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Abstract: We revisit the chemostat model with Haldane growth function, here subject to bounded
random disturbances on the input flow rate, as often met in biotechnological or waste-water industry.
We prove existence and uniqueness of global positive solution of the random dynamics and existence
of absorbing and attracting sets that are independent of the realizations of the noise. We study the long-
time behavior of the random dynamics in terms of attracting sets, and provide first conditions under
which biomass extinction cannot be avoided. We prove conditions for weak and strong persistence of
the microbial species and provide lower bounds for the biomass concentration, as a relevant information
for practitioners. The theoretical results are illustrated with numerical simulations.
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1. Introduction

The chemostat refers to a laboratory device used for the growth of micro-organisms in a culture
environment [1,2], that has been regarded as an idealization of the nature to study microbial ecosystems
in stationary stage [3]. It turned out to be an important investigation field due to a large number
of applications, especially in waste water treatment [4, 5] but also in ecological and environmental
sciences (see [6–10]).

It is worth mentioning that the chemostat has been subject to a large number of scientific publica-
tions and books, not only in biology and ecology but also in mathematics. Indeed there exists a specific
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research area about the so-called “theory of the chemostat” [11,12] where many researchers have been
involved in the last years. This interest has been strengthened by the fact that the chemostat device can
be mathematically modeled in a simple way which reproduces quite faithfully real bio-processes.

Let us recall quickly in what consists the original chemostat device. It is composed of three tanks,
the feed bottle, the culture vessel and the collection vessel, which are interconnected by pumps (see
Figure 1). The substrate is stored in the feed bottle and provided with a given flow rate to the culture
vessel, where interactions between nutrient and microbial biomass take place. The media from the
culture vessel is also withdrawn towards the collection vessel with the same flow rate, to keep the
volume in the culture vessel constant.

Feed Bottle Collection VesselCulture Vessel

Figure 1. The chemostat.

The mathematical model of the chemostat is given by the following dynamical system

ds
dt

= D(sin − s) − µ(s)x, (1.1)

dx
dt

= −Dx + µ(s)x, (1.2)

where s = s(t) and x = x(t) denote the concentration of substrate and species, respectively, sin is the
input concentration of nutrient, D is the removal rate (also called input flow rate), and µ(·) is the specific
growth function describing the kinetics of the nutrient consumption by the bacterial species. Here, we
assume that the yield coefficient of the conversion of the substrate into biomass is equal to 1 (that is
always possible to impose by a change of the unit of the biomass concentration). More specifically, we
consider in the present work the Haldane growth function

µ(s) = µ0
s

ks + s +
s2

ki

, s ≥ 0, (1.3)

where ks is the affinity constant and ki a parameter modeling the growth inhibition under large concen-
trations of substrate. Since it will be useful later, let us define the number

sm := arg max µ(s) =
√

kiks. (1.4)
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Many works have been dedicated to this classical deterministic model of the chemostat (see for
instance [11, 12]) but most of time the removal rate D is kept constant, although it is well-known that
in practice it is frequently subject to disturbances (see for instance [13] where some chronicles of time
varying removal rates are depicted).

Motivated by this fact, it has been proposed to model the perturbations on the input flow rate in the
chemostat model (1.1)–(1.2) by D+Φ(z∗(θtω)), where z∗(θtω) denotes the Ornstein-Uhlenbeck process
(introduced in more detail in Section 2) and Φ is a bounded function defined as

Φ(z) =
2d
π

arctan(z), (1.5)

where d > 0 (see, for instance, [14,15] for other possible functions). Indeed, any odd function Φ which
is increasing and such that limz→+∞Φ(z) = d can be considered.

In this way, once practitioners provide an interval [Dl,Dr] ⊂ R, 0 < Dl < D < Dr < ∞, (typically
obtained from observations) we can define d = Dr − D = D − Dl and then the perturbed input flow is
bounded for every time and any realization of the noise, i.e.,

Dl ≤ D + Φ(z∗(θtω)) ≤ Dr ∀t ∈ R. (1.6)

Then, the random chemostat model becomes

ds
dt

= (D + Φ(z∗(θtω)))(sin − s) − µ(s)x, (1.7)

dx
dt

= (D + Φ(z∗(θtω)))x + µ(s)x. (1.8)

One may wonder the reason why we consider this way of modeling bounded random fluctuations
to perturb the input flow D in the model (1.1)–(1.2), instead of considering other stochastic process,
such as for instance the well-known standard Wiener process. Indeed, this way has been typically used
to model real perturbations and provides several advantages from both mathematical and biological
points of view, see for instance [15].

