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1. Introduction

This note is motivated by a recent work of [1], of which a cholera dynamical model with space de-
pendent parameters and bacterial hyperinfectivity is investigated. It is evident that risk factors for
cholera are diverse and originate from multiple routes of transmission, which allow us to rely on
advection-diffusion equations to describe the transport of a pathogen into host population along a the-
oretical river. From the standpoint of theoretical and applicable importance, in contrast to the previous
studies, Wang and Wang [1] distinguishes state of V. cholerae in the water environment as V1(x, t)
(hyperinfectious (HI)) and V2(x, t) (lower-infectious (LI)) vibrios to measure the infectivity of vibrios,
where x and t are spatial and time variables, respectively. Recent advances on cholera dynamical model
can be found in [2–7].

We first introduce the model proposed in [1], that builds up our question. Let x = 0 be the upstreams
and L be the downstreams of the river. If there are no specific requirements, we suppose that the model
equations are governed in the domain (x, t) ∈ (0, L) × (0,∞), initial condition at time t = 0 are given
for x ∈ [0, L] and boundary condition at time t > 0 are given for x = 0, L, respectively. In [1], the
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following advection-diffusion equations was proposed:

∂U
∂t
− DU∆U = Λ(x) − UG(x, I) − U [H1(x,V1) + H2(x,V2)] − µ(x)U + ζ(x)R,

∂I
∂t
− DI∆I = UG(x, I) + U [H1(x,V1) + H2(x,V2)] − (µ(x) + θ(x) + ρ(x))I,

∂R
∂t
− DR∆R = ρ(x)I − [µ(x) + ζ(x)]R,

∂V1

∂t
− DV1∆V1 = −nV1

∂V1

∂x
+ ξ(x)I + B1(x,V1) − δ1(x)V1,

∂V2

∂t
− DV2∆V2 = −nV2

∂V2

∂x
+ δ1(x)V1 + B2(x,V2) − δ2(x)V2,

(1.1)

with initial and boundary condition
z(x, 0) = z0(x) ≥ 0, z = U, I,R,V1,V2, respectively,
∂z
∂x

(0, t) = 0, z = U, I,R, respectively; Dz
∂z
∂x

(0, t) − nzz(0, t) = 0, z = V1,V2, respectively,
∂z
∂x

(L, t) = 0, z = U, I,R,V1,V2, respectively.

(1.2)

Here U, I and R are the human densities for susceptible, infectious and recovered. Dz, z =

U, I,R,V1,V2, stand for the diffusion coefficient. nV1 and nV2 are the convection coefficient of two states
of vibrios along the river. Λ(·) represents the influx rate. The nonlinear functions UG(·, I), UH1(·,V1)
and UH2(·,V2) stand for transmission rate among susceptible humans, infectious humans and two states
of vibrios. µ(·), δ1(·) and δ2(·) represent respectively the natural death rate. ρ(·) represents the recov-
ery rate. θ(·) is the additional death rate. ξ(·) represents the shedding rate of vibrios from infectious
individuals, respectively. ζ(·) represents the rate that recovered hosts will lose immunity. B1(·,V1) and
B2(·,V2) denote the saturation growth rate of two states of vibrios in the water environment, respec-
tively. We assume that all parameters are positive functions on [0, L]. Let F (·,m) = G(·,m), H1(·,m),
H2(·,m) and Bi(·,m), i = 1, 2, respectively. Biologically, for m ≥ 0, F satisfies:

(A1) : F (·, 0) = 0, ∂F
∂m > 0 and ∂2F

∂m2 ≤ 0;
(A2) : For Bi(·, t), i = 1, 2, there exists Ki > 0 such that Bi(·,Vi) ≤ 0 for all Vi ≥ Ki. Further,
∂Bi
∂Vi

(·, 0) < δi(·).

