, α2) θ2×1 θ2×1

θ1×2 θ1×2 θ1×2 [−ζ11 − ζ21] ξ1 + ξ2 0
θ1×2 θ1×2 θ1×2 [−ζ12 − ζ22] −ξ1 ρ2 + ν


,(3.13)

where

BN =

[
β11N1 β12N1

β21N2 β22N2

]
, B1N =

[
β11 p11N1 β12 p21N1

β21 p31N2 β22 p41N2

]
, B2N =

[
β11 p12N1 β12 p22N1

β21 p32N2 β22 p42N2

]
, (3.14)
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BQN =

[
βQN1

βQN2

]
, BJN =

[
βJN1

βJN2

]
. (3.15)

Two constants α1 and α2 are defined by

α1 = ρ11 + ζ11 + ζ12 + ζ13, α2 = ρ21 + ζ21 + ζ22 + ζ23. (3.16)

The matrix V−1
3 is a lower triangular partitioned matrix. Based upon the non-zero entries of F3, we

need the elements in first two columns of the matrix V−1
3 in order to calculate the controlled reproduc-

tion number. If we write V−1
3 in the following form

V−1
3 = [Ψ10×2 Ω10×8] , (3.17)

where

Ψ10×2 =



(diag(µ1, µ2))−1

(diag(δ1, δ2))−1

diag(1−σ1
η1
, 1−σ2

η2
)

diag(σ1
α1
, σ2
α2

)(
σ1ζ11

(ξ1+ξ2)α1

σ2ζ21
(ξ1+ξ2)α2

)(
σ1(ξ1(ζ11+ζ12)+ζ12ξ2)
α1(ξ1+ξ2)(ρ2+ν)

σ2(ξ1(ζ21+ζ22)+ζ22ξ2)
α2(ξ1+ξ2)(ρ2+ν)

)


. (3.18)

Once we calculate the matrix F3V−1
3 , it comes out to be a matrix of following form

F3V−1
3 =

[
Γ2×10

θ8×10

]
, (3.19)

and hence the non-zero eigenvalues can be determined from the first 2 × 2 block of the block matrix
Γ2×10 involved with F3V−1

3 . The entries of the first 2 × 2 block can be calculated as follows,[
γ11 γ12

γ21 γ22

]
=

1
N

[
(diag(δ1, δ2))−1B2N + diag

(
1 − σ1

η1
,

1 − σ2

η2

)
B1N + diag

(
σ1

α1
,
σ2

α2

)
BN

+

(
σ1ζ11

(ξ1 + ξ2)α1

σ2ζ21

(ξ1 + ξ2)α2

)
BQN

+

(
σ1(ξ1(ζ11 + ζ12) + ζ12ξ2)
α1(ξ1 + ξ2)(ρ2 + ν)

σ2(ξ1(ζ21 + ζ22) + ζ22ξ2)
α2(ξ1 + ξ2)(ρ2 + ν)

)
BJN

]
. (3.20)

Explicit expressions for γi j, (i, j = 1, 2) are given by

γ11 =
N1

N

[
β11 p12

δ1
+
β11 p11(1 − σ1)

η1
+
β11σ1

α1
+

βQζ11σ1

(ξ1 + ξ2)α1
+
βJσ1(ξ1(ζ11 + ζ12) + ζ12ξ2)

α1(ξ1 + ξ2)(ρ2 + ν)

]
, (3.21a)

γ12 =
N1

N

[
β12 p22

δ2
+
β11 p21(1 − σ2)

η2
+
β12σ2

α2
+

βQζ21σ2

(ξ1 + ξ2)α2
+
βJσ2(ξ1(ζ21 + ζ22) + ζ22ξ2)

α2(ξ1 + ξ2)(ρ2 + ν)

]
, (3.21b)

γ21 =
N2

N

[
β21 p32

δ1
+
β21 p31(1 − σ1)

η1
+
β21σ1

α1
+

βQζ11σ1

(ξ1 + ξ2)α1
+
βJσ1(ξ1(ζ11 + ζ12) + ζ12ξ2)

α1(ξ1 + ξ2)(ρ2 + ν)

]
, (3.21c)

γ22 =
N2

N

[
β22 p42

δ2
+
β22 p41(1 − σ2)

η2
+
β12σ2

α2
+

βQζ21σ2

(ξ1 + ξ2)α2
+
βJσ2(ξ1(ζ21 + ζ22) + ζ22ξ2)

α2(ξ1 + ξ2)(ρ2 + ν)

]
. (3.21d)
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The matrix F3V−1
3 has at most two non-zero eigenvalues and eight zero eigenvalues. The maximum

positive eigenvalue of the matrix F3V−1
3 is the controlled reproduction number for the model (3.1). As

a matter of fact the controlled reproduction number for the model (3.1) is the largest eigenvalue of the
matrix [γi j]2×2 and is given by

R[2]
c =

γ11 + γ22 +
√

(γ11 − γ22)2 + 4γ12γ21

2
. (3.22)

Here the superscript ‘[2]’ stands for the second mathematical model considered in this manuscript,
that is for the model (3.1).

3.2. Final size of epidemic

Derivation of final size of the epidemic is tedious but can be obtained through step by step cal-
culations. The final sizes, for different compartments, can be determined in a similar manner as we
have done in the previous section. From (3.1a) & (3.1b), integrating between the limits t = 0 and
t = t f ( = ∞), we find

ln
S 10

S 1 f
=

1
N

∫ t f

0

[
β11(Is1 + p11Ia1 + p12E12) + β12(Is2 + p21Ia2 + p22E22) + βQQ + βJ J

]
dt, (3.23)

ln
S 20

S 2 f
=

1
N

∫ t f

0

[
β21(Is1 + p31Ia1 + p32E12) + β22(Is2 + p41Ia2 + p42E22) + βQQ + βJ J

]
dt, (3.24)

where S j0 and S j f denote initial and final size of the j-th susceptible class, j = 1, 2. Now we assume
that the model (3.1) is subjected to the initial conditions such that S 10, S 20, E110, E210 > 0 and all other
components are absent at the initial time point t = 0. Consequently S 10 + S 20 + E110 + E210 = N. Now
integrating (3.1e), (3.1f) between t = 0 and t = t f and with the assumption that E120 = E220 = E12 f =

E22 f = 0, we find ∫ t f

0
E12dt =

µ1

δ1

∫ t f

0
E11dt,

∫ t f

0
E22dt =

µ2

δ2

∫ t f

0
E21dt. (3.25)

Next integrating (3.1g), (3.1h) between t = 0 and t = t f and with the assumption that Ia10 = Ia20 =

Ia1 f = Ia2 f = 0, using (3.25) we find∫ t f

0
Ia1dt =

µ1(1 − σ1)
η1

∫ t f

0
E11dt,

∫ t f

0
Ia2dt =

µ2(1 − σ2)
η2

∫ t f

0
E21dt. (3.26)

Proceeding in a similar way and using the results in (3.26), we get from (3.1i), (3.1j)∫ t f