On the one hand, this way of modeling noise fits in a loyal way the bounded variations of the input
flow rate observed in real life. On the contrary, the Wiener process is unbounded with probability
one which leads to arbitrary large (possibly negative) values of the corresponding perturbed input
flow rate, which is not realistic at all from the biological point of view. We refer readers to [15, 16]
where the authors explain the relevant drawbacks found when perturbing the input flow in the classical
deterministic chemostat (1.1)–(1.2) with a Wiener process (where µ is a Monod growth function).

Moreover, the approach proposed in this paper allows to prove the persistence of the bacterial
species (under some conditions on the growth function), as it is observed by practitioners on very long
time periods despite variations of the input flow rate. This is not the case when considering the Wiener
process where persistence cannot be ensured (see [16] and [17] where the Wiener process is used to
model disturbances on the input flow and environmental perturbations in the classical deterministic
chemostat).

In industrial setup, large concentrations of the input substrate sin can be observed and it is also well-
known that bacterial species may suffer from growth inhibition under very large concentrations s. The
non-monotonic growth function (1.3) precisely models this fact (see [18]). Differently to the classical
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case, where the growth function µ is assumed to be increasing (as this is the case for the Monod func-
tion), the dynamics of the deterministic chemostat model with such non-monotonic growth function
may exhibit a bi-stability for certain values of the dilution rate D (see for instance [11]). Depending on
the initial condition, the state of the system converges asymptotically to the wash-out of the biomass
(which is not a desirable state) or to a positive equilibrium. This kind of instability is observed in
practice and present an issue in industrial applications because it requires a good monitoring of the
system to detect if the state belongs the attraction basin of the wash-out equilibrium [19–22]. Most
of the time, practitioners prefer to size the process to avoid such a behavior, i.e. such that the system
admits an unique globally stable equilibrium (see also [23, 24]). This mathematically amounts to have
the following condition

D < min(µ(sin), µ(sm)) (1.9)

(this result is recalled later). The purpose of the present work is to study the behavior of the random dy-
namics when the constant removal rate is replaced by D + Φ(z∗(θtω)) where D satisfies condition (1.9).

The realizations of this variable may satisfy or not condition (1.9) at some times t. If not, one may
wonder if this could lead the biomass to extinction. This question is of primer importance for the
practitioners for the good health of the bio-process. In other words, for a nominal removal rate that
satisfies condition (1.9), is the persistence of the biomass always guaranteed, even when the realizations
of the noise provide effective values of the removal rate that do not satisfy this condition? Precise
definitions of persistence in the framework of the chemostat will be given later.

Let us underline that stochastic modeling of the chemostat has received a great attention in the
literature, considering different kinds of demographic noise [25–30], but few works have dealt with
noise on the input, and much less in the case of considering Haldane consumption function, whereas
this is quite natural for an open system as the chemostat, which is often the main source of fluctuations.

The paper is organized in the following way: in Section 2 we provide preliminaries and classical
results about the deterministic chemostat model (1.1)–(1.2). In Section 3 we study the properties of
the solutions of the random chemostat model with Haldane consumption kinetics (1.7)–(1.8). Then,
in Section 4 we give conditions to ensure both uniform weak and strong persistence of the species. In
Section 5, several simulations are presented to support the theoretical study. Finally, we present some
conclusions in Section 6.

2. Preliminaries

In this section we recall briefly some results that are useful in this paper. For the sake of clarity,
we split this preliminary section in three different parts: the first one concerns classical results of the
deterministic chemostat model (1.1)–(1.2), the second one is about the Ornstein-Uhlenbeck process
and the third one recalls the definitions of persistence.

2.1. The deterministic chemostat model

The next proposition recalls the classical results about the chemostat model (1.1)–(1.2) when µ is a
non-monotonic function. We refer readers to [11, 12] for proofs and more details.

Proposition 2.1. Assume that there exists ŝ ∈ (0, sin) such that the function µ is increasing on (0, ŝ)
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and decreasing on (ŝ, sin). Define the break-even concentrations λ−(D), λ+(D) as follows

λ−(D) = min{s ∈ [0, ŝ] ; µ(s) ≥ D}, D ∈ [0, µ(ŝ)]
λ+(D) = max{s ∈ [ŝ, sin] ; µ(s) ≥ D}, D ∈ [µ(sin), µ(ŝ)]

1. If D > µ(ŝ), the system (1.1)–(1.2) possesses a unique equilibrium E0 := (0, sin), which is globally
asymptotically stable on R2

+.
2. If D < µ(sin), the system (1.1)–(1.2) admits a unique positive equilibrium E− := (sin −

λ−(D), λ−(D)) which is globally asymptotically stable on R?+ × R+.
3. If D ∈ [µ(sin), µ(ŝ)], the system (1.1)–(1.2) presents a bi-stability between E− and E0. From any

initial condition in R?+ × R+ excepted on a set of null measure, the solution converges asymptoti-
cally to E− or E0.

