
MBE, 17(6): 7302–7331. 

DOI: 10.3934/mbe.2020374 

Received: 19 August 2020 

Accepted: 21 October 2020 

Published: 27 October 2020 

http://www.aimspress.com/journal/MBE 

 

Research article 

Research on the evaluation of the resilience of subway station projects 

to waterlogging disasters based on the projection pursuit model 

Lanjun Liu1, Han Wu2,*, Junwu Wang2 and Tingyou Yang3 

1 School of Civil Engineering and Architecture, Wuhan Institute of Technology, Wuhan 430070, 

China 
2 School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, 

China 
3 CCTEB Infrastructure Construction Investment Co., Ltd, Wuhan 430070, China 

* Correspondence: Email: wu.han@whut.edu.cn; Tel: +8613407191168. 

Abstract: To improve sustainable development, increasingly more attention has been paid to the 

evaluation of the resilience to waterlogging disasters. This paper proposed a projection pursuit model 

(PPM) improved by quantum particle swarm optimization (QPSO) for the evaluation of the resilience 

of subway station projects to waterlogging disasters. In view of the lack of research results related to 

the evaluation of the resilience of subway station projects to waterlogging disasters, 16 secondary 

indicators that affected the ability of subway station projects to recover from waterlogging disasters 

were identified from defense, recovery, and adaptability, for the first time. A PPM improved by QPSO 

was then proposed to effectively deal with the high-dimensional data about the resilience of subway 

station projects to waterlogging disasters. The QPSO was used to solve the best projection vector of 

the PPM, and interpolation algorithm was used to construct the mathematical model of evaluation. 

Finally, four station projects of Chengdu Metro Line 11 in China were selected for a case study analysis. 

The case study revealed that, among the secondary indicators, the emergency plan of construction 

order, the exercise frequency of emergency plans, and relief supplies had the greatest weights. The 

recovery was found to be the most important in the primary indicators. The values of the resilience of 

Lushan Avenue Station, Miaoeryan Station, Shenyang Road Station, and Tianfu CBD North Station to 

waterlogging disasters were found to be 2, 1.6571, 2.8318, and 3 respectively. This resilience ranking 

was consistent with the actual disaster situation in the flood season of 2019. In addition, the case study 

results showed that QPSO had the advantages of fewer parameter settings and a faster convergence 

speed as compared with PSO and the genetic algorithm. 
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1. Introduction  

With the increasingly severe global climate change and the acceleration of urbanization, many 

cities, especially those in developing countries, are suffering from waterlogging disasters [1]. Urban 

waterlogging disasters have become one of the practical problems that restrict the urbanization process 

and sustainable development of cities. Subway station projects are often located in low-lying areas of 

cities, and are typical disaster-bearing bodies of urban waterlogging disasters [2]. Because the 

construction site is an open environment, subway station construction is more vulnerable to rainstorms 

and waterlogging disasters. Improving the resilience of subway station projects has become a new way 

to handle waterlogging disasters and realize sustainable development. 

Urban waterlogging refers to short-term intense rainfall in an urban area that exceeds the drainage 

capacity of the city, resulting in the formation of accumulated water [3]. There are noticeable 

differences in the toughness characteristics of research objects of different scales [4]. The city is a 

large-scale research object, whereas a subway station project is a small-scale research object. The 

management of waterlogging disasters in subway station projects is not only related to large-scale 

regional characteristics, such as the urban drainage system and catchment area [5], but also to the 

structural characteristics, construction technology, construction progress, and on-site management [6]. 

The concept of resilience originates from ecology and was referred to describe the ability of a 

specific system to restore its original or equilibrium state [7]. After 1970s, researches on resilience 

have spanned many disciplines and fields, including disaster science [8], social science [9], and 

engineering [10]. At present, scholars [11,12] generally believe that resilience has three basic elements, 

namely the system's defense ability against external interference, the ability to quickly restore balance 

after impact, and the ability to be adapted to similar risks. 

Based on this, the resilience of subway station projects threatened by a waterlogging disaster can 

be considered as maintaining the main structure of the project and keeping the people, materials, and 

machines undamaged (defense), resuming the normal construction of the project in a timely manner 

after being damaged (recovery), and continuously improving the management ability and level of the 

construction site to better cope with future waterlogging disasters (adaptability). Resilience of subway 

station projects to waterlogging disasters is a comprehensive concept. Thus, one of the main contents 

of the present work is the accurate identification and construction of an evaluation index system for 

the ability of a subway station project to recover from a waterlogging disaster. 