The well-posedness of (1.1)–(1.2), that is, the existence of global solution and ultimate boundedness
of solution have been confirmed (see Lemma 3.4 [1]). Further, the continuous semiflow Φ(t) induced
by (1.1)–(1.2) possesses a global compact attractor E. Clearly, E0 = (U∗(·), 0, 0, 0, 0) is the a cholera-
free steady state of (1.1), where U∗(·) satisfies

DU∆U∗(·) + Λ(·) − µ(·)U∗(·) = 0 with
∂U∗(0)
∂x

=
∂U∗(L)
∂x

= 0. (1.3)

We now briefly give the basic reproduction number (BRN) of (1.1) by the method developed in [8].
Linearizing (1.1)–(1.2) at E0 obtains below linear cooperative system for infectious compartments
(with u = (I,V1,V2)T ):
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∂u
∂t

= Bu = (F + B)u,
∂I
∂x

(L, t) =
∂I
∂x

(0, t) = 0,
∂Vi

∂x
(L, t) = DVi

∂Vi

∂x
(0, t) − nViVi(0, t) = 0, i = 1, 2,

(1.4)

where

F(·) =


U∗(·)GI(·, 0) U∗(·)H1V1(·, 0) U∗(·)H2V2(·, 0)

0 0 0
0 0 0


and

B =


DI∆ + h1 0 0
ξ(·) D1∆ + h2 0
0 δ1(·) D2∆ + h3


with h1 = −(µ(·) + ρ(·) + θ(·)), h2 = −nV1

∂
∂x + B1V1(·, 0) − δ1(·) and h3 = −nV2

∂
∂x + B2V2(·, 0) − δ2(·).

Let X = C([0, L],R3) with general supreme norm

‖ψ‖X := max{ sup
x∈[0,L]

|ψ1(·)| , sup
x∈[0,L]

|ψ2(·)| , sup
x∈[0,L]

|ψ3(·)| }, ψ = (ψ1, ψ2, ψ3) ∈ X,

and Π(t) : X → X (resp. Π̄(t) : X → X) be the solution semigroup with generator B (resp. B). Then
Π̄(t)φ(·) stands for the distribution by introducing initial cases φ(·) over time. F(·)Π̄(t)φ(·) represents
the distribution of new infection. Hence the next generation operator is the following positive operator
on X,

L(φ)(·) =

∫ ∞

0
F(·)(Π̄(t)φ)(·)dt, φ ∈ X. (1.5)

Substituting u = eλtψ with ψ = (ψ0(·), ψ1(·), ψ2(·)) into (1.4), which allows us to study the following
eigenvalue problem 

λψ = Bψ,
∂ψ0(L)
∂x

=
∂ψ0(0)
∂x

= 0,
∂ψi(L)
∂x

= DVi

∂ψi(0)
∂x

− nViψi(0) = 0, i = 1, 2.

(1.6)

The following result gives the expression of BRN, <0, principle eigenvalue of (1.6) and the rela-
tionship between them.

(R1) : <0 = r(L), where r(L) is the spectral radius of L;
(R2) : s(B) is the principal eigenvalue of (1.6),where s(B) is the spectral bound of B;
(R3) : sign(<0 − 1) = sign(s(B)).

These assertions are obvious, and also can be found in Theorem 3.5 [9] and Lemma 2.2 [8]. By using
the BRN,<0, the following sharp threshold dynamics of (1.1)–(1.2) was obtained.

Theorem 1.1. Let <0 = r(L) and z ∈ {U, I,R,V1,V2} where (U, I,R,V1,V2) is the solution of system
(1.1)–(1.2) [1, Theorem 3.1], then we have
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(i) If<0 < 1 and ζ(·) ≡ 0, then E0 of system (1.1)–(1.2) is globally attractive.
(ii) If<0 > 1, for any z0(·) ∈ C([0, L],R5

+) with I0(·) . 0 or V0
1 (·) . 0 or V0

2 (·) . 0, then exists σ∗ > 0
such that

lim inf
t→∞

z(·, t; z0) ≥ σ∗, uni f ormly holds.

Furthermore, in terms of homogeneous environmental conditions, the global stability of positive
equilibrium have been considered. The dependence <0 on model parameters was shown by the ana-
lytical and numerical approaches. It comes naturally to a question: When<0 = 1, what happens to the
dynamics of E0 for system (1.1)–(1.2)? In fact, the method used for the case of<0 > 1(or < 1) cannot
be directly applied to such a critical case. Thus, dealing with this question is the first motivation of
current work. Our second motivation is inspired by [10–13], the method developed there can indeed
show the dynamics of cholera-free steady state if<0 = 1. The first result of current work reads as:

Theorem 1.2. Let<0 = r(L) and Y = C([0, L],R5), then we have the following results:

(i) If<0 = 1 and ζ(·) ≡ 0, then E0 is locally asymptotically stable in Y.
(ii) If<0 = 1 and ζ(·) ≡ 0, then E0 is globally attractive in Y.