0
Is1dt =

µ1σ1

α1

∫ t f

0
E11dt,

∫ t f

0
Is2dt =

µ2σ2

α2

∫ t f

0
E21dt, (3.27)

where α1 and α2 are defined in (3.16). Using the above result, from (3.1k) we get∫ t f

0
Qdt =

1
ξ1 + ξ2

[
µ1σ1ζ11

α1

∫ t f

0
E11dt +

µ2σ2ζ21

α2

∫ t f

0
E21dt

]
. (3.28)
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Finally, integrating (3.1l) between t = 0 and t = t f and using J0 = 0 = J f , we can write∫ t f

0
Jdt =

1
ρ2 + ν

[
ζ12

∫ t f

0
Is1dt + ζ22

∫ t f

0
Is2dt + ξ1

∫ t f

0
Qdt

]
. (3.29)

Using the results from (3.27) and (3.28), we can express the
∫ t f

0
Jdt in terms of

∫ t f

0
E11dt and

∫ t f

0
E21dt.

Now adding the equations (3.1a) and (3.1c) and then integrating between t = 0 and t = t f , we find

N1 − S 1 f = µ1

∫ t f

0
E11dt, (3.30)

where we have used E110 = E11 f = 0 and S 10 = N1. Similarly, adding the Eqs (3.1b) and (3.1d) and
following the same approach, we can find

N2 − S 2 f = µ2

∫ t f

0
E21dt. (3.31)

Now using the results (3.25)–(3.29), we get from (3.23),

ln
S 10

S 1 f
=

1
N

[
µ1∆11

∫ t f

0
E11dt + µ2∆12

∫ t f

0
E21dt

]
, (3.32)

where

∆11 = β11

(
σ1

α1
+

p11(1 − σ1)
η1

+
p12

δ1

)
+

βQσ1ζ11

α1(ξ1 + ξ2)
+

βJσ1

α1(ρ2 + ν)

(
ζ12 +

ξ1ζ11

ξ1 + ξ2

)
, (3.33)

∆12 = β12

(
σ2

α2
+

p21(1 − σ2)
η2

+
p22

δ2

)
+

βQσ2ζ21

α2(ξ1 + ξ2)
+

βJσ2

α2(ρ2 + ν)

(
ζ22 +

ξ1ζ21

ξ1 + ξ2

)
. (3.34)

Proceeding in a similar way, from (3.24), we can derive

ln
S 20

S 2 f
=

1
N

[
µ1∆21

∫ t f

0
E11dt + µ2∆22

∫ t f

0
E21dt

]
, (3.35)

where

∆21 = β21

(
σ1

α1
+
β21 p31(1 − σ1)

η1
+

p32

δ1

)
+

βQσ1ζ11

α1(ξ1 + ξ2)
+

βJσ1

α1(ρ2 + ν)

(
ζ12 +

ξ1ζ11

ξ1 + ξ2

)
, (3.36)

∆22 = β22

(
σ2

α2
+

p41(1 − σ2)
η2

+
p42

δ2

)
+

βQσ2ζ21

α2(ξ1 + ξ2)
+

βJσ2

α2(ρ2 + ν)

(
ζ22 +

ξ1ζ21

(ξ1 + ξ2)

)
. (3.37)

Eliminating
∫ t f

0
E11dt and

∫ t f

0
E21dt between (3.30), (3.31) and (3.35), we find the following two

equations

ln
S 10

S 1 f
=

1
N

[
∆11(N1 − S 1 f ) + ∆12(N2 − S 2 f )

]
, (3.38)
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ln
S 20

S 2 f
=

1
N

[
∆21(N1 − S 1 f ) + ∆22(N2 − S 2 f )

]
. (3.39)

Without any loss of generality, writing S 10 = N1 and S 20 = N2 and introducing the notations S 1 f

N1
= x,

S 2 f

N2
= y we get from above system equations

y =
1
ϕ12

ln x +
ϕ11

ϕ12
(1 − x) + 1 ≡ Φ1(x), (3.40a)

x =
1
ϕ21

ln y +
ϕ22

ϕ21
(1 − y) + 1 ≡ Φ2(y), (3.40b)

where
ϕi j =

N j

N
∆i j, i, j = 1, 2.

It is interesting to note that the following two matrices are similar matrices,

P =

[
γ11 γ12

γ21 γ22

]
, Q =

[
ϕ11 ϕ12

ϕ21 ϕ22

]
. (3.41)

If we define a diagonal matrix

D =

[ N1
N 0
0 N2

N

]
, (3.42)

then we can verify that

Q = D−1PD. (3.43)

Entries of both the matrices P and Q are positive and as they are similar, the spectrum of two matrices
are same. Hence the largest eigenvalue of the matrix Q is equal to the largest eigenvalue of the matrix
P that is equal to R[2]

c .
The existence of final size of the epidemic depends upon the existence of a point of intersection

between two curves y = Φ1(x) and x = Φ2(y) within the unit square [0, 1] × [0, 1]. Existence of such
point of intersection follows from the Th. 1 in [36]. The two curves y = Φ1(x) and x = Φ2(y) intersect
each other at a point (x̄, ȳ), 0 < x̄, ȳ < 1 whenever R[2]

c > 1. Knowing the values of x̄, ȳ we can
determine the final sizes S 1 f and S 2 f .

4. Numerical simulations

In this section we present the numerical simulation results for two models (2.1) and (3.1) consid-
ered in this work. First we present the simulation results for the model (2.1) by fitting the numerical
simulation results with the COVID-19 data for Germany as an illustrative example. All the data used
in this manuscript are taken from [3]. In order to ensure that the obtained result and the validity of the
model is not country specific rather it can be matched with the data for other countries. Fitting of the
data for Italy, UK and Spain are provided at the appendix.

The sensitivity of various parameters involved with the model (2.1) plays an important role behind
numerical simulations. It would be quite lengthy calculations if we want to perform the same for the
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model (3.1) and hence we have restricted ourselves to the first model only. For numerical simulations
and fitting with the data, we have considered the rate of infection as a function of time and hence
some of the estimated parameters do not remain fixed throughout the simulation and hence we have
presented the sensivity indices with respect to the estimated parameter values.

4.1. Sensitivity analysis

The sensitivity analysis for the endemic threshold (the controlled reproduction number R[1]
c ) in

Eq (2.9) tells us how important each parameter is to disease transmission. It is used to understand
parameters that have a high impact on the threshold R[1]

c and should be targeted by intervention strate-
gies. More precisely, sensitivity indices’ allows us to measure the relative change in a variable when
a parameter changes. For that purpose, we use the normalized forward sensitivity index of a variable
with respect to a given parameter, which is defined as the ratio of the relative change in the variable
to the relative change in the parameter. If such variable is differentiable with respect to the parameter,
then the sensitivity index is defined as follows.