Owing to the complexity of the concept of resilience, there are many indicators that affect the 

resilience of subway station projects to waterlogging disasters, and the data are high-dimensional [6]. 

At present, fuzzy comprehensive evaluation and other functional mode evaluation methods are 

commonly used in disaster risk management and resilience evaluation [13]. However, they are 

characterized by the disadvantages of intense subjectivity during weight calculation and difficulty in 

processing high-dimensional data [6]. In the research of related topics, subjective weight calculation 

methods such as the analytic hierarchy process (AHP) [14] are typically used. Although expert 

experience is fully utilized in these methods, the calculation results are too subjective, and the weight 

calculation results are closely related to individual characteristics, such as the experience of experts 
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who participate in the evaluation. Moreover, these methods have not effectively utilized a large amount 

of data in the evaluation of the ability of construction sites to recover after rainstorm waterlogging 

disasters. 

The basic concept of PPM is to project high-dimensional data into a low-dimensional subspace 

via a precise mathematical combination, and to reflect the structural characteristics of the high-

dimensional data by analyzing the data distribution structure in the low-dimensional space [15]. The 

PPM has been utilized increasingly more in the fields of risk assessment [16] and decision [17] to 

effectively take care of high-dimensional data. It can be used to directly calculate the objective weight 

of indicators from the characteristics of sample data [16]. Complex evaluation samples can also be 

directly synthesized into one-dimensional projection vectors for evaluation via the inner product of the 

optimal projection vectors and evaluation index vectors [17]. Another main effort of the present study 

is the proposal of an improved PPM based on QPSO to evaluate the resilience of subway station 

projects to rainstorm waterlogging disasters. The key to the correct use of the PPM is to solve the 

optimal projection vector, which is a complex nonlinear optimization problem [16–18]. 

PSO was originally proposed by Eberhart and Kennedy in 1995 [19], and its basic concept 

originates from the study of birds’ foraging behavior. PSO is commonly used in the solution of 

complex nonlinear optimization problems [20]. However, the search space of PSO is limited, and it 

easily falls into the local extremum [21]. These shortcomings limit its further and wider use. Based on 

the standard PSO, Sun et al. [22] proposed the QPSO. During the process of particle convergence, 

particle 𝑖  continues approaching 𝑃𝑖  until it falls within 𝑃𝑖 . From the perspective of quantum 

mechanics [23], there is an attractive potential at point 𝑃𝑖  in the process of convergence, which 

attracts particles to converge to 𝑃𝑖 and aggregates the entire population. Particles in a quantum bound 

state can appear at any space point with a certain probability [24]. Therefore, particles can search in 

the entire solution space and better convergence can be achieved.  

The main author of this article have used the PPM to analyze the waterlogging risk of deep 

foundation pit engineering [6]. The research of this new paper is a great improvement on the basis of 

that paper. First of all, the previous research objects were rough and not detailed enough. In this paper, 

resilience was chosen as the research object rather than risk. Then, the previous research only used the 

PSO to optimize the PPM. In this manuscript, QPSO was used to optimize the PPM, for the first time. 

Compared with PSO and GA, it showed that QPSO was advanced. Finally, this manuscript analyzed 

the calculation error, calculation stability and parameter analysis of each PPM optimized by QPSO in 

detail, which was not in previous papers. 

The contributions of this paper are as follows: (1) In this paper, from the three aspects of defense, 

recovery, and adaptability, the evaluation index of resilience of waterlogging disaster in subway 

stations was constructed, for the first time. In the process of establishing the index system, not only the 

multi-disciplinary professional knowledge was comprehensively applied, but also the characteristics 

of waterlogging disasters and the project management of subway stations were fully considered. (2) 

The PPM, QPSO, and an interpolation algorithm were used to construct the evaluation model, for the 

first time. In this model, the PPM was utilized to effectively deal with the high-dimensional data, 

QPSO was used to solve the best projection vector of the PPM, and interpolation algorithm was used 

to construct the mathematical model of evaluation. (3) According to a case study, the key factors of the 

resilience were revealed to be the emergency plan of construction order, the exercise frequency of 

emergency plans, and relief supplies. The resilience levels of Lushan Avenue Station, Miaoeryan 

Station, Shenyang Road Station, and Tianfu CBD North Station were found to be 2, 1.6571, 2.8318, 
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and 3, respectively. In addition, the case study results showed that QPSO had the advantages of fewer 

parameter settings and a faster convergence speed as compared with PSO and the genetic algorithm 

(GA). (4) The parameters of the random sampling number of the interpolation algorithm were analyzed. 