Remark 1. In practice, only the second case is desirable because it guarantees that in any situation the
wash-out of the biomass is avoided.

Remark 2. For the Haldane expression (1.3), one has explicit expressions of the functions λ±

λ±(D) =
(µ0 − D)ki ±

√
(µ0 − D)2k2

i − 4D2kski

2D
.

Let us recall that the concept of break-even concentrations has been revisited in the context of
stochastic models of the chemostat [31, 32] but we will not need it here. We keep the classical deter-
ministic definition.

In the rest of the paper, we shall consider that we are in conditions of Proposition 2.1, that is µ
non-monotonic on the interval [0, sin] (otherwise the analysis is similar to monotonic growth function
and cannot present bi-stability). Throughout the paper we shall consider the following hypothesis

Assumption 1. There exists sm ∈ (0, sin) such that the function µ is increasing on (0, sm) and decreasing
on (sm, sin).

2.2. The Ornstein-Uhlenbeck process

We present here briefly the Ornstein-Uhlenbeck (OU) process. For more details we refer readers
to [13, 33, 34].

The Ornstein-Uhlenbeck (OU) process is a stationary mean-reverting Gaussian stochastic process
defined as

(t, ω) 7→ z(t, ω) := z∗(θtω) = −βν

0∫
−∞

eβsθtω(s)ds, for all t ∈ R, ω ∈ Ω, β, ν > 0, (2.1)

where ω denotes a standard Wiener process in a probability space (Ω,F ,P), β is the mean reversion
constant representing the strength with which the process is attracted by the mean, ν > 0 is the volatility
constant describing the variation or the size of the noise and θt denotes the usual Wiener shift flow given
by

θtω(·) = ω(· + t) − ω(t), t ∈ R.
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We note that the OU process (2.1) can be obtained as the stationary solution of the Langevin equa-
tion

dz + βzdt = νdω. (2.2)

Typically, the OU process (2.1) can model the position of a particle by taking into account its friction
in a fluid (which is the main difference with the typical standard Wiener process). Indeed, it can be
considered as a generalization of the standard Wiener process and provides a link between the standard
Wiener process (β = 0, ν = 1) and no noise at all (β = 1, ν = 0).

From now on we consider β and ν fixed and z∗(θtω) the OU process defined above.
We recall in the next proposition some of its properties.

Proposition 2.2 (See [35,36]). There exists a θt-invariant set Ω̃ ∈ F of Ω of full measure such that for
ω ∈ Ω̃ and β, ν > 0, we have

(i) the random variable |z∗(ω)| is tempered with respect to {θt}t∈R, i.e., for a.e. ω ∈ Ω̃,

lim
t→∞

e−ηt sup
t∈R
|z∗(θ−tω)| = 0, for all η > 0.

(ii) this mapping is a stationary solution of (2.2) with continuous trajectories

(t, ω)→ z∗(θtω) = −βν

0∫
−∞

eβs(θtω)(s)ds;

(iii) for any ω ∈ Ω̃ one has:

lim
t→±∞

|z∗(θtω)|
t

= 0; lim
t→±∞

1
t

∫ t

0
z∗(θsω)ds = 0;

lim
t→±∞

1
t

∫ t

0
|z∗(θsω)| ds = E [|z∗|] < ∞.

2.3. Persistence in the chemostat

We recall here the definitions of (uniform) persistence (see for instance [37]) that we consider in the
present work .

Definition 2.1. The dynamics of (1.7)–(1.8) is strongly persistent if there exists ε > 0 such that for any
initial condition (s(0), x(0)) in R+ ×R

?
+ and any realization of the D + Φ(z∗(θ(·)ω)), the solution verifies

lim inf
t→+∞

x(t) > ε.

Definition 2.2. The dynamics of (1.7)–(1.8) is weakly persistent if there exists ε > 0 such that for any
initial condition (s(0), x(0)) in R+ × R

?
+ and any realization of D + Φ(z∗(θ(·)ω)), the solution verifies

lim sup
t→+∞

x(t) > ε.
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3. Properties of the solutions of the random dynamics

In this section we study the random chemostat model (1.7)–(1.8) presented in the introduction. We
prove the existence and uniqueness of a global positive solution and provide results about the existence
of absorbing and attracting sets which, in addition, are deterministic (i.e. that do not depend on the
realization of the noise). In addition, we derive first conditions under which extinction of species
cannot be avoided.

In the sequel, we denote X := {(s, x) ∈ R2 : s, x ≥ 0} for the positive cone.

Theorem 3.1. For any initial condition u(0) ∈ X, system (1.7)–(1.8) possesses a unique global solution
u(t; 0, ω, u(0)) = (s(t; 0, ω, u(0)), x(t; 0, ω, u(0))) ∈ C1([0,+∞);X). In addition, it remains in X for
every t > 0.