In other words, E0 is globally asymptotically stable in Y when<0 = 1 and ζ(·) ≡ 0. Before going
into proving Theorem 1.2, we first present the known result for the critical case of <0 = 1. s(B) =

ω(Π(t)) = 0 is the principle eigenvalue of (1.6) (see (R2) and (R3)), corresponding to s(B) = 0, there is
a positive eigenvector, where ω(Π(t)) represents the exponential growth bound. Further, ‖Π(t)‖ ≤ M0

for someM0 > 0.
In [1], the authors considered the global stability of E∗ by using Lyapunov functions when all the

parameters are constants, where E∗ = (Ũ, Ĩ, Ṽ1, Ṽ2) is defined as the positive constant steady state. In
a special case that ζ(·) ≡ 0, nVi = 0 and Bi(·,Vi) ≡ 0, i = 1, 2, in system (1.1)–(1.2), we continue to
consider the following model:

∂U
∂t
− DU∆U = Λ − UG(I) − U [H1(V1) + H2(V2)] − µU,

∂I
∂t
− DI∆I = UG(I) + U [H1(V1) + H2(V2)] − (µ + θ + ρ)I,

∂V1

∂t
− DV1∆V1 = ξI − δ1V1,

∂V2

∂t
− DV2∆V2 = δ1V1 − δ2V2,

(1.7)

with initial and boundary condition (1.2). Similarly, if there are no specific requirements, we suppose
that the model equations are governed in the domain (x, t) ∈ (0, L)× (0,∞). In [11], the global stability
of E∗ is achieved when G(I) = αI and Hi(Vi) = βi

Vi
Vi+Ki

, i = 1, 2. In fact, without simulation purpose,
global stability of E∗ with general incidence functions G(I) and Hi(Vi) can be achieved by the same
Lyapunov function with additional condition. The second result of current work reads as:

Theorem 1.3. Suppose that

(A3)
(

I
Ĩ −

G(I)
G(Ĩ)

) (
G(Ĩ)
G(I) − 1

)
≤ 0,

(
Vi
Ṽi
−

Hi(Vi)
Hi(Ṽi)

) (
Hi(Ṽi)
Hi(Vi)

− 1
)
≤ 0, i = 1, 2,

holds. Then the positive steady-state solution E∗ of system (1.7) is globally asymptotically stable if
<0 > 1.
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2. Proof of Theorem 1.2

Proof of (i) of Theorem 1.2. Let σ̃ > 0. Assume that initial data is around of E0, i.e., for small
ς > 0, ‖φ − E0‖ ≤ ς.

Define
w1(·, t) =

U(·, t)
U∗(·)

− 1 and Θ(t) = max
x∈[0,L]

{w1(·, t), 0}.

By using the equality (1.3), we rewrite the U equation as

∂w1

∂t
− DU∆w1 − 2DU

∇U∗(·) · ∇w1

U∗(·)
+

Λ(·)
U∗(·)

w1 = −

U
(
G(·, I) + H1(·,V1) + H2(·,V2)

)
U∗(·)

.

Solving above equation yields

w1(·, t) = T1(t)w0
1 −

∫ t

0
T1(t − s)

U(·, s)
(
G(·, I(·, s)) + H1(·,V1(·, s)) + H2(·,V2(·, s))

)
U∗(·)

ds,

where w0
1 = U0/U∗ − 1, and T1(t) the positive semigroup induced by

DU∆ + 2DU
∇U∗(·) · ∇

U∗(·)
−

Λ(·)
U∗(·)

,

which satisfies ‖T1(t)‖ ≤ M1e−rt for someM1 > 0 and r > 0. From the positivity of T1(t), we get

Θ(t) ≤ max
x∈[0,L]

{T1(t)w0
1, 0} ≤ ‖T1(t)w0

1‖ ≤ M1e−rt
∥∥∥∥∥ U0

U∗(x)
− 1

∥∥∥∥∥ ≤ ςM1e−rt

Ũ∗
, (2.1)

where Ũ∗ = minx∈[0,L] U∗(·). Hence,

U(·, t) − U∗ = U∗
(U(·, t)

U∗
− 1

)
≤ ‖U∗‖Θ(t) ≤

ςM1‖U∗‖
Ũ∗

. (2.2)

Further by (A1), it gives

G(·, I) ≤ GI(·, 0)I, Hi(·,Vi) ≤ HiVi(·, 0)Vi, and Bi(·,Vi) ≤ BiVi(·, 0)Vi. (2.3)