It was preliminarily considered that good calculation stability and progress could be achieved by taking 

100 samples from each interval. The parametric analysis of the random sampling number of the 

interpolation algorithm was another difference between the research presented in this paper and other 

published research results based on the PPM. 

The organizational structure of the remainder of this paper is as follows. Section 2 summarizes 

the related work. Section 3 introduces the research methods in detail, including the construction of the 

index system and the evaluation model based on the PPM improved by QPSO. Section 4 presents a 

case study. In section 5, the computing performances of different algorithms are compared, and the 

random sampling numbers of interpolation algorithms are analyzed. Finally, section 6 provides 

relevant conclusions of this research. 

2. Related work 

While a substantial amount of research has been conducted on the risk assessment or vulnerability 

assessment of rainstorm waterlogging disasters, there has been little research on disaster resilience. 

Previous studies have often regarded disaster resilience as a component of disaster risk or vulnerability. 

The relationship between the disaster recovery ability and disaster risk was implicitly expressed 

through disaster loss [3]. Zeng and Huang [25] cursorily combined disaster resilience and disaster risk 

into the concept of disaster severity in their study, so this work did not accurately and scientifically 

reveal the impacts of disaster resilience on catastrophe severity and disaster risk. Some scholars have 

acknowledged the importance of disaster recovery ability evaluation in disaster management research. 

Lo et al. [26] studied the resilience in Tianjin China for waterlogging disasters in detail, and the 

research results revealed that the financial situation and educational level of the residents were the 

most critical factors. It was therefore suggested that the local government in Tianjin put forward 

targeted disaster prevention strategies from these two aspects. Lyu et al. [27] emphasized the 

adaptability of cities to climate change, which was an important part of sustainable urban development. 

Cui and Li [28] believed the research on resilience to be the frontier of disaster management research. 

The disaster resilience of urban communities was considered from the society, economy, and natural 

capital. In addition, the paper established a fuzzy comprehensive evaluation model. 

At present, functional model assessment methods, such as fuzzy comprehensive assessment, are 

often adopted for the risk assessment of rainstorm waterlogging disasters. Yu et al. [2] established a 

waterlogging risk evaluation model of urban subway stations via a fuzzy comprehensive evaluation 

method. In this paper, the relationship between the index risk level and disaster risk level must be 

artificially preset, thereby reducing the research and popularization value. Liu et al. [13] used the AHP 

and fuzzy variable set theory to study flood catastrophes in Henan Province, China. However, the AHP 

is too subjective, and the choice of different experts has a pronounced influence on the weight 

calculation and final risk analysis. Moreover, the relationship between the index risk level and disaster 

risk level needs to be preset. Based on the formation mechanism of flood disasters, Li et al. [14] 

established an index system of flood risk assessment in the middle and lower reaches of the Yangtze 

River in China, and determined the weights of the index by the AHP. To the best of the authors’ 

knowledge, research on the evaluation of the resilience of subway station projects to waterlogging 
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disasters has not yet been reported. 

In recent years, the PPM has been applied increasingly more in the risk assessment and decision-

making fields that involve multi-factor influence and high-dimensional data. To effectively deal with 

complex multi-factor problems in the assessment of karst water pollution, Wang et al. [29] constructed 

a PPM improved by the GA, in which the GA was used to find the best projection direction of the PPM. 

Gong et al. [30] used the PPM to effectively determine the best mixture ratio of cement materials. By 

projecting high-dimensional data into low-dimensional space, they successfully transformed the 

typical multi-objective optimization problem into two single-objective optimization problems. Delta. 

Zhi et al. [16] established a PSO combined with PPM to analyze the flood risk in urban areas. The case 

study results demonstrated that the new algorithm could deal with multi-source heterogeneous data, 

and the objective weight of each index was successfully determined from this high-dimensional 

information. Lan and Huang [31] adopted the water cycle algorithm to optimize the PPM, and the 

square of each element in the best projection vector was considered to be the objective weight of the 

element in a seawall safety evaluation index. 