The normalized forward sensitivity index of R[1]
c , which is differentiable with respect to a given

parameter θ (say), is defined by

Υ
R

[1]
c

θ =
∂R[1]

c

∂θ

θ

R
[1]
c

. (4.1)

From direct calculation and without using the numerical values we can determine the signs of sen-
sitivity indices with respect to some of the parameters. For the remaining sensitivity indices, we need
to take help of the numerical examples. The normalized forward sensitivity indices of R[1]

c with respect
to the parameters which are found to be clearly positive are given by,

Υ
R

[1]
c

β = 1 > 0, ΥR
[1]
c

p1
=
β(1 − σ)p1

ηR[1]
c

> 0, ΥR
[1]
c

p2
=

βp2

δR[1]
c

> 0, (4.2a)

ΥR
[1]
c

p3
=

βζ1σp3

A1A2R
[1]
c

> 0, ΥR
[1]
c

p4
=

βσζ3 p4

A1A3R
[1]
c

+
βσξ1ζ1 p4

A1A2A3R
[1]
c

> 0, (4.2b)

where A1 = ρ1 + ζ1 + ζ2 + ζ3, A2 = ξ1 + ξ2 and A3 = ρ2 + ν.
The normalized forward sensitivity indices of R[1]

c with respect to the parameters which are found
to be clearly negative are given by,

Υ
R

[1]
c

η = −
βp1(1 − σ)

ηR[1]
c

< 0, Υ
R

[1]
c

ρ2 = −
[p4σζ3A2 + p4σξ1ζ1]

A1A2A2
3

βρ2

R
[1]
c

< 0, (4.3a)

Υ
R

[1]
c

ρ1 = −

σA2A3 + p3ζ1σA3 + p4σζ3A2 + p4σξ1ζ1

A2
1A2A3

 βρ1

R
[1]
c

< 0, (4.3b)

Υ
R

[1]
c

ζ2
= −

σA2A3 + p3ζ1σA3 + p4σζ3A2 + p4σξ1ζ1

A2
1A2A3

 βζ2

R
[1]
c

< 0, (4.3c)

Υ
R

[1]
c

ν = −
[p4σζ3A2 + p4σξ1ζ1]

A1A2A2
3

βν

R
[1]
c

< 0, Υ
R

[1]
c

ξ2
= −

[p3ζ1σA3 + p4σξ1ζ1]
A1A2

2A3

βξ2

R
[1]
c

< 0, (4.3d)

Υ
R

[1]
c

δ = −
βp2

δR[1]
c

< 0. (4.3e)
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The signs of normalized forward sensitivity indices of R[1]
c with respect to rest of the parameters

can not be determined from their explicit expressions and we need to take help of some numerical
examples. Such normalized forward sensitivity indices are as follows,

ΥR
[1]
c

σ =

[
−

p1

η
+

1
A1

+
p3ζ1

A1A2
+

p4ζ3

A1A3
+

p4ξ1ζ1

A1A2A3

]
βσ

R
[1]
c

, (4.4a)

Υ
R

[1]
c

ζ1
=

[
−
σ(ρ2 + ν) + p4σζ3

A1A3
+

(ρ1 + ζ2 + ζ3)p3σA3 + p4σξ1

A2
1A2A3

]
βζ1

R
[1]
c

, (4.4b)

Υ
R

[1]
c

ζ3
=

[
p4σA1

(ρ1 + ζ1 + ζ2)2A3
−
σA2A3 + p3ζ1σA3 + p4σξ1ζ1

A2
1A2A3

]
βζ3

R
[1]
c

, (4.4c)

Υ
R

[1]
c

ξ1
=

[
−

p3ζ1σ

A1A2
2

+
p4σζ1ξ2

A1A2
2A3

]
βξ1

R
[1]
c

. (4.4d)

We use the sensitivity indices to understand parameters that have a high impact on R[1]
c . The values

of the sensitivity indices for different parameters depend on the choice of parameter values. As we have
mentioned earlier, the values of the sensitivity indices can be positive or negative. The most positive
(or negative) value of the sensitivity index for a parameter indicates that parameter is most sensitive
to R[1]

c and the least positive (or negative) value of the sensitivity index for a parameter indicates that
parameter is least sensitive to R[1]

c .

Figure 4. Sensitivity indices of R[1]
c with respect to the parameters involved with the model

(2.1) and their reference values as mentioned in Table 2.

The sensitivity index may depend on several parameters of the system, but also can be constant,
independent of any parameter. For example, Υ

R
[1]
c

β = 1 means that an increase (decrease) in β by a
given percentage will result in increase (decrease) in R[1]

c by the same percentage. The estimation of
a sensitive parameter should be carefully done, since a small perturbation in such parameter leads to
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relevant quantitative changes. On the other hand, the estimation of a parameter with a rather small value
for the sensitivity index does not require as much attention to estimate, because a small perturbation in
that parameter leads to small changes. From Table 2, we conclude that the most sensitive parameters
to the basic reproduction number R[1]

c of the COVID-19 model (2.1) are β, p1, p2, η, σ, δ. In concrete,
an increase of the value of β, p1, p2, σ will increase the basic reproduction number by 100%, 33.4%,
29.69%, 33.21% respectively and an increase of the value of η, δ will decrease R[1]

c by 33.4% and
29.69% respectively. Sensitivity indices with respect to the parameter values as presented in Table 2
can be visualized from Figure 4.

Table 2. Initial parameter values used as the initial guess for the model (2.1) and sensitivity
indices of R[1]

c with respect to the parameters and values mentioned here.

Parameter Values Sensitivity Index
β varying 1
p1 0.2 0.3340
p2 0.2 0.2969
p3 0.2 0.0158
p4 0.2 0.0634
δ 0.75 –0.2969
σ 0.1 0.3321
η 0.6 –0.3340
ρ1 0.1 –0.09
ρ2 0.07 –0.0477
ζ1 0.07 0.0348
ζ2 0.1 –0.09
ζ3 0.14 0.0417
ξ1 0.14 –0.0015
ξ2 0.1 –0.0143
ν 0.05 –0.0341

4.2. Simulation results for model - 1

We have fitted the parameters β, p1, p2, p3, p4, µ, δ, σ, η, ρ1, ξ2 for the range of the values given
in Table 1 and took ζ1, ζ2, ζ3, ξ1, ρ2, ν fixed as given in Table 1. We estimated those values for
three different time intervals (1–30th day, 31–42nd day, 43–95th day). We have considered the initial
values of the parameters as given in Table 2. We have chosen the time interval and end values of
different compartments from the fittings over the previous time intervals. Here we have considered
βS
N (Is + p1Ia + p2E2 + p3Q + p4J) as the daily reported case and the sum of this part over the desired

time interval is considered as cumulative number of infected cases.
The optimization of parameters to describe the outbreak of COVID-19 in Germany was fitted by

minimizing the Sum of Squared Errors (SSE), in such a way that the solutions obtained by the model
approximate the reported cumulative number of infected cases. We applied three searches to minimize
the SSE function: by using a gradient-based method first, followed by a step of minimization with
a gradient-free method, again followed by a third step of gradient-based method. MATLAB based
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nonlinear least-square solver fmincon and patternsearch are used to fit simulated and observed daywise
cumulative number of infected cases for three different time intervals. Detailed description of this
method and its implementation can be found in [20, 37–39].