Proof. Let us first write system (1.7)–(1.8) as

du
dt

= L(θtω)u + F(u, θtω),

where

u =

(
s
x

)
, L(θtω) =

(
−(D + Φ(z∗(θtω))) 0

0 −(D + Φ(z∗(θtω)))

)
and

F(u, θtω) =



(D + Φ(z∗(θtω)))sin − µ0
s

ks + s +
s2

ki

x

µ0
s

ks + s +
s2

ki

x


.

F(·, θtω) ∈ C1(X × [0,+∞);X) whence F is locally Lipschitz respect to u ∈ X. Therefore, for
each realization of the noise, du/dt = L(θtω)u + F(u, θtω) is an non-autonomous differential equation
with a right member Lipschitz with respect to u and continuous with respect to t (recall that z∗(θtω)
is continuous respect to t and Φ is also continuous). Therefore, the solution of the Cauchy problem
admits an unique local solution of system (1.7)–(1.8) from the theory of ordinary differential equations.

Let us first show that both x and s remain in X for any u0 ∈ X. To this end, we notice first that
x(t) = 0 solves (1.7). By uniqueness of the Cauchy problem, we deduce that any other solution is such
that x(t) , 0 for any t. Notice also that one has, thanks to (1.6),

ds
dt

∣∣∣∣∣
s=0

= (D + Φ(z∗(θtω)))sin > 0,

which proves that the axis s = 0 is repulsive in X. This demonstrates the positiveness of the solution
of system (1.7)–(1.8).

Now we prove that both the substrate and the microorganisms concentrations remain bounded for
every time. To this end, define v(t) := s(t) + x(t). Then the variable v is solution of the following
differential equation

dv
dt

= (D + Φ(z∗(θtω)))(sin − v)
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and, thanks to (1.6),
dv
dt
≤ Dr sin − Dlv,

By comparison of solutions of scalar ODEs (see [38]) we obtain

v(t; 0, ω, v(0)) ≤ v(0)e−Dlt +
Dr

Dl sin

(
1 − e−Dlt

)
, t ≥ 0.

Then, v is forward bounded and since v = s + x ≥ 0, we deduce that both the solution s and x are also
bounded for positive time. The unique solution of system (1.7)–(1.8) is thus defined for any t ≥ 0. �

Now, we prove the existence of deterministic attracting and absorbing sets for the solutions of the
random chemostat model (1.7)–(1.8).

Theorem 3.2. The system (1.7)–(1.8) possesses a deterministic (forward) attracting set

A := {(s, x) ∈ X : s + x = sin} . (3.1)

Proof. Define the variable q(t) := s(t) − sin + x(t). Then q satisfies the following differential equation

dq
dt

= −(D + Φ(z∗(θtω)))q

whose solution is given by
q(t; 0, ω, q(0)) = q(0)e−

∫ t
0 (D+Φ(z∗(θsω)))ds. (3.2)

From (1.6), we have
q(0)e−Drt ≤ q(t; 0, ω, q(0)) ≤ q(0)e−Dlt

and taking limit when t goes to infinity we have

lim
t→+∞

q(t; 0, ω, q(0)) = 0,

which means that, for any ε > 0, there exists T (ω, ε) > 0 such that

q(t; 0, ω, q(0)) ∈ [−ε, ε], t ≥ T (ω, ε).

This proves that
Bε := {(s, x) ∈ X : sin − ε ≤ s + x ≤ sin + ε} .

is a (forward) deterministic absorbing set for system (1.7)–(1.8). As ε > 0 is arbitrary, the proof is
done. �

Remark 3. Let us underline that the attracting set (3.1) obtained in Theorem 3.2 does not depend on
the event ω ∈ Ω. This is another particularity that we obtain when considering this way of modeling
random bounded realizations.

Our aim now is to provide first conditions on the parameters of system (1.7)–(1.8) under which
extinction of the species occurs.
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Theorem 3.3. Assume that the inequality

Dl > µ(sm) (3.3)

is fulfilled, where sm is defined in (1.4). Then, the singleton

Ae := {(sin, 0)} ⊂ A

is a (forward) attracting set.

Proof. From the equation describing the dynamics of the species (1.8) and (1.6) one has

dx
dt

= −(D + Φ(z∗(θtω)))x + µ(s)x

≤ −(Dl − µ(sm))x.

and by comparison of solutions of scalar ordinary differential equations [38], we have

x(t; 0, ω, x(0)) ≤ x(0)e−(Dl−µ(sm))t. (3.4)

Taking limit when t goes to infinity in (3.4), we obtain from (3.3) and Proposition 2.2 (iii),

lim
t→+∞

x(t; 0, ω, x(0)) = 0.

�

4. Conditions for persistence

In this section our aim is to provide conditions to ensure persistence of the species in the sense
defined in Section 2.3.