The key to the effective use of the PPM is the selection of an appropriate method to solve the 

optimal projection vector, and meta-heuristic algorithms such as the GA or PSO are often used for this 

task. However, QPSO is a new intelligent optimization algorithm that has the advantages of fewer 

parameters, easy implementation, and better convergence [32]. Meng et al. [23] used QPSO to predict 

the economic load of power plants, and QPSO was found to be superior to the GA, immune algorithm 

(IA), and other versions of PSO in a case study. Zhang et al. [24] adopted a multi-objective QPSO to 

study the route design of railway freights, and case study results revealed that, as compared with other 

classical optimization algorithms, the best Pareto front calculated by the QPSO was closer to the real 

Pareto front of railway freight route design. Fang et al. [33] summarized the latest research progress 

of QPSO and noted that the excellent search ability of QPSO has been verified in various application 

tests. Fu et al. [34] designed a new unmanned aerial vehicle route planner based on the improved 

QPSO, and their experimental results demonstrated that QPSO performed better than the GA, 

differential evolution (DE), and classical PSO. According to the author’s literature search, no scholars 

have used QPSO to optimize the PPM. Yang et al. [35] used the QPSO algorithm to effectively solve 

the fuel and time optimization problems in the long-distance fast cooperative rendezvous between two 

spacecraft. The research results showed that compared with other common algorithms, the QPSO 

algorithm was able to effectively reduce time consumption and ensure the stability of calculation. Talbi 

and Draa [36] found that quantum-inspired evolutionary algorithm was more effective than other 

algorithms. 

3. Methodology 

3.1. Index system of waterlogging disaster resilience capability of subway station projects  

3.1.1. Determination of the factors of the waterlogging disaster resilience capability 

According to the definition of resilience put forward in the introduction, three attributes of 

resistance, resilience, and adaptability are discussed in this section, and an evaluation index system of 

the resilience of subway station projects to waterlogging disasters is established. 

(1) Resistance refers to the ability of the subway station project to reduce waterlogging disaster losses. 
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In general, the public emergency response ability of people over 50 years old has notably declined 

[37], and these citizens are more vulnerable in emergencies such as natural disasters. Therefore, in 

subway station projects, the greater the proportion of construction workers over the age of 50, the 

weaker their resistance to waterlogging disasters. The water retention ability of subway station projects 

primarily depends on the retaining wall around the deep foundation pit, and the height of the retaining 

wall directly determines whether the water accumulated during a rainstorm can easily get into the 

construction site. The higher the height of the retaining wall, the stronger the resistance to waterlogging 

disasters. The height of the retaining wall therefore reflects the engineering structural characteristics 

of the resistance of a subway station project to waterlogging disasters. 

From the perspective of the water cycle [14], the formation of a waterlogging disaster is related 

not only to the water retention capacity of the disaster-bearing body, but also to the drainage speed 

[13]. The higher the density of drainage pipes around the subway station project, the faster the regional 

drainage speed, and the stronger the resistance to waterlogging disasters [2]. In addition, the higher the 

pump density in the construction site, the easier it is tantamount to discharge accumulated water, and 

the stronger the resistance to rainstorm waterlogging disasters. When a subway station project is in 

different construction stages, there are great differences in the statuses of the talents, machinery, and 

flood control measures at the construction site. Therefore, it is necessary to fully consider the 

influences of diverse construction stages on the resistance of subway station projects to waterlogging 

disasters. In addition, flood control emergency plans are at the heart component of emergency 

management in this situation. 

(2) Resilience refers to the ability of a subway station project to change from an unbalanced state 

to a balanced state in a timely manner. It is intuitively expressed as the ability of a subway station 

project to eliminate the adverse effects caused by waterlogging disasters and restore the normal 

construction order. 

Exercises of the emergency waterlogging disaster plan before a disaster occurs can reveal the 

rationality of the plan and significantly improve the command and communication efficiency of flood 

control and disaster relief [28], which has a key impact on ensuring the efficient implementation of the 

plan and successful relief work [38]. A large number of professional rescue workers and sufficient 

relief materials are the foundations and keys to successfully carrying out emergency relief work [39]. 

At present, the expenses related to disaster management in the subway station project management are 

mainly related to safe and civilized construction costs. The rate of safe and civilized construction 

therefore reflects the project management characteristics of the resilience of subway station projects 

to waterlogging disasters. 

After a waterlogging disaster occurs, the project managers of subway stations often implement 

the disaster emergency management plan on the construction site. This plan mainly includes plans for 

the restoration of construction order, the construction working conditions, and the construction work, 

as well a crisis intervention system and its implementation. Among them, the construction order 

restoration plan is the center of the disaster emergency management plan. In addition, when a subway 

station project recovers from a rainstorm waterlogging disaster, it is necessary to discharge the flood 

water from the inside the project to the periphery. Therefore, the water pump density in the surrounding 

urban areas of the subway station project is another important factor that affects the resilience of the 

subway station project to waterlogging disasters. The higher the density of water pumps in the 

surrounding urban areas, the easier it is meant for the accumulated water to be discharged, and the 

faster the subway station project can be restored. In other words, the resilience of urban areas restricts 
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the resilience of the subway station project. 