(a) (b)

Figure 5. Blue curves indicate the model simulation and the red dotted curves indicate
the reported data for cuculative infected population. Simulation results are obatined for two
different forms of β(t), (a) with β(t) as shown in Figure 6a; (b) with β(t) as shown in Figure 6b.

The model (2.1) is simulated with best fitted parameter values as mentioned above and the simula-
tion result against the daily reported data and cumulative data are presented in Figure 5a. In this case
the values of β are constants over three different range of days starting from the initial date of COVID-
19 epidemic spread in Germany. For this figure some of the parameters are estimated as described
above. Another simulation result is presented in Figure 5b where initially the value of β is constant for
several days, and then monotone decreasing over a range of days and then remain constant for the rest
of the period. The variation of β with respect to time is shown in Figure 6. Interestingly the data are
fitted well in the case of time varying β where β(t) is continuous. For the simulation result presented
in Figure 5b, the number of days for which β(t) remains constant and then starts decaying are adjusted
in such a way that the outcome matches well with both the cumulative and daily data. Accordingly
the slope of decaying β(t), the day up to which it decays and the lower value of β(t) are chosen. The
numerical simulation and fitting with the data are carried out with the objective that the simulation
result should be pretty close to the cumulative number of reported cases. We can claim that our attempt
is successful as the cumulative number of reported cases for Germany on 15th May, 2020 obtained
from the simulation is 180,788 and the reported data (see [3]) shows it is equal to 182,250. In this case
the choice of β(t) is as shown in Figure 6a. Cumulative number of reported cases obtained from the
simulation with the β(t) as shown in Figure 6b is equal to 180,808. Both the simulated values are close
to the reported data. Relative percentage error is less that 1% and is precisely equal to 0.79%.

Simulations and fitting are done with the reference to cumulative number of reported cases. How-
ever, the obtained results are also in good agreement with the daily data. As there is no uniformity of
the daily reported cases, may be due to irregular reporting, we have used 7 days moving agerage as
daily data instead of daily raw data. Simulation results with two different types of β(t) and 7 days mov-
ing average for daily reported data are shown in Figure 7. The estimated and other parameter values
for the simulation with β(t) constant over three different time intervals are presented in Table 3 along
with the sensitivity incides.
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(a) (b)

Figure 6. The values of β changing with time t and used in (a) Figure 5a and (b) Figure 5b
respectively.

Figure 7. Simulation results and daily reported cases (7 days moving average) for two dif-
ferent form of β(t). Blue curve and magenta curves are for β(t) as shown in Figure 6a and
Figure 6b respectively.

Consideration of changing β over different range of durations is an important observation of our
present work. It is important to mention that the number of intervals over which we have to take
different values of β is not always limited to three as in the case of Germany. The number of intervals
over which we need to choose different values of β in order to match the simulation results with the
data from different countries varies significantly. Of course, in all such simuations the values of β
are decreasing with respect to the number of days. The simulations results for three more countries,
namely Italy, UK and Spain, are provided in the appendix along with the result for Germany again
where the 95% confidence intervals are shown. The parameter values used, the range of days over
which β remains constant and estimated parameter values are also provided in the appendix.
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4.3. Simulation results for model - 2

In order to understand the usefulness of the model (3.1), we now present some numerical simulation
results. In Figure 5 we have presented the simulation results for the model (2.1) up to 19th of May.
For the fitting with daily data, we have obtained three different values of β as β1 = 3.98, β2 = 1.77
and β3 = 1.05. The partial lockdown was started at Germany on 13th March, 2020 and then went into
complete lock lockdown step by step. The process of unlocking at the essential sectors were started
from 15th of May, 2020 and by that time the spreading speed of COVID-19 was much reduced. There
are several restrictions like using mask, maitaining social distances and couple of other restrictions are
in place in order to prevent the further spread of the disease. As of now the disease is not completely
eradicated rather a minor number of cases are getting reported on a regular basis but the situation is
seem to be under control.

Table 3. Best fitted values for the parameters of (2.1) for Germany.

Parameter Best fit values Best fit values Best fit values
for 1st 30 days for next 12 days upto 95th day

(Sensitivity Index) (Sensitivity Index) (Sensitivity Index)
β 3.98 (1) 1.77 (1) 1.05 (1)
p1 0.177 (0.2383) 0.16 (0.2204) 0.34 (0.5099)
p2 0.3 (0.4039) 0.3 (0.4133) 0.05 (0.0914)
p3 0.05 (0.0048) 0.05 (0.0049) 0.05 (0.0053)
p4 0.05 (0.0192) 0.05 (0.0196) 0.05 (0.0213)
δ 1 (-0.4039) 1 (-0.4133) 0.82 (-0.0914)
σ 0.1 (0.3314) 0.1 (0.3418) 0.1 (0.342)
η 0.9 (-0.2383) 0.9 (-0.2204) 0.9 (-0.5099)
ρ1 0.1 (-0.0873) 0.1 (-0.0893) 0.1 (-0.0972)
ρ2 0.07 (-0.0144) 0.07 (-0.0148) 0.07 (-0.0161)
ζ1 0.07 (-0.0067) 0.07 (-0.0069) 0.07 (-0.0075)
ζ2 0.1 (-0.0873) 0.1 (-0.0893) 0.1 (-0.0972)
ζ3 0.14 (-0.0715) 0.14 (-0.0732) 0.14 (-0.0796)
ξ1 0.14 (-0.00047) 0.14 (-0.00048) 0.14 (-0.00052)
ξ2 0.1 (-0.0043) 0.1 (-0.0044) 0.1 (-0.0048)
ν 0.05 (-0.0103) 0.05 (-0.0105) 0.05 (-0.0115)
µ 0.28 (−−) 0.28 (−−) 0.28 (−−)

We are interested to see the situation if all the citizens do not follow the suggested restrictions then
what can happen afterward. For this purpose we now perform an interesting numerical simulations. We
have simulation results for the model (2.1) as described at the previous subsection up to 19th of May.
Now we start simulating the model (3.1) from the day immediately after 19th May and continue up to
the end of November 2020. We assume that a fraction of population are not following the guideline and
other fraction is following the safety and preventive norms appropriately. Let us define the “coefficient
of social interactions” as S 1/N and is denoted by K. If we assume that the 10% of the population is not
following the norm then S 1/N ≡ K = 0.1 and hence S 2/N = 0.9 = 1 − K. We assume that β11 = β1,
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β22 = β3 and β12 = β21 = (β1 + β3)/2 where β j ( j = 1, 2, 3) are the values determined by fitting the data
with the first model. Initial densities of E11 and E21 can be distributed with the same proportion to K
and 1 − K of the value of E1 on 19th May. Same procedure is adopted for other components except Q,
J and R. For simplicity we also assume that the other parameters involved with the two group model
are equal to the values of the corresponding parameter involved with the model (2.1) and is equal to the
numerical values as mentioned at the last column of Table 3. For clearer understanding we can mention
here some of the parameter values: p j1 = p1 = 0.34 ( j = 1, 2, 3, 4), σ1 = σ2 = σ = 0.1 and so on.