We shall distinguish in the following weak and strong persistence, as defined for instance in [37].
Before stating a result concerning the weak persistence of species, let us first provide a property linked
to the choice of the function Φ.

Proposition 4.1. Let be Φ(z) = 2d
π

arctan(z) defined as in (1.5). Then

lim
t→+∞

1
t

∫ t

0
Φ(z∗(θsω))ds = 0, a.s. in Ω. (4.1)

Proof. Since Φ(z) = 2d
π

arctan(z), then we have∫
Ω

∣∣∣∣∣2d
π

arctan(z∗(ω))
∣∣∣∣∣ dP(ω) ≤ d|Ω| = d

whence Φ(z∗(·)) ∈ L1(Ω,F ,P). Then, since P is invariant by θ (see [34,35]), from the Birkhoff ergodic
theorem it yields that

lim
t→+∞

1
t

∫ t

0
Φ(z∗(θsω))ds = E[Φ(z∗(ω))], a.s. in Ω.
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Hence, it is enough to show that E[Φ(z∗(ω))] = 0. In fact, we have

E[Φ(z∗(ω))] =

∫
R

Φ(x) fOU(x)dx = 0,

where fOU denotes the density function of the random variable z∗(·), which is an even function since it
is gaussian, and Φ is an odd function. �

Remark 4. From Proposition 4.1 we notice that we could model random perturbations as in this pa-
per, i.e., by means of Φ(z∗(θtω)), and the ergodic property (4.1) remains true as long as Φ is an odd
measurable function.

Theorem 4.1. Assume that the inequality

µ(sin) > D. (4.2)

is fulfilled. Then, the random chemostat model (1.7)–(1.8) is weakly persistent, that is there exits ε > 0
such that for any initial condition x(0) ∈ X, any realization satisfies

lim sup
t→+∞

x(t; 0, ω, x(0)) ≥ ε.

Proof. Let ε > 0 be such that µ(s) > D for all s ∈ [sin − ε, sin + ε] and define

η := min{µ(s) − D : s ∈ [sin − ε, sin + ε]} > 0.

From Theorem 3.2, we know that s(t; 0, ω, s(0)) converges asymptotically to the set [0, sin].
Therefore, there exists T (ω, ε) > 0 such that s(t; 0, ω, s(0)) < sin + ε for any t > T (ω, ε).

Consider now, for t > T (ω, ε), the sets

U(t) := {τ ∈ [T (ω, ε), t] : s(τ; 0, ω, s(0)) < sin − ε} ,

V(t) := {τ ∈ [T (ω, ε), t] : s(τ; 0, ω, s(0)) ∈ [sin − ε, sin + ε]}

and the functions in [0, 1]

u(t) :=
meas U(t)
t − T (ω, ε)

, v(t) :=
meas V(t)
t − T (ω, ε)

= 1 − u(t).

Then, from (1.8), one can write the following inequality

ẋ(t) ≥

−(D + Φ(z∗(θtω)))x(t), t ∈ U(t)
(η − Φ(z∗(θtω)))x(t), t ∈ V(t)

and by integration between T (ω, ε) and t > T (ω, ε) one obtain

x(t) ≥ x(T (ω, ε))e(t−T (ω,ε))
[
u(t)(−D)+(1−u(t))η− 1

t−T (ω,ε)

∫ t
T (ω,ε) Φ(z∗(θrω))dr

]
, t > T (ω, ε). (4.3)

Assume that one has
lim

t→+∞
u(t) = 0.

Mathematical Biosciences and Engineering Volume 17, Issue 6, 7480–7501.
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From Proposition 4.1, one has
lim

t→+∞
e−

1
t−T (ω,ε)

∫ t
T (ω,ε) Φ(z∗(θrω))dr

= 1

and then (4.3) gives
lim

t→+∞
x(t) = +∞

which is a contradiction since x is bounded. We deduce thus that the sets U(·) are necessarily such that

meas U(t)→ +∞ when t → +∞

that is
meas({t : s(t) < sin − ε}) = +∞

which shows that one has
lim inf

t→+∞
s(t) ≤ sin − ε

or equivalently
lim sup

t→+∞

x(t) ≥ ε > 0

since s(t) + x(t) converges to sin for any realization (see the proof of Theorem 3.2). �

Remark 5. Theorem 4.1 proves the weak (uniform) persistence of species as long as D < µ(sin) is ful-
filled, the same condition that guarantees the persistence in the deterministic case (see Proposition 2.1).
However, let us underline that we do not impose the upper bound Dr of the variations of the removal
rate to fulfill this inequality. This means that one could have realizations of the disturbances such that
the effective value of the removal rate is above µ(sin) on large periods of time making the species to be
arbitrary closed to the extinction but it will always persist.