Thus, from hypothesis ζ(·) ≡ 0 and system (1.1), we know that (I,V1,V2) satisfies

∂I
∂t
≤ DI∆I + U∗(·)GI(·, 0)I + U∗(·)(H1V1(·, 0)V1 + H2V2(·, 0)V2) − (µ(·) + θ(·) + ρ(·))I

+U∗(
U(·)
U∗
− 1)GI(·, 0)I + U∗(

U(·)
U∗
− 1)(H1V1(·, 0)V1 + H2V2(·, 0)V2),

∂V1

∂t
≤ DV1∆V1 − nV1

∂V1

∂x
+ ξ(·)I + B1V1(·, 0)V1 − δ1(·)V1,

∂V2

∂t
≤ DV2∆V2 − nV2

∂V2

∂x
+ δ1(·)V1 + B2V2(·, 0)V2 − δ2(·)V2,

z(x, 0) = z0(x) ≥ 0, z = I,V1,V2, respectively,
∂I
∂x

(0, t) = 0; Dz
∂z
∂x

(0, t) − nzz(0, t) = 0, z = V1,V2, respectively,
∂z
∂x

(L, t) = 0, z = I,V1,V2, respectively.
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Namely, by a zero trick, we know that u(·, t) satisfies

∂u
∂t
≤ Bu + (H , 0, 0)T ,

whereH(·, t) = U∗(U(·)
U∗ − 1)GI(·, 0)I + U∗(U(·)

U∗ − 1)(H1V1(·, 0)V1 + H2V2(·, 0)V2). Hence,

u(·, t) ≤ Π(t)u0(·) +

∫ t

0
Π(t − s) (H(·, s), 0, 0)T ds.

Since R equation is decoupled from the other equations in (1.1), we only focus on the I,V1,V2

equations. By (2.1), we directly get

max{‖I(·, t)‖, ‖V1(·, t)‖, ‖V2(·, t)‖} ≤M0 max{‖I0‖, ‖V0
1‖, ‖V

0
2‖}

+M0α‖U∗‖
∫ t

0
Θ(s)(‖I(s)‖ + ‖V1(s)‖ + ‖V2(s)‖)ds

≤M0ς +M2ς

∫ t

0
e−rs(‖I(s)‖ + ‖V1(s)‖ + ‖V2(s)‖)ds,

where α = max{max{GI(·, 0)},max{H1V1(·, 0)},max{H2V2(·, 0)}}, M2 = M0M1α‖U∗‖/Ũ∗. This yields
that

‖I(·, t)‖ + ‖V1(·, t)‖ + ‖V2(·, t)‖ ≤ 3M0ς + 3M2ς

∫ t

0
e−rs(‖I(·, s)‖ + ‖V1(·, s)‖ + ‖V2(·, s)‖)ds.

With the aid of Gronwall’s inequality, one obtains

‖I(·, t)‖ + ‖V1(·, t)‖ + ‖V2(·, t)‖ ≤ 3M0ςe
∫ t

0 3M2ςe−rsds ≤ 3M0ςe
3M2ς

r . (2.4)

Let Û be the solution of 
∂Û
∂t

= DU∆Û + Λ(·) − (µ(·) + K)Û,

Û(·, 0) = U0(·),
∂Û
∂x

(L, t) =
∂Û
∂x

(0, t) = 0,

(2.5)

where K = 3αM0ςe
3M2ς

r . Further from (2.4) and (2.3), combined with comparison argument, U(·, t) ≥
Û(·, t), (·, t) ∈ (0, L) × (0,∞). Let U∗ς be the positive steady state of (2.5). By letting ϑ := Û − U∗ς , it
then follows that ϑ satisfies 

∂ϑ

∂t
= DU∆ϑ − (µ(·) + K)ϑ,

ϑ(·, 0) = U0 − U∗ς ,
∂ϑ

∂x
(L, t) =

∂ϑ

∂x
(0, t) = 0.