With above choice of initial values and parameter values now we simulate the model (3.1) up to
the end of November, 2020. Two different simulations are performed and the simulation results are
presented in Figure 8. For first simulation we have considered K = 0.1 fixed up to the end of Novem-
ber 2020 (see Figure 8a). Second simulation is performed for K = 0.1 upto the end of August and
then K = 0.15 during September to November 2020. In the figure we have ploted the consolidated
compartments E1, E2, Ia and Is in order to avoid any confusion where we have obtained the values of
these compartments by adding the values of the respective compartments in two group. To be specific,
E1 = E11 + E12 and similary for other compartments. A relatively small increase of K lead to an
essential acceleration in the disease progression.

(a) (b)

Figure 8. Time evolution of E1, E2, Ia and Is obtained from the numerical simulation of the
two models (2.1) and (3.1) from 15th February to 30th November 2020 as described in the
text. Two different values of K are used for the duration 1st September to 30th November,
(a) K = 0.1 and (b) K = 0.15.

With the parameter setup mentioned above one can calculate the controlled reproduction number
R

[2]
c using the detailed formula given in Sub-section 3.1. Without any loss of generality we can make a

crude assumption that N1
N = K in order to find a value of R[2]

c . Clearly the measure for N2
N will be 1− K.

With K = 0.1, we can see slow growth in exposed and infected compartments as shown in Figure 8a
as we find R[2]

c = 1.089. Now if we change the value of K to K = 0.15 the revised measure of R[2]
c

becomes R[2]
c = 1.219. These results ensure the usefulness of our model along with the mathematical

details and supportive numerical simulations.
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5. Model with relapse

Most of the important features and several issues related to COVID-19 remain unclear and immense
scientific efforts are required to understand various important issues. As it is reported at many sources
that some of the recovered individuals can become infected after a certain period of time as the recovery
is seems to be temporary [40]. In this section we want to revisit the model (2.1) with the modification
that a fraction of recovered population can return back to the susceptible class. We are mainly interested
to calculate the final size of the infected compartment due to fact that the recovered individuals join
the susceptible class after a certain number of days. In order to find a rough estimate of the size of
the infected compartment and to obtain their estimate explicitly we can make a crude assumption. The
assumption is that the disease related death rate is negligible. With these assumptions the model (2.1)
with relapse of the disease can be written as follows

dS
dt

= −
βS
N

(Is + p1Ia + p2E2 + p3Q + p4J) + εR, (5.1a)

dE1

dt
=

βS
N

(Is + p1Ia + p2E2 + p3Q + p4J) − µE1, (5.1b)

dE2

dt
= µE1 − δE2, (5.1c)

dIa

dt
= (1 − σ)δE2 − ηIa, (5.1d)

dIs

dt
= σδE2 − (ζ1 + ζ2 + ζ3)Is, (5.1e)

dQ
dt

= ζ1Is − (ξ1 + ξ2)Q, (5.1f)

dJ
dt

= ζ3Is + ξ1Q − νJ, (5.1g)

dR
dt

= ηIa + ζ2Is + ξ2Q + νJ − εR. (5.1h)

This model admits an endemic equilibrium point apart from the disease free equilibrium point. Let
us denote the components of endemic equilibrium point as (S̄ , Ē1, Ē2, Īa, Īs, Q̄, J̄, R̄), then equating the
right hand sides of (5.1c)–(5.1g) to zero, we find

Ē1 =
ζ1 + ζ2 + ζ3

µσ
Īs,

Ē2 =
ζ1 + ζ2 + ζ3

σδ
Īs,

Īa =
(1 − σ)(ζ1 + ζ2 + ζ3)

ση
Īs,

Q̄ =
ζ1

ξ1 + ξ2
Īs,

J̄ =

(
ξ1ζ1

ν(ξ1 + ξ2)
+
ζ3

ν

)
Īs.
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Now equating the right hand sides of (5.1a) and (5.1b) to zero and then adding, we can find

R̄ =
ζ1 + ζ2 + ζ3

εσ
Īs.

Now we consider the following equation obtained from (5.1b),

βS̄
N

(Īs + p1 Īa + p2Ē2 + p3Q̄ + p4 J̄) = µĒ1.

Using the expressions for Ē1, Ē2, Īa, Q̄, J̄ in terms of Īs, we can write

βS̄
N

(
1 +

ζ1 + ζ2 + ζ3

σ

(
p1

δ
+

p2(1 − σ)
η

)
+

p3ζ1

ξ1 + ξ2
+ p4

(
ξ1ζ1

ν(ξ1 + ξ2)
+
ζ3

ν

))
=
ζ1 + ζ2 + ζ3

σ
,

and then using S̄ = N − Ē1 − Ē2 − Īa − Īs − Q̄ − J̄ − R̄ and the relevant expressions we can find

Īs =
N(1 − B1)

B2
, (5.2)

where
B1 =

ζ1 + ζ2 + ζ3

σβ
(
1 +

ζ1+ζ2+ζ3
σ

(
p1
δ

+
p2(1−σ)

η

)
+

p3ζ1
ξ1+ξ2

+ p4

(
ξ1ζ1

ν(ξ1+ξ2) +
ζ3
ν

)) ,
B2 = 1 +

ζ1 + ζ2 + ζ3

σ

(
1
µ

+
1
δ

+
1 − σ
η

+
1
ε

)
+

ζ1

ξ1 + ξ2
+

(
ξ1ζ1

ν(ξ1 + ξ2)
+
ζ3

ν

)
.