(3) Adaptability refers to the ability of a subway station project to adjust itself in response to 

future rainstorm waterlogging events of different grades. 

Considering the one-off characteristics of subway station project management, the adaptability of 

a subway station project to rainstorm waterlogging primarily refers to the self-adjustment ability of the 

project after experiencing a waterlogging disaster, the constant adjustment of the project management 

strategy, and updating the site construction technology to cope with the next rainstorm. In addition, 

project managers' understanding of rain and flooding is also an important factor by which to measure 

urban adaptability [26]. A good education level of project managers often indicates good disaster 

awareness, and project managers with good disaster awareness can take effective measures in time to 

avoid adverse effects in the face of rain and flood disasters, thereby ensuring the normal construction 

of subway station projects when disasters occur. 

3.1.2. Construction of an evaluation index system 

Based on the analysis presented in section 3.1.1, an index system was constructed for the 

evaluation of the resilience of subway station projects to waterlogging disasters, as showed in Table 1. 

Among them, the secondary indicators R15, R16, R23, R25, R32, R33, and R34 are qualitative, 

while the others are quantitative. The data on the qualitative indicators are obtained by questionnaire 

surveys, while the data on quantifiable indicators are obtained by field investigations, the consultation 

of project management data, referring to standard calculations, and other methods. It is useful to noting 

that qualitative indicators have no units of measure. The smaller the cost index, the better. The effect 

index is only the opposite. 

Table 1. Evaluation index system of waterlogging disaster resilience capability. 

Primary 

Indicators 
Secondary Indicators Type Unit 

R1: Defense R11: Proportion of workers over 50 years old Cost % 

 R12: Height of retaining wall Value m 

 R13: Density of surrounding drainage pipes Value km/km2 

 R14: Water pump density on the construction site Value /km2 

 R15: Construction stage Cost – 

 R16: Preparation of flood control emergency plan Cost – 

R2: Recovery R21: Exercise frequency of emergency plan Value times/year 

 R22: Proportion of professional rescue workers Value % 

 R23: Relief supplies Value – 

 R24: Rate of safety and civilized construction measures Value % 

 R25: Emergency plan of construction order Cost – 

 R26: Water pump density in the surrounding urban area Value /km2 

R3: Adaptive R31: Proportion of college students in project management 

personnel 
Value % 

 R32: Summary of post-disaster management Cost – 

 R33: Post-disaster technology update Cost – 

 R34: Post-disaster site rearrangement Cost – 
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3.1.3. Assessment standard of waterlogging disaster resilience capability 

There currently exists no unified grading standard of waterlogging disaster resilience capability 

in subway station projects [40]. According to the needs of project management practice, the resilience 

capability was divided into five grades, namely extremely low risk (I), low risk (II), moderate risk (III), 

high risk (IV), and extreme risk (V). Extremely low risk indicates that the project has a good ability to 

recover from waterlogging, and no further measures are necessary. Low risk indicates that the project 

has a nice ability to recover from waterlogging, but full attention should be paid to the possible losses. 

Moderate risk indicates that the recovery ability of this project is average, so it is necessary to formulate 

relevant measures to improve the recovery ability. High risk indicates that the recovery ability of this 

project is poor, and the construction work can be continued after expert argumentation. Finally, 

extreme risk indicates that the ability of this project to recover from rainstorm waterlogging is very 

pitiable, and the construction task should be suspended immediately. 

In addition, five grades were used to divide the recovery ability in this paper, but obviously it had 

feasible alternatives. It is possible to divide the resilience into three levels, four levels and six levels. 

The basis for the evaluation grade division of specific indicators must be established according 

to the engineering characteristics and project management needs of the case study objects. Table 2 

presents the grading basis of the index system of the resilience of subway station projects of Chengdu 

Metro Line 11 in China. The classification basis of qualitative indicators was primarily the opinions 

of experts, and the scoring interval [0, 100] was divided into five sub-intervals. The classification basis 

of quantitative indicators was primarily the relevant Chinese national codes (Technical Code for Urban 

Waterlogging Prevention (GB 51222-2017), Code for Design of Urban Flood Control Projects (GB/T 

50805-2012), and Code for Risk Management of Underground Engineering Construction of Urban 

Rail Transit (GB 50652-2011)) and the stations on Chengdu Metro Line 11. 

Table 2. Assessment standards of the evaluation index system. 