(2.6)

Let T2(t) be the semigroup induced by DU∆ − µ(·) and µ∗ = minx∈[0,L]{µ(x)}. Solving (2.6) yields

ϑ(·, t) = T2(t)(U0 − U∗ς) −
∫ t

0
T2(t − s)Kϑ(·, s)ds.
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ChoosingM3 > 0 large enough that ‖T2(t)‖ ≤ M3e−µ∗t, which produces

‖ϑ(·, t)‖ ≤ M3‖U0 − U∗ς‖e
−µ∗t +

∫ t

0
M3e−µ∗(t−s)K‖ϑ(·, s)‖ds.

Again from the Gronwall’s inequality,

‖Û(·, t) − U∗ς‖ = ‖ϑ(·, t)‖ ≤ M3‖U0 − U∗ς‖e
K̃t−µ∗t,

where K̃ = KM3. Further, by letting ς > 0 small enough that K̃ < µ∗
2 , we then have

‖Û(·, t) − U∗ς‖ ≤ M3‖U0 − U∗ς‖e
−
µ∗
2 t. (2.7)

Recall that U(·, t) ≥ Û(·, t). This combined with (2.7) and a zero trick indicate that

U(·, t) − U∗ ≥ Û(·, t) − U∗ = Û(·, t) − U∗ς + U∗ς − U∗

≥ −M3‖U0 − U∗ς‖e
−
µ∗
2 t + U∗ς − U∗

≥ −M3(‖U0 − U∗‖ + ‖U∗ − U∗ς‖) − ‖U
∗
ς − U∗‖

≥ −M3ς − (M3 + 1)‖U∗ς − U∗‖.

(2.8)

By (2.2) and (2.8), we get

‖U(·, t) − U∗‖ ≤ max
{
M3ς + (M3 + 1)‖U∗ς − U∗‖,

ςM1‖U∗‖
Ũ∗

}
. (2.9)

Consequently, by (2.4), (2.9) and limς→0 U∗ς = U∗,

‖U(·, t) − U∗‖, ‖I(·, t)‖, ‖V1(·, t)‖ and ‖V2(·, t)‖ ≤ σ̃, ∀ t > 0,

which is achieved by choosing ς = ς(σ̃) > 0 small enough.
Proof of (ii) of Theorem 1.2. We shall prove that E = {E0}, where E is a global attractor of Φ(t).
We first confirm that

• For any φ = (U0, I0,V0
1 ,V

0
2 ) ∈ E, ω(φ) ⊂ ∂X1 := {(U, I,V1,V2) ∈ X+ : I = V1 = V2 = 0}, where

ω(·) is the omega limit set.

From Lemma 1 [14], we know that for any DP > 0, Λ(·) and µ(·) which are continuous and positive
on [0, L] and P0(·) . 0, the following scalar reaction-diffusion equation,

∂P
∂t

= DP∆P + Λ(·) − µ(·)P,
∂P
∂x

(L, t) =
∂P
∂x

(0, t) = 0,

P(·, 0) = P0(·),

(2.10)

admits a unique positive steady state U∗(·), which is globally asymptotically stable in C([0, L],R+). It
follows from the U equation of (1.1) that

∂U
∂t
− DU∆U ≤ Λ(·) − µ(·)U,

∂U
∂x

(L, t) =
∂U
∂x

(0, t) = 0.
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From the standard parabolic comparison theorem, we have that

lim sup
t→∞

U(·, t) ≤ lim sup
t→∞

P(·, t) = U∗(·), uniformly for x ∈ [0, L]. (2.11)

Hence, we have that U0 ≤ U∗(·). Since ∂X1 is invariant for Φ(t), the claim directly follow if I0 = V0
1 =

V0
2 = 0. Hence we assume that I0 , 0 or V0

1 , 0 or V0
2 , 0. By Lemma 3.5 [1], we know that ũ(·, t) > 0,

where ũ = U, I,R,V1,V2, respectively. Hence, U satisfies that
∂U
∂t
− DU∆U < Λ(·) − µ(·)U,

∂U
∂x

(L, t) =
∂U
∂x

(0, t) = 0,

U(·, 0) ≤ U∗,

By the comparison principal, we must have U(·, t) < U∗(·) uniformly holds.
Inspired by [10, 12], let

ε(t; φ) := inf{ε̃ ∈ R : I(·, t) ≤ ε̃ψ0, V1(·, t) ≤ ε̃ψ1 and V2(·, t) ≤ ε̃ψ2}.

Then ε(t; φ) > 0, t > 0. We next prove the strictly decreasing property of ε(t; φ). In fact, let us fix
t1 > 0 and define

Ī(·, t) = ε(t1; φ)ψ0, V̄1(·, t) = ε(t1; φ)ψ1 and V̄2(·, t) = ε(t1; φ)ψ2, for t ≥ t1.