In order to come up with a closed form of estimate for the endemic steady-state in case of relapse
of the disease, we have assumed that the number of COVID-19 related death is negligible. In reality
this is not true however it help us to have a rough estimate for the endemic steady-state dependning
upon the value of ε. The parameter ε is related to the relapse rate as 1

ε
is the average number of days

after which a recovered individual can have fresh infection. It is diffcult to derive explicit condition for
which B1 is less than one in order to have a feasible values for the components of endemic equilibrium
point in case of replase. In order to have a feasible values of Īs and other components we should have
B1 < 1. Interestingly, with the parameter values mentioned at the last column of Table 3, we can
calculate B1 = 1.12 where β = 1.07 and note that R[1]

c = 0.7002. In order to have an admissible value
of B1, if we consider β = 1.2 and with other parameter values are same as in the third column of Table 3
we find B1 = 0.98 although R[1]

c remains less than one. Finally assuming ε = 0.01, that is recovered
individuals can join the susceptible class after 100 days on an average, we find 1−B1

B2
≈ 6 × 10−5. So a

rough idea about the estimated number of infected individuals at the endemic state will be 6×10−5×N
where N is the total population of the country. The measure 1−B1

B2
decreases with the decrease in ε as

we can calculate 1−B1
B2
≈ 0.000031, 0.000021 for ε = 0.005, 0.0033 respectively.

6. Discussion

A wide range of mathematical approaches are adopted to develop viable mathematical model to
understand the propagation of disease spread for COVID-19. The proposed mathematical models are
not only diffierent in the context of basic assumptions behind the model formulation, rather incomplete
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or unclear understanding of disease spread for COVID-19 is another burden. In this paper we have pro-
posed and analyzed an ordinary differential equation model to study the COVID-19 disease propagation
which consists of fundamentally six compartments. The basic compartments are susceptible, exposed,
infected, quarantined, hospitalised and recovered. It is evident that all the exposed individuals can
not spread the disease and hence the exposed compartment is divided into two sub-compartments E1

and E2 where the individuals belonging to the second compartment can infect the healthy individuals.
Once the incubation period is over, exposed individuals are becoming actively infected which means
they can infect other individuals. In case of COVID-19 disease, every infected individuals are not
developing appropriate symptoms and asymptomatic individuals can recovered from the disease with-
out any serious medical intervention. The infected compartment is divided into two compartments,
namely, asymptomatic infected and symptomatic infected.

There is a significant variation in the collection and reporting of infected data and no uniformity
is maintained so far due to the rapid spread of the disease. From huge dataset, it is quite difficult to
understand when an individual is identified as a COVID-patient but at which category they belong to
(whether an individual belongs to E1, E2, Ia or Is compartment). Without any loss of generality we
can assume that the individuals belonging to Ia and Is are tested to be positive. Once an individual is
tested to be positive, he/she needs to follow the appropriate guideline of the country and hence they
will be under isolation or quarantine assuming that they do not need any medical intervention through
hospitalization. Hence we have assumed that the individuals from Ia compartment directly move to
the recovered compartment and hospitalization is required for certain fraction of individuals belonging
to sysmptomatic infected and quarantined compartments. COVID-19 related death is assumed for the
Is and J compartments only. As the quarantined individuals are monitored on a regular basis and
the healthcare service is supposed to be effective, hence every needy individuals can be moved to
the hospital as per requirement. Based upon these assumptions we have considered two models here,
epidemic model (2.1) and two group epidemic model (3.1). Interesting and significant contribution of
our work is the consideration of time dependent rate of infection over various periods of time. This
variation is adopted into the model in order to capture the effect of lockdown, social distancing etc.
which play a crucial role to reduce the disease spread. The date of implementation of lockdown and
the extent of lockdown varies from one country to another. Total lockdown is rarely implemented,
rather most of the European countries went to step-by-step lockdown and sometimes they imposed
complete lockdown at some states and/or provinces instead of total lockdown accross the country.

Parameter identification has a crucial importance in the epidemiological models. Some of the pa-
rameters, such as average durations of the incubation period and of hospitalization, can be evaluated
from the clinical data. Some other parameters or their combinations are estimated by fitting the epi-
demiological data, in particular, the reported number of infected cases. However, even the combination
of available methods of parameter identification does not usually allow a unique determination of all
parameters. Different combinations of parameters can give a similar fitting accuracy. This means that
the values of individual parameters cannot be uniquely determined. In spite of this uncertainty, the
results of such modelling can have some predictive value because relative variation of parameters can
be more important that their absolute values. As such, according to modelling, a slight increase of the
coefficient of social interaction can lead to the second wave of epidemic, what is observed in Israel,
Spain, France in July-September 2020. Therefore, we can evaluate necessary measures to stop this
progression imposing stricter social distancing.
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In this present work we have considered different durations of the period of time when the rate of
infection varies in order to match the simulation results with the cumulative number of reported infected
individuals for four countries. The magnitudes of β(t) over various intervals are obtained through fitting
the simulated result with data but the choice of different periods remain in our hand. One can argue
that the obtained results might change with a variant assumption but at the same time we can claim
the appropriate nature of varying infectivity is not much clear yet. In order to show the effectiveness
of our analysis, the fitting is done for the data from four different countries. It is important to mention
here that the fitting with daily data seems to be not in good agreement (we can see significant variation
around the fitted curve) but at the same time we need to keep in mind the irregularity of the reporting
protocol. It is a matter of fact that several contries have changed their reporting mechanism time to time
alongwith the change in the process of testing. A natural question may arise that we are considering
constant β(t) over different time intervals, so what will be the outcome if we match the simulation result
with the daily data or 7 days moving average? The answer is that either we need to change β(t) in daily
basis which is not a good idea for fitting the simulation results of ordinary differential equation models
with the data or we can observe a significant disagreement with the cumulative number of reported
cases. For numerical simulation of the model (2.1) we have obtained three different values of β and we
can calculate the controlled basic reproduction numbers accordingly. For the set of parameter values
as mentioned in the three columns of Table 3, we can calculate the controlled reproduction numbers as
R

[1]
c = 2.9565, 1.2847, 0.7002. In Section 2 we have calculated the basic reproduction number R0, for

model (2.1), apart from the controlled reproduction number R[1]
c . If we calculate the basic reproduction

number R[1]
0 for model (2.1) with the parameter values given in the first column of Table 3, we find

R
[1]
0 = 3.888 which is quite higher than R[1]

c . It clearly indicates that the disease can propagate much
faster in the absence of the control measures.

Epidemiological data on COVID-19 epidemic provide the number of registered infection cases on
the bases of PCR tests, the number of hospitalized, recovered and dead (see, e.g., [3]). The number of
positive tests depends on the total number of effectuated tests. However, if the organization of testing
remains the same during some period of time, we can reasonably assume that the number of registered
cases represents the total number of cases with some proportionality coefficient. In particular, if in-
fected individuals apply to the medical care in the case of severe symptoms, subsequently tested and
identified as positive cases, we can take into account that severe cases represent some given proportion
of the total number of cases. Furthermore, since at the beginning of epidemic the number of susceptible
individuals remains close to the total population, then the model is approximately linear, and the size
of all sub-classes can be obtained by the same proportionality coefficient. On the other hand, some
countries practiced a wide testing allowing a reliable estimate of the total number of infected cases.
Overall, in spite of certain difficulties in the estimation of the number of infected individuals, we can
reasonably assume that available epidemiological data faithfully reflects the real situation.