Secondary 

Indicators 
Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ 

R11 [0,5) [5,10) [10,20) [20,50) [50,100] 

R12 [1.8,+∞) [1.2,1.8) [0.6,1.2) [0.4,0.6) [0,0.4) 

R13 [8,+∞) [4,8) [2,4) [1,2) [0,1) 

R14 [100,+∞) [80,100) [40,80) [20,40) [0,20) 

R15 [0,20) [20,40) [40,60) [60,80) [80,100] 

R16 [0,20) [20,40) [40,60) [60,80) [80,100] 

R21 [8,+∞) [4,8) [2,4) [1,2) [0,1) 

R22 [40,100] [30,40) [10,30) [5,10) [0,5) 

R23 [0,20) [20,40) [40,60) [60,80) [80,100] 

R24 [5,20] [4,5) [2,4) [1,2) [0,1) 

R25 [0,20) [20,40) [40,60) [60,80) [80,100] 

R26 [50,+∞) [40,50) [20,40) [10,20) [0,10) 

R31 [60,100] [40,60) [20,40) [10,20) [0,10) 

R32 [0,20) [20,40) [40,60) [60,80) [80,100] 

R33 [0,20) [20,40) [40,60) [60,80) [80,100] 

R34 [0,20) [20,40) [40,60) [60,80) [80,100] 
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3.2. The evaluation method based on the PPM improved by QPSO 

3.2.1. Projection pursuit model 

Artificial intelligence algorithms such as data mining are widely used in engineering field [41]. 

The PPM, a typical data mining algorithm, contains the following unique advantages in overcoming 

the problems of small sample numbers and high-dimensional data. (1) It can overcome the “curse of 

dimension”. It refers to the sparse distribution of data in high-dimensional space when the dimension 

of the data is too high and there are many sample points. PPM increases the density of sparse data 

points by projecting high-dimensional data onto a low-dimensional subspace so that the structure or 

characteristics of the data in the projection space can be discovered. This is suitable for data with a 

non-normal distribution or little prior information [16]. (2) After the PPM is implemented, it can 

eliminate the interference of variables that are unrelated to, or have little relationship with, the 

structural features of the original data. By finding the best projection that meets the projection target, 

the influences of some unimportant variables can be eliminated [17]. 

The basic workflow of the PPM is as follows. 

(1) Construction of a projection index function 

The PPM synthesizes 𝑚 -dimensional data {𝑥(𝑖, 𝑗)|𝑗 = 1,2,⋯ ,𝑚}  into a one-dimensional 

projection value 𝑧(𝑖) with 𝐚⃗ = {𝑎(1), 𝑎(2),⋯ , 𝑎(𝑚)} as the projection direction [29]: 

z(𝑖) =∑ 𝑎(𝑗)𝑥(𝑖, 𝑗)
𝑚

𝑗=1
 (1)  

It is worth noting that {𝑎(1), 𝑎(2),⋯ , 𝑎(𝑚)}  is the unit length vector, which is the most 

important constraint in PPM. 

∑ 𝑎2(𝑗)𝑚
𝑗=1 =1 (2)  

where 0 ≤ 𝑎(𝑗) ≤ 1, 𝑗 = 1,2,⋯ ,𝑚. 

When determining the projection index, it is required that the local projection points of the 

projection value z(𝑖) be as dense as possible. Therefore, the constructed projection function [29] is: 

𝐐(𝑎) = 𝑆𝑧𝐷𝑧 (3)  

where 𝑆𝑧 is the standard deviation of the projected value z(𝑖) [16], and 𝐷𝑧 is the local density of 

the projected value z(𝑖) [16]. These parameters are respectively calculated as: 

𝑆𝑧 = √∑ (𝑧(𝑖) − 𝑧̅)2 (𝑛 − 1)⁄
𝑛

𝑖=1
 (4)  

𝐷𝑧 =∑ ∑ (𝑅 − 𝑟(𝑖, 𝑗))
𝑚

𝑗=1

𝑛

𝑖=1
∙ 𝑜(𝑅 − 𝑟(𝑖, 𝑗)) (5)  

where, 𝑧̅ is the average value of sequence 𝑧(𝑖), 𝑅 is the window radius of local density, 𝑟(𝑖, 𝑗) is 

the distance between samples, and 𝑜(𝑅 − 𝑟(𝑖, 𝑗)) is a unit step function. Its value is 1 if 𝑅 − 𝑟(𝑖, 𝑗) ≥
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0, and its value is 0 if 𝑅 − 𝑟(𝑖, 𝑗) < 0. 