By U(·, t) < U∗(·) and ū = (Ī, V̄1, V̄2)T , we have

∂ū
∂t
≥ B1ū,

ū(·, t1) ≥ u(·, t1),
∂Ī
∂x

(L, t) =
∂Ī
∂x

(0, t) = 0,

∂V̄i

∂x
(L, t) = DVi

∂V̄i

∂x
(0, t) − nViV̄i(0, t) = 0, i = 1, 2,

where

B1 :=


DI∆ + h̃1 αU αU
ξ(·) D1∆ + h̃2 0
0 δ1(·) D2∆ + h̃3


with h̃1 = −(µ(·) + ρ(·) + θ(·)) +αU, h̃2 = −nV1

∂
∂x + B1V1(·, 0)− δ1(·) and h̃3 = −nV2

∂
∂x + B2V2(·, 0)− δ2(·).

Hence, for all (x, t) ∈ (0, L) × (t1,∞),

ū(·, t) ≥ u(·, t), ∀(·, t) ∈ (0, L) × (t1,∞),

by the comparison principle. Further,

ε(t1; φ)ψ0 = Ī(·, t) > I(·, t), ε(t1; φ)ψ1 = V̄1(·, t) > V1(·, t) and ε(t1; φ)ψ2 = V̄2(·, t) > V2(·, t).

Due to the arbitraryness of t1 > 0, the strictly decreasing property of ε(t; φ) directly follows.
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Denote by ε∗ = limt→∞ ε(t; φ). In fact, by setting Q = (Q2,Q3,Q4) ∈ ω(φ). It follows that there
exists {tk} with tk → ∞ such that Φ(tk)φ→ Q. By the following equality,

lim
tk→∞

Φ(t + tk)φ = Φ(t) lim
tk→∞

Φ(tk)φ = Φ(t)Q,

we directly get ε(t; Q) = ε∗, ∀ t ≥ 0. If Q2 , 0 or Q3 , 0 or Q4 , 0, repeat the above procedures if
necessary, one can obtain the strictly decreasing property of ε(t; Q), which leads to the contradict with
ε(t; Q) = ε∗. Consequently, Q2 = Q3 = Q4 = 0 and u → 0 as t → ∞. Further, U(·, t) → U∗(·) as
t → ∞.

We next confirm that E = {E0}. From the discussions above, {E0} is globally attractive in ∂X1.
Further, {E0} forms the only compact invariant subset in ∂X1. Then, ω(φ) ⊂ ∂X1 for any φ ∈ E, which
leads to ω(φ) = {E0}. By Lemma 3.4 [1], we know that E is compact invariant in C([0, L],R5). This
combined with Lemma 3.11 [12] indicate that E = {E0}. This proves Theorem 1.2.

Remark 1. Theorem 1.2 still holds if the nonlinear incidence functions UG(·, I), UH1(·,V1) and
UH2(·,V2) are replaced by general nonlinear incidence G(·,U, I), H1(·,U,V1) and H2(·,U,V2).

3. Proof of Theorem 1.3

For any positive solution (U(·, t), I(·, t),V1(·, t),V2(·, t)) of (1.7), from the proof of Theorem 3.1
(i) [1], we know that U

Ũ , I
Ĩ , V1

Ṽ1
and V2

Ṽ2
are bounded and bounded away from zero. Inspired by [15–17],

one consider the following Lyapunov function:

W(t) :=
∫

Ω

L(U(·, t), I(·, t),V1(·, t),V2(·, t))dx,

where

L := L(U, I,V1,V2) = a0

(
U − Ũ − Ũ ln

U
Ũ

)
+ a0

(
I − Ĩ − Ĩ ln

I
Ĩ

)
+

2∑
i=1

ai

(
Vi − Ṽi − Ṽi ln

Vi

Ṽi

)
and 

a0 = δ1Ṽ1,

a1 = Ũ
[
H1(Ṽ1) + H2(Ṽ2)

] δ1Ṽ1

ξ Ĩ
,

a2 = ŨH2(Ṽ2).