The proposed two group epidemic model can capture the situation when one group of people are
following the social distancing norm, using face mask appropriately and other group is not obeying the
safety norms. We must admit that the data and relevant information for the parameter values involved
with the model (3.1) are not available yet. But the numerical simulation shows that if 10% or more
of the population start violating the safety norms then there is a resonable chance that the disease can
relapse. It is difficult to predict the size of the next epidemic but our model is capable to capture the
realistic scenario. The number of daily reported cases started increasing at some countries like Iran,
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Spain etc. (see the data avialbale at [3]) compared to the number of reported infections on the days
close the end of complete lockdown.

The coefficient of social interaction K introduced in Section 4.3 characterizes the intensity of the
interaction between susceptible and infectious individuals, and it determines the rate of disease pro-
gression. The value K = 0 corresponds to complete lockdown, and K = 1 to the absence of lockdown.
Partial measures of social distancing after the end of lockdown in a number of European countries re-
strain its value to K ≈ 0.1 characterized by a slow growth of the number of infected individuals. Even
a slight increase of this coefficient up to K = 0.15, which can be expected in September due to the end
of vacation season and the beginning of academic year, can lead to an important burst of epidemic.

Currently available data for the unlocking period/post lockdown period indicates a significant in-
crease in daily reported cases in Italy, full scale second wave of epidemic in Spain. There is not
significant increase in number of case in Germany for which we have given much emphasis. Based
upon the recently available data for Spain, we have fitted our 2nd model with the daily reported cases
for Spain where second wave in epidemic has been noticed and got the best fitted value of K as 0.3
for which our model simulation has a good agreement with the real data for daily reported cases. The
fitting with data in presented in Figure 9, all the parameter values are mentioned at the appendix. The
choices of different parameters involved with the model (3.1) are the same as discussed in the previous
section. The choices of βi j are β11 = β1, β22 = β4 and β12 = β21 = (β1 + β4)/2.

Figure 9. Simulation result for the model (3.1) with parameter values as mentioned in the
text and appendix and validation with the data for Spain.

We have calculated the final size of the epidemic for both the models considered in this manuscript
and obtained a rough estimate for the endemic steady-state analytically. The final size of the epi-
demic are calculated assuming β is constant however the numerical simulations are carried out for
non-constant β and their variation with time is already explained clearly. Here we justify the analytical
findings with supportive numerical results and argue for the effectivity of lockdown and imposition of
several social restrictions. We mentioned above that the controlled reproduction number for Germany
is R[1]

c = 2.9565 with β = β1 = 3.98. With this value of R[1]
c , solving the equation (2.19) we find
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x = 0.06303. With the current population size of Germany which is approximately equal to 82.9 mil-
lion gives us final size as S f = 5, 225, 187. The 95% confidence interval for the final size is given
by [4.7194 × 106, 5.1958 × 106]. This result clearly indicates that a huge number of people could be
infected if no such restriction was imposed. Similar calculations can be done for other compartments
as well for two group model also. But we skip them here for the sake of brevity and will address this
issue in our future endevour with appropriate estimates for the values of other parameters involved with
the second model.

Control of the progression of COVID-19 epidemic goes beyond pure epidemiological questions.
There are several societal aspects that can be important including the strategy chosen to handle the
epidemic, and how people react on the measures of social distancing. In particular, at the first stage
of epidemic, different measures were adopted according to the decisions of public authorities. Stricter
measures of social distancing were introduced in China, while more liberal in Europe, especially, in
Sweden. Tracing of infection chains with a large number of tests was applied in South Korea and in
Germany. The results of these different strategies were also different, and they should be analyzed in
more detail. The efficiency of lockdown introduced in many countries and post-lockdown evolution
of the epidemiological situation depend on many factors. In particular, the application of the measure
of social distancing can be influenced by some national traditional and historical features such as
family meetings, festivities, religious meetings and holidays, and so on. Epidemic progression can
also influence public opinion and mass media, which in their turn influence the intensity of social
interactions [26, 41].
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Appendix – A

Proof of Th. 1: By re-writing the system (2.1) we have

dX
dt

= B(X), X(0) = X0 ≥ 0,

where

X = (S , E1, E2, Ia, Is,Q, J,R)T ,

B(X) = (B j(X))T , j = 1, 2, · · · , 8,

with

B1(X) =
βS
N

(Is + p1Ia + p2E2 + p3Q + p4J),

and so on. We note that

dS
dt

∣∣∣∣∣
S =0

= 0,

dE1

dt

∣∣∣∣∣
E1=0

=
βS
N

(Is + p1Ia + p2E2 + p3Q + p4J) ≥ 0,

dE2

dt

∣∣∣∣∣
E2=0

= µE1 ≥ 0,

dIa

dt

∣∣∣∣∣
Ia=0

= (1 − σ)δE2 ≥ 0,

dIs

dt

∣∣∣∣∣
Is=0

= σδE2 ≥ 0,

dQ
dt

∣∣∣∣∣
Q=0

= ζ1Is ≥ 0,

dR
dt

∣∣∣∣∣
R=0

= ηIa + ζ2Is + ξ2Q + νJ ≥ 0.

The inequalities mentioned above hold for any point belonging to the interior of R8
+ or on the

boundary hyper-planes. Solutions starting from a non-negative initial condition and non-negativity of
the time derivaties imply that the system (2.1) is invariant in R8

+.
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Appendix – B

The matrices F1 andV1 are defined by

F1 =



βS
N (Is + p1Ia + p2E2)

0
0
0
0
0


, V1 =



µE1

δE2 − µE1

ηIa − (1 − σ)δE2

(ρ1 + ζ2)Is − σδE2
βS
N (Is + p1Ia + p2E2)
−ηIa − ζ2Is


.

The matrices F1 and V1 are given by

F1 =


0 βp2 βp1 β

0 0 0 0
0 0 0 0
0 0 0 0

 , V1 =


µ 0 0 0
−µ δ 0 0
0 −(1 − σ)δ η 0
0 −σδ 0 ρ1 + ζ2

 . (6.2)

Now, we can calculate,

F1V−1
1 =


β
(

p2
δ

+
(1−σ)p1

η
+ σ

ρ1+ζ2

)
β
(

p2
δ

+
(1−σ)p1

η
+ σ

ρ1+ζ2

)
βp1
η

β

ρ1+ζ2

0 0 0 0
0 0 0 0
0 0 0 0

 .
F2 andV2 are given by

F2 =



βS
N (Is + p1Ia + p2E2 + p3Q + p4J)

0
0
0
0
0
0
0


, V2 =



µE1

δE2 − µE1

ηIa − (1 − σ)δE2

(ρ1 + ζ1 + ζ2 + ζ3)Is − σδE2

(ξ1 + ξ2)Q − ζ1Is

(ρ2 + ν)J − ζ3Is − ξ1Q
βS
N (Is + p1Ia + p2E2 + p3Q + p4J)
−(ηIa + ζ2Is + ξ2Q + νJ)


.