(2) Optimization of the projection exponential function 

When the projection index function determines gets the maximum value, the corresponding 𝐚⃗  

direction can best reflect the optimal projection direction of data features. Therefore, the problem of 

finding the optimal projection direction is transformed into a problem of nonlinear optimal solution 

[30]: 

{

max:𝐐(𝑎) = 𝑆𝑧𝐷𝑧

s. t:∑ 𝑎2(𝑗) = 1
𝑚

𝑗=1

 (6)  

where 0 ≤ 𝑎(𝑗) ≤ 1, 𝑗 = 1,2,⋯ ,𝑚. 

Similarly, when the projection index function determines the minimum value, the corresponding 

𝐚⃗   direction can best reflect the optimal projection direction of data characteristics. Therefore, the 

problem of finding the optimal projection direction is transformed into a problem of nonlinear optimal 

solution [30]: 

{

min: 𝐐(𝑎) = 1 𝑆𝑧𝐷𝑧⁄

s. t:∑ 𝑎2(𝑗) = 1
𝑚

𝑗=1

 (7)  

3.2.2. Quantum particle swarm optimization 

In the classical PSO, the convergence of particles is achieved in the form of an orbit. During the 

process of searching, particles have the limit of a maximum speed [42]. Therefore, the search area is 

bounded every time, so the classical PSO cannot globally converge with probability. The QPSO holds 

that particles exhibit quantum behavior, and when each particle moves in the search space, there exists 

a delta-potential well-centered on Pbest [22]. Particles in quantum space satisfy completely different 

properties of the aggregation state, and there is no definite trajectory when particles move, and this 

enables particles to explore and find the global optimal solution in the entire feasible solution space. 

Therefore, the global search ability of the QPSO is far superior to that of the classical PSO [32–34]. 

In the QPSO, 𝛿 potential drop is introduced, and it is assumed that particles are in 𝛿 potential 

drop with point 𝑝  as the center. Because the velocity and position of particles cannot be 

simultaneously determined in quantum space, the state of particles is expressed by the wave function 

𝜙(𝑌) =
1

√𝐿
𝑒
−|𝑌|

𝐿 , where 𝐿 =
1

𝛽
=

ℎ2

𝑚𝑟
. 

Let the attractor 𝑃𝑖 = (𝑃𝑖1, 𝑃𝑖2, ⋯ , 𝑃𝑖𝑁), and establish a one-dimensional 𝛿 potential drop with 

𝑃𝑛 as the coordinate and 𝑃𝑖,𝑗 as the center. For 𝑃𝑖,𝑗, there are particles 𝑖 in each dimension [22]: 

𝜙[𝑥𝑖,𝑗(𝑡 + 1)] =
1

√𝐿𝑖,𝑗(𝑡)
exp [−

|𝑥𝑖,𝑗(𝑡 + 1) − 𝑃𝑖,𝑗(𝑡)|

𝐿𝑖,𝑗(𝑡)
] (8)  

The position equation [23] is: 
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𝑥𝑖,𝑗(𝑡 + 1) = 𝑃𝑖,𝑗(𝑡) ±
𝐿𝑖,𝑗(𝑡)

2
In (

1

𝑢𝑖,𝑗(𝑡)
) (9)  

where 𝑢𝑖,𝑗(𝑡) ∼ 𝑢(0,1). 

According to the characteristic length 𝐿𝑖,𝑗(𝑡)  of particle 𝛿  potential well, Sun et al. [22] 

designed a new parameter control method based on global level, which was the mean best position 

(mbest). The new method can effectively optimize the parameters of 𝐿𝑖,𝑗(𝑡). The mbest is introduced 

and defined as follows [22]: 

𝑚𝑏𝑒𝑠𝑡 =
1

𝑀
∑ 𝑃𝑖(𝑡)

𝑀

𝑖=1
= (

1

𝑀
∑ 𝑃𝑖,1(𝑡)

𝑀

𝑖=1
,
1

𝑀
∑ 𝑃𝑖,2(𝑡)

𝑀

𝑖=1
, ⋯ ,

1

𝑀
∑ 𝑃𝑖,𝑛(𝑡)

𝑀

𝑖=1
) (10)  

According to the above definition, the 𝐿 =
1

𝛽
=

ℎ2

𝑚𝑟
 in quantum mechanics is further expressed 

in QPSO as 𝐿𝑖,𝑗(𝑡) . 𝐿𝑖,𝑗(𝑡)  is the characteristic length of δ potential well of particle 𝑖  in the 𝑡 

iteration of the 𝑗-th dimension search space, which can be expressed as: 