(3.1)

For convenience, we assume

GU := GU(U, I,V1,V2) = Λ − UG(I) − U [H1(V1) + H2(V2)] − µU,

GI := GI(U, I,V1,V2) = UG(I) + U [H1(V1) + H2(V2)] − (µ + θ + ρ)I,
G1 := G1(I,V1) = ξI − δ1V1,

G2 := G2(V1,V2) = δ1V1 − δ2V2.
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Then
dW(t)

dt
=

∫
Ω

(LUUt + LI It + LV1(V1)t + LV2(V2)t)dx

=

∫
Ω

a0

(
1 −

Ũ
U

)
(DU∆U) + a0

(
1 −

Ĩ
I

)
(DI∆I) +

2∑
i=1

ai

(
1 −

Ṽi

Vi

)
(DVi∆Vi)

 dx

+

∫
Ω

a0

(
1 −

Ũ
U

)
GU + a0

(
1 −

Ĩ
I

)
GI +

2∑
i=1

ai

(
1 −

Ṽi

Vi

)
Gi

 dx.

Combining integration by parts with the boundary conditions, one can obtain∫
Ω

a0

(
1 −

Ũ
U

)
(DU∆U) + a0

(
1 −

Ĩ
I

)
(DI∆I) +

2∑
i=1

ai

(
1 −

Ṽi

Vi

)
(DVi∆Vi)

 dx

= −

∫
Ω

a0DU
Ũ
U2 |∇U |2 + a0DI

Ĩ
I2 |∇I|2 +

2∑
i=1

aiDVi

Ṽi

V2
i

|∇Vi|
2

 dx ≤ 0.

(3.2)

Next we shall show that

J := a0

(
1 −

Ũ
U

)
GU + a0

(
1 −

Ĩ
I

)
GI +

2∑
i=1

ai

(
1 −

Ṽi

Vi

)
Gi ≤ 0.

In view of 
0 = Λ − ŨG(Ĩ) − Ũ

[
H1(Ṽ1) + H2(Ṽ2)

]
− µŨ,

0 = ŨG(Ĩ) + Ũ
[
H1(Ṽ1) + H2(Ṽ2)

]
− (µ + θ + ρ)Ĩ,

0 = ξ Ĩ − δ1Ṽ1,

0 = δ1Ṽ1 − δ2Ṽ2,

we have

Λ = ŨG(Ĩ) + Ũ
[
H1(Ṽ1) + H2(Ṽ2)

]
+ µŨ,

µ + θ + ρ =
ŨG(Ĩ) + Ũ

[
H1(Ṽ1) + H2(Ṽ2)

]
Ĩ

,

δ1 =
ξ Ĩ
Ṽ1

and δ2 =
δ1Ṽ1

Ṽ2
.

It follows from direct calculation that

J :=a0

(
1 −

Ũ
U

)
GU + a0

(
1 −

Ĩ
I

)
GI +

2∑
i=1

ai

(
1 −

Ṽi

Vi

)
Gi

=a0

−µU
(
1 −

Ũ
U

)2

+ ŨG(Ĩ)
(
2 −

Ũ
U
−

I
Ĩ

+
G(I)
G(Ĩ)

−
ĨUG(I)
IŨG(Ĩ)

)
+

2∑
i=1

ŨHi(Ṽi)
(
2 −

Ũ
U
−

I
Ĩ

+
Hi(Vi)
Hi(Ṽi)

−
ĨUHi(Vi)
IŨHi(Ṽi)

)
+ a1ξ Ĩ

(
1 +

I
Ĩ
−

V1

Ṽ1
−

Ṽ1I
V1 Ĩ

)
+ a2δ1Ṽ1

(
1 +

V1

Ṽ1
−

Ṽ2V1

V2Ṽ1
−

V2

Ṽ2

)
.

(3.3)
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Note that

2 −
Ũ
U
−

I
Ĩ

+
G(I)
G(Ĩ)

−
ĨUG(I)
IŨG(Ĩ)

=

[
2 −

Ũ
U
−

I
Ĩ
−

ĨUG(I)
IŨG(Ĩ)

+ 1 −
IG(Ĩ)
ĨG(I)

+
I
Ĩ

]
−

(
G(I)
G(Ĩ)

−
I
Ĩ

) (
G(Ĩ)
G(I)

− 1
)

≤3 −
Ũ
U
−

ĨUG(I)
IŨG(Ĩ)

−
IG(Ĩ)
ĨG(I)

≤ 0.