These two matrices F2 and V2 are given by

F2 =



0 βp2 βp1 β βp3 βp4

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


,
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V2 =



µ 0 0 0 0 0
−µ δ1 0 0 0 0
0 −(1 − σ)δ1 η 0 0 0
0 −σδ1 0 (ρ1 + ζ1 + ζ2 + ζ3) 0 0
0 0 0 −ζ1 (ξ1 + ξ2) 0
0 0 0 −ζ3 −ξ1 (ρ2 + ν)


.

Explicit expressions for the matrices F3 and V3 are given below,

F3 =



0 0 β11 p12N1
N

β12 p22N1
N

β11 p11N1
N

β11 p21N1
N

β11N1
N

β12N1
N

βQN1

N
βJ N1

N

0 0 β21 p32N2
N

β22 p42N2
N

β21 p31N2
N

β22 p41N2
N

β21N2
N

β22N2
N

βQN2

N
βJ N2

N
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0



,

V3 =



µ1 0 0 0 0 0 0 0 0 0
0 µ2 0 0 0 0 0 0 0 0
−µ1 0 δ1 0 0 0 0 0 0 0

0 −µ2 0 δ2 0 0 0 0 0 0
0 0 −(1 − σ1)δ1 0 η1 0 0 0 0 0
0 0 0 −(1 − σ2)δ2 0 η2 0 0 0 0
0 0 −σ1δ1 0 0 0 α1 0 0 0
0 0 0 −σ2δ2 0 0 0 α2 0 0
0 0 0 0 0 0 −ζ11 −ζ21 ξ1 + ξ2 0
0 0 0 0 0 0 −ζ12 −ζ22 −ξ1 ρ2 + ν



.

Appendix – C

Here we present the numerical simulation results and fitting with the data alongwith the 95% con-
fidence intervals for Germany, Italy, Spain and UK. The data used for these fiiting are available at [3].
The model (2.1) is used to perform the simulations and fitting with data. Parameterization are also the
same as we have explained in Table 1. Details of the parameter values and their estimates for Germany
are provided in Table 3. Parameter values and and their estimates for rest of the countries are provided
below. It is worthy to mention here that the values of β(t) are estimated over requisite number of inter-
vals in order to have a good fit with the cumulative reported number of infected individuals. As a result
the number of intervals over which β(t) is changing its constant magnitude varies from one country to
another. In case of Germany, the number of intervals over which β(t) takes different constant values
are three whereas the number of intervals for β(t) is five when we considered the data for Italy. Also
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the number days over which the simulations are carried out is not unique as the date implementation of
lockdown and its partial withdrawal varies from one country to another. For all the countries, we have
started the simulation from the date 15th of February, 2020 and continued approximately up to the end
of strict lockdown restrictions.

Figure 10. Simulation results and daily reported cases (7 days moving average) and 95%
confidence interval for the data of Germany. (a) Cumulative data and simulation results, (b)
daily data (7days moving average) and simulation results.

Table 4. Best fitted parameter values for Italy.

Parameter for 1st 26 days for next 6 days for next 7 days for next 8 days upto 90th day

β 4 2.89 2 1.3 1
p1 0.34 0.05 0.05 0.05 0.34
p2 0.34 0.34 0.34 0.34 0.21
p3 0.05 0.05 0.05 0.05 0.05
p4 0.05 0.05 0.05 0.05 0.05
δ 1 1 1 1 0.96
σ 0.1128 0.1 0.1 0.1 0.1
η 0.9 0.9 0.9 0.9 0.9
ρ1 0.1 0.1 0.1 0.1 0.1
ρ2 0.07 0.07 0.07 0.07 0.07
ζ1 0.07 0.07 0.07 0.07 0.07
ζ2 0.1 0.1 0.1 0.1 0.1
ζ3 0.14 0.14 0.14 0.14 0.14
ξ1 0.14 0.14 0.14 0.14 0.14
ξ2 0.1 0.1 0.1 0.1 0.1
ν 0.05 0.05 0.05 0.05 0.05
µ 0.28 0.28 0.28 0.28 0.28
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Figure 11. Simulation results and daily reported cases (7 days moving average) and 95%
confidence interval for the data of Italy. (a) Cumulative data and simulation results, (b) daily
data (7days moving average) and simulation results.

Table 5. Best fitted parameter values for Spain.

Parameter for 1st 26 days for next 6 days for next 7 days for next 8 days upto 90th day

β 3.7 2.202 1.67 1.126
p1 0.1928 0.297 0.34 0.05
p2 0.34 0.34 0.34 0.34
p3 0.05 0.05 0.05 0.34
p4 0.05 0.05 0.05 0.05
δ 1 1 1 1
σ 0.1 0.1 0.1 0.1
η 0.9 0.9 0.9 0.9
ρ1 0.1 0.1 0.1 0.0551
ρ2 0.07 0.07 0.07 0.07
ζ1 0.07 0.07 0.07 0.07
ζ2 0.1 0.1 0.1 0.1
ζ3 0.14 0.14 0.14 0.14
ξ1 0.14 0.14 0.14 0.14
ξ2 0.1 0.1 0.1 0.1
ν 0.05 0.05 0.05 0.05
µ 0.28 0.28 0.28 0.28
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Figure 12. Simulation results and daily reported cases (7 days moving average) and 95%
confidence interval for the data of Spain. (a) Cumulative data and simulation results, (b)
daily data (7days moving average) and simulation results.

Table 6. Best fitted parameter values for UK.

Parameter for 1st 26 days for next 6 days for next 7 days for next 8 days upto 90th day

β 2.03 4 2.89 1.15 1.01
p1 0.05 0.1145 0.05 0.34 0.34
p2 0.05 0.34 0.34 0.34 0.24
p3 0.34 0.34 0.05 0.05 0.05
p4 0.34 0.34 0.05 0.05 0.05
δ 0.5 1 1 1 1
σ 0.18 0.1 0.1 0.1 0.1
η 0.9 0.9 0.9 0.9 0.9
ρ1 0.05 0.1 0.1 0.1 0.1
ρ2 0.07 0.07 0.07 0.07 0.07
ζ1 0.07 0.07 0.07 0.07 0.07
ζ2 0.1 0.1 0.1 0.1 0.1
ζ3 0.14 0.14 0.14 0.14 0.14
ξ1 0.14 0.14 0.14 0.14 0.14
ξ2 0.05 0.05 0.1 0.1 0.1
ν 0.05 0.05 0.05 0.05 0.05
µ 0.28 0.28 0.28 0.28 0.28
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Figure 13. Simulation results and daily reported cases (7 days moving average) and 95%
confidence interval for the data of UK. (a) Cumulative data and simulation results, (b) daily
data (7 days moving average) and simulation results.
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