𝐿𝑖,𝑗(𝑡) = 2𝛼|𝑚𝑏𝑒𝑠𝑡𝑗(𝑡) − 𝑥𝑖,𝑗(𝑡)| (11)  

Introducing Eq (11) into Eq (9), the position updating equation of QPSO algorithm defined based 

on the mean best position is obtained [22]: 

𝑥𝑖,𝑗(𝑡 + 1) = 𝑃𝑖,𝑗(𝑡) ± 𝛼|𝑚𝑏𝑒𝑠𝑡𝑗(𝑡) − 𝑥𝑖,𝑗(𝑡)| ∗ In (
1

𝑢𝑖,𝑗(𝑡)
) (12)  

where α is the contraction and expansion factor. The PSO applied to Eq (12) is called QPSO.  

It is worth mentioning that many scholars have put forward some new location update methods 

of the QPSO algorithm [43–45]. In this paper, the location update method of the QPSO algorithm we 

chose is the classic location update method. The research purpose of this paper focused on introducing 

meta-heuristic algorithm to evaluate the resilience of waterlogging disaster in subway stations, which 

is the typical engineering problem. In the following research, the authors will compare the 

computational performance of different meta-heuristic algorithms, especially the latest meta-heuristic 

algorithm. 

3.2.3. The construction of evaluation method 

Step 1. Data collection and preprocessing. 

According to the grading standards of each index evaluation grade in Table 2, 𝑛  standard 

samples are generated in each grade interval by using the random sampling method [46], and 𝑝 ∗ 𝑛 

standard sample sets 𝐗𝟏 = [𝑥𝑖𝑗](𝑝∗𝑛)×𝑚  are obtained, where 𝑥𝑖𝑗  is the 𝑗  index value of the 𝑖 -th 

evaluation object, 𝑚  is the number of evaluation indexes, and 𝑝  is the resilience. In this study, 

resilience is divided into five grades, so 𝑝 = 5. 𝐘 = (𝑦1, 𝑦2, ⋯ , 𝑦𝑝∗𝑛)
T

 is the resilience grade of each 

standard sample in 𝐗𝟏. 

The evaluation sample set 𝐗𝟐 = [𝑥𝑖𝑗]𝑘×𝑚  of 𝑘  evaluation objects is obtained by field 

investigations and questionnaire surveys. 
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A calculation sample set 𝐗 = {
𝐗𝟏
𝐗𝟐
} = [𝑥𝑖𝑗](𝑝∗𝑛+𝑘)×𝑚  is established for the calculation of the 

optimal projection vector and projection value. 

All indicators must first be normalized [47]. And the benefit-based indicators [40] are normalized 

as follows: 

𝑥𝑖𝑗
∗ =

𝑥𝑖𝑗 −min (𝑥𝑗)

max(𝑥𝑗) − min(𝑥𝑗)
 (13)  

The cost-based indicators [40] are normalized as follows: 

𝑥𝑖𝑗
∗ =

max (𝑥𝑗)−𝑥𝑖𝑗

max(𝑥𝑗) − min(𝑥𝑗)
 (14)  

where 𝑥𝑖𝑗
∗   represents the standardized evaluation index value, and max(𝑥𝑗)  and min(𝑥𝑗) 

respectively represent the maximum and minimum values of the 𝑗-th index. The data collection and 

preprocessing in this step is a part of data set in Figure 1. 

Step 2. Calculate the weights and projection values by the PPM and QPSO. 

The specific implementation steps of solving the optimal projection function in PPM by using 

QPSO are shown in Figure 1. This paper gives the detailed steps of the PPM optimized by QPSO in 

combination with Figure 1. 

 

Figure 1. Optimized flow chart. 
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(1) The normalized calculation sample set [𝑥𝑖𝑗
∗ ]
(𝑝∗𝑛+𝑘)×𝑚

  is used to construct the projection 

index function 𝑧(𝑖) according to Eq (1). According to Eq (6) or (7), the search range of 𝒂⃗⃗  can be 

determined, and the initial population number and iteration termination conditions can be determined 

according to the characteristics of the research object. 

(2) In this paper, an index is used to correspond to one dimension of particle vector. Eqs (3)–(5) 

are used to find the maximization objective function 𝑸(𝑎) in Eq (6) or the minimization objective 

function 𝑸(𝑎)  in Eq (7). The QPSO is used to solve the function 𝑸(𝑎)  in Eq (6) or (7). The 

calculation process of QPSO must