In the next result we consider a stronger condition on the upper bound Dr of the removal rate which
ensures the strong persistence of the species.

Theorem 4.2. Assume that the inequality

Dr < µ(sin) (4.4)

is fulfilled. Then, the random chemostat model (1.7)–(1.8) is strongly persistent and the set

Ap := {(x, y) ∈ X : s + x = sin, x ≥ sin − λ
−(Dr)} ⊂ A

is (forward) attracting, where the function λ− is defined in Proposition 2.1.

Proof. Take ε > 0 such that µ(s) > Dr for any s ∈ [sin − ε, sin + ε] and posit

η := min{µ(s) − Dr : s ∈ [sin − ε, sin + ε]} > 0.

From now on, we will s(t), x(t) and q(t) instead of s(t; 0, ω, s(0)), x(t; 0, ω, x(0)) and q(t; 0, ω, q(0))
to make the readability easier even though we recall that every state variable depends on the noise.

Mathematical Biosciences and Engineering Volume 17, Issue 6, 7480–7501.
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From Theorem 3.2, we know that the variable q(t) = s(t) − sin + x(t) converges asymptotically to
zero for any realization, and thus any solution s(t) of the random model (1.7)–(1.8) converges to the
set [0, sin]. Consequently, there exists T (ω, ε) > 0 such that

s(t) < sin + ε, q(t) > −κ, ∀t > T (ω, ε),

where
κ :=

µ(sin − ε/2) − Dr

µ(sin − ε/2)
(ε/2) > 0.

If s(t) ∈ [sin − ε, sin + ε] for any t > T (ω, ε), then one has, from (1.8), ẋ(t) > ηx(t) for any
t > T (ω, ε), which implies that x is unbounded, thus a contradiction. We deduce that there exists a
finite time T̄ (ω) ≥ T (ω, ε) such that s(T̄ (ω)) ≤ sin − ε/2. On another hand, from (1.7), s(t) can be
written as the solution of the non-autonomous dynamics

dσ
dt

= F(t, σ) := (D + Φ(z∗(θtω)) − µ(σ))(sin − σ) − µ(σ)q(t). (4.5)

Note that one has

F(t, sin − ε/2) ≤ (Dr − µ(sin − ε/2))(ε/2) − µ(sin − ε/2)q(t)

and then

F(t, sin − ε/2) ≤ (Dr − µ(sin − ε/2))(ε/2) + µ(sin − ε/2)κ = 0, t > T (ω, ε)

(from the definition of κ). We deduce that the set [0, sin − ε/2] is forward invariant for the semi-flow
{σ̇ = F(t, σ), t > T (ω, ε)}. Therefore, one has

s(t) ≤ sin − ε/2, t > T̄ (ω).

Then, once identified σ with s, from (4.5)

ds
dt
≤ (Dr − µ(s))(sin − s) − µ(s)q(t), t > T̄ (ω)

and from the comparison of solutions of scalar ordinary differential equations [38], one has the in-
equality s(t) ≤ s+(t) for any t > T̄ (ω), where s+(t) is solution of the Cauchy problem

ds+

dt
= (Dr − µ(s+))(sin − s+) − µ(s+)q(t), s+(T̄ (ω)) = s(T̄ (ω)).

Note that the solution s+(t) belongs to the interval [0, sin] for any t ≥ T̄ (ω) (and is thus bounded) and
that its dynamics is asymptotic autonomous with limiting dynamics

ds†

dt
= (Dr − µ(s†))(sin − s†) (4.6)

Under assumption Dr < µ(sin), one has necessarily λ−(Dr) < sin and the property

(Dr − µ(σ))(λ−(Dr) − σ) > 0, ∀σ ∈ [0, sin] \ {λ−(Dr)}
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is fulfilled. One finally obtains that any solution of (4.6) in [0, sin] is such that s†(t) → λ−(Dr) when
t → +∞. From the theory of asymptotically autonomous dynamical systems [39], one concludes that
s+(t) converges also to λ−(Dr) when t → +∞, which proves that one has

lim sup
t→+∞

s(t) ≤ λ−(Dr)

or equivalently

lim inf
t→+∞

x(t) ≥ sin − λ
−(Dr) > 0

since s(t) + x(t) converges to sin for any realization. This demonstrates the strong persistence of the
random dynamics (1.7)–(1.8) with the explicit lower bound sin − λ

−(Dr). �

Now we consider the last situation when µ(sin) < D < µ(sm) which corresponds to the bi-stability
in the deterministic case. In the random framework, one cannot guarantee persistence nor wash-out of
the biomass. As we shall see later on simulations, the asymptotic behavior of the solutions depends
on the initial condition and the realization of the noise. However we show that an upper bound on the
biomass can be provided.