(3.4)

Meanwhile, with the help of 1 − x ≤ − ln x for all x > 0, one see that

2 −
Ũ
U
−

I
Ĩ

+
Hi(Vi)
Hi(Ṽi)

−
ĨUHi(Vi)
IŨHi(Ṽi)

=

[
2 −

Ũ
U
−

I
Ĩ
−

ĨUHi(Vi)
IŨHi(Ṽi)

+ 1 −
ViHi(Ṽi)
ṼiHi(Vi)

+
Vi

Ṽi

]
−

(
Hi(Vi)
Hi(Ṽi)

−
Vi

Ṽi

) (
Hi(Ṽi)
Hi(Vi)

− 1
)

≤3 −
Ũ
U
−

I
Ĩ
−

ĨUHi(Vi)
IŨHi(Ṽi)

−
ViHi(Ṽi)
ṼiHi(Vi)

+
Vi

Ṽi

=

(
Vi

Ṽi
−

I
Ĩ

)
+

(
1 −

Ũ
U

)
+

(
1 −

ViHi(Ṽi)
ṼiHi(Vi)

)
+

(
1 −

ĨUHi(Vi)
IŨHi(Ṽi)

)
≤

(
Vi

Ṽi
−

I
Ĩ

)
− ln

Ũ
U
− ln

(
ViHi(Ṽi)
ṼiHi(Vi)

)
− ln

(
ĨUHi(Vi)
IŨHi(Ṽi)

)
=

(
Vi

Ṽi
− ln

Vi

Ṽi

)
−

( I
Ĩ
− ln

I
Ĩ

)
.

(3.5)

Likewise, one can show that

1 +
I
Ĩ
−

V1

Ṽ1
−

Ṽ1I
V1 Ĩ
≤

( I
Ĩ
− ln

I
Ĩ

)
−

(
V1

Ṽ1
− ln

V1

Ṽ1

)
,

1 +
V1

Ṽ1
−

Ṽ2V1

V2Ṽ1
−

V2

Ṽ2
≤

(
V1

Ṽ1
− ln

V1

Ṽ1

)
−

(
V2

Ṽ2
− ln

V2

Ṽ2

)
.

(3.6)

Applying (3.1), (3.4), (3.5) and (3.6) to (3.3), we have

J ≤a0

2∑
i=1

ŨHi(Ṽi)
[(

Vi

Ṽi
− ln

Vi

Ṽi

)
−

( I
Ĩ
− ln

I
Ĩ

)]
+ a1ξ Ĩ

[( I
Ĩ
− ln

I
Ĩ

)
−

(
V1

Ṽ1
− ln

V1

Ṽ1

)]
+ a2δ1Ṽ1

[(
V1

Ṽ1
− ln

V1

Ṽ1

)
−

(
V2

Ṽ2
− ln

V2

Ṽ2

)]
= 0.

Hence, by means of the selected constants a0, a1 and a2 in (3.1), J ≤ 0. In addition, if J = 0, one can
find a constant κ such that

U = Ũ, I = κĨ, V1 = κṼ1 and V2 = κṼ2.

Adding the U equation to I equation of the system (1.7) causes

Λ − µŨ − (µ + θ + ρ)κĨ = 0,
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and hence, κ = 1. Hence,∫
Ω

a0

(
1 −

Ũ
U

)
GU + a0

(
1 −

Ĩ
I

)
GI +

2∑
i=1

ai

(
1 −

Ṽi

Vi

)
Gi

 dx ≤ 0. (3.7)

In view of (3.2) and (3.7), we can obtain dW(t)
dt ≤ 0, and one also knows that the largest invariant subset

A := {(U, I,V1,V2) : dW(t)
dt = 0} be constituted by just one singleton {E∗}. From section 9.9 [18] and the

LaSalle’s Invariance Principle, the proof is complete.

Remark 2. We can still give the corresponding hypothesis

(A4)
(

I
Ĩ −

ŨG(U,I)
UG(Ũ,Ĩ)

) (
UG(Ũ,Ĩ)
ŨG(U,I) − 1

)
≤ 0,

(
Vi
Ṽi
−

ŨHi(U,Vi)
UHi(Ũ,Ṽi)

) (
UHi(Ũ,Ṽi)
ŨHi(U,Vi)

− 1
)
≤ 0, i = 1, 2,

and prove the global stability of positive equilibrium E∗ of system (1.7) when UG(·, I),UH1(·,V1) and
UH2(·,V2) are replaced by general nonlinear incidences G(·,U, I), H1(·,U,V1) and H2(·,U,V2).
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