Theorem 4.3. Assume x(0) > 0. Then, the upper bound

lim sup
t→+∞

x(t; 0, ω, x(0)) ≤ sin − λ
−(Dl)

for any solution of the random dynamics (1.7)–(1.8) as long as Dl < µ(sm).

Proof. Let us remark that in this proof we will write x(t), s(t) and q(t), or simply x, s and q, instead of
x(t; 0, ω, x(0)), s(t; 0, ω, s(0)) and q(t; 0, ω, q(0)) for the sake of simplicity.

Consider x(0) > 0. Then, from (1.8) one has

dx
dt

= (µ(s) − (D + Φ(z∗(θtω))))x

= (µ(sin − x − q) − (D + Φ(z∗(θtω))))x := F(t, x), (4.7)

where q = sin − x − s.
We know that limt→+∞ q(t) = 0 then, for every ε > 0 there exists T (ω, ε) > 0 such that |q(t)| < ε for

every t > T (ω, ε). Thus x(t) < sin + ε for every t > T (ω, ε).
Moreover, for all x ∈ (sin − λ

−(Dl) + ε, sin + ε), one has sin − x− q ∈ (−q− ε, λ−(Dl)− q− ε). In fact,
since sin − x− q = s ≥ 0 (see Theorem 3.1), then we have sin − x− q ∈ (0, λ−(Dl)− q− ε) ⊂ (0, λ−(Dl))
whence F(t, x) < 0 since µ(0, λ−(Dl)) < Dl and D + Φ(z∗(θtω)) ≥ Dl.

Thus,

lim sup
t→+∞

x(t) ≤ sin − λ
−(Dl) + ε

for every ε > 0. �
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5. Numerical simulations

In this section we present several numerical simulations to support our theoretical results in three
different cases: extinction, strong persistence and weak persistence of species.

Two different figures are presented in each case. The first figure (with two panels) concerns the
dynamics of the substrate (top) and the species (bottom) in the random chemostat model (1.7)–(1.8)
for different realizations of the noise (in colored continuous lines) along with the case without noise i.e.
the deterministic chemostat model (in blue dashed lines). In addition, in each panel we display a little
box with a zoom to illustrate better the dynamics around the attracting set. The second figure offers
information about the consumption function of the consumer species and those parameters involved in
conditions to have extinction, weak persistence and strong persistence of species.

We first present the case of extinction in Figure 2. We consider s(0) = 14, x(0) = 5 as initial
conditions and set sin = 14, µ0 = 4, ks = 7.5, ki = 4, D = 1.4 and the interval given by practitioners
from observations is [Dl,Dr] = [1.15, 1.65], then d = 0.25. In addition, ν = 1 and β = 1. We
can observe in Figure 3 that Dl > µ(sm) holds true and then, as proved in Theorem 3.3, the species
extinguishes (the attracting set in this case is {(0, sin)}).
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Figure 2. Extinction of species. Values of the parameters: sin = 14, µ0 = 4, ks = 7, ki = 5,
D = 1.4, Dl = 1.15, Dr = 1.65, d = 0.25 , β = 1, ν = 1 and the initial values s(0) = 14,
x(0) = 5.

This is indeed quite intuitive as condition (3.3) basically means that the nominal value D of the
removal rate is too large large compared to the growth kinetics (recall that Dl > µ(sm) implies D >

µ(sm)), even though we start far away from the washout (sin, 0).
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Figure 3. Consumption function of consumer species in case of extinction. Values of the
parameters: sin = 14, sm = 5.4772, D = 1.4, Dl = 1.65, Dl = 1.15, µ(sin) = 0.7943,
µ(sm) = 10699.

Now we present situations where weak and strong persistence is ensured. To compare, we start
with the case of weak persistence by considering s(0) = 16.7, x(0) = 0.01 as initial conditions and set
sin = 16.7, µ0 = 7, ks = 7, ki = 7. In addition, β = 1 and ν = 1. Once fixed these parameters, the
removal rate D will be the set to allow conditions (4.4) and (4.2) be true or false.

In Figure 4 we set D = 1.7 and the interval [Dl,Dr] = [1.45, 1.95] then d = 0.25. In this case
D < µ(sin) is fulfilled (observe Figure 5) then we have weak persistence of species, see Theorem 4.1.
Although we start very closed to the washout (sin, 0), we observe persistence of species.
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Figure 4. Persistence of species in weak sense. Values of the parameters: sin = 16.7, µ0 = 7,
ks = 7, ki = 7, D = 1.7, Dl = 1.45, Dr = 1.95, d = 0.25, β = 1, ν = 1 and the initial values
s(0) = 16.7, x(0) = 0.01.
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Figure 5. Consumption function of consumer species in case of weak persistence. Values of
the parameters:sin = 16.7, sm = 7, D = 1.7, Dl = 1.45, Dr = 1.95, d = 0.25, µ(sin) = 1.8397,
µ(sm) = 2.3333.

In Figure 6 we set D = 1.4 and the interval [Dl,Dr] = [1.15, 1.65] then d = 0.25. In this case Dr <

µ(sin) holds true (see Figure 10) and then strong persistence of species is obtained from Theorem 4.1.
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Figure 6. Persistence of species in strong sense. Values of the parameters: sin = 16.7, µ0 = 7,
ks = 7, ki = 7, D = 1.4, Dl = 1.15, Dr = 1.65, d = 0.25, β = 1, ν = 1 and the initial values
s(0) = 16.7, x(0) = 0.01.
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Figure 7. Consumption function of consumer species in case of strong persistence. Values of
the parameters: sin = 16.7, sm = 7, D = 1.4, Dl = 1.15, Dr = 1.65, d = 0.25, µ(sin) = 1.8397,
µ(sm) = 2.3333.

Moreover, we would like to notice that OU process proves again to be a powerful tool when model-
ing real (bounded) noises. In addition, it allows us to observe clearly the difference between weak and
strong persistence.

Finally we present some numerical simulations to observe that both extinction and persistence can
be obtained when Dl < µ(sin) < D is fulfilled, as in the deterministic case. However, the issue here
depends also on the realization of the noise.

0 20 40 60 80 100 120

20.086

20.088

20.09

20.092

20.094

20.096

20.098

20.1

0 20 40 60 80 100 120

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Figure 8. Extinction of species. Values of the parameters: sin = 20.1, µ0 = 4, ks = 7, ki = 7,
D = 1, Dl = 0.75, Dr = 1.25, d = 0.25, β = 1, ν = 1 and the initial values s(0) = 20.1,
x(0) = 0.01.
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Figure 9. Persistence of species in strong sense. Values of the parameters: sin = 20.1, µ0 = 4,
ks = 7, ki = 7, D = 1, Dl = 0.75, Dr = 1.25, d = 0.25, β = 1, ν = 1 and the initial values
s(0) = 20.1, x(0) = 5.

Figure 10. Consumption function of consumer species in case of strong persistence. Values
of the parameters: sin = 20.1, sm = 7, D = 1, Dl = 0.75, Dr = 1.25, d = 0.25, µ(sin) =

0.9479, µ(sm) = 1.3333.

6. Conclusion

We have considered the chemostat model (1.1)–(1.2) with Haldane consumption kinetics, under
bounded perturbations on the input flow rate, motivated by real cases in industrial setup and biotech-
nology. To this end, we use a bounded saturated function of the Ornstein-Uhlenbeck process that
allows us to ensure the noise to be bounded in realistic intervals.
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We prove in Theorem 3.1 existence and uniqueness of global positive solution of the corresponding
random chemostat (1.7)–(1.8) by means of standard results from the theory of ODEs and thanks to
properties of the Ornstein-Uhlenbeck process. Then, in Theorem 3.2 we establish the existence of an
absorbing and attracting set which has the nice property to be deterministic, i.e. that does not depend
on the realization of the noise.

We then focused on the long-time behavior of the random dynamics inside this attracting set. To this
end, we first proved in Theorem 3.3 that extinction of species cannot be avoided as long as Dl > µ(sm)
whatever is the input concentration sin. On the opposite, we proved in Theorem 4.1 the weakly uniform
persistence of species when D < µ(sin), which means that species can be temporarily arbitrary closed to
the extinction but still persist even when having random disturbances in the input flow. The condition
D < µ(sin) ensures persistence in the deterministic case but the effective removal rate does not neces-
sarily fulfill this condition depending on the realizations. Finally, we prove the strong persistence of the
species in Theorem 4.2 under the stronger condition Dr < µ(sin). In this case, we provide an explicit
lower bound for the asymptotic concentration of the species, a useful information for practitioners.

In addition, we support the theoretical results with several numerical simulations which depict the
possible behaviors of the random dynamics. Moreover, this allows us to illustrate the difference be-
tween weak and strong persistence: once fixed every parameter we change the removal rate D to let
conditions µ(sin) > D and µ(sin) > Dr be true or not. Condition to have weak persistence (µ(sin) > D)
does not involve the noise and then the random realizations of the species can fluctuate closed to zero
and we still ensure persistence whereas condition to have strong persistence (µ(sin) > Dr) only fulfills
for realizations of the perturbed removal rate inside a small enough interval.

To conclude, we would like to stress that the Ornstein-Uhlenbeck process has proved once again
to be relevant tool to model random disturbances in a biological framework. This stochastic process
fits in a quite loyal way the bounded fluctuations that are observed in practice, and justify the (weak
or strong) persistence of the biomass despite the possible realizations of noise, as also observed in
practice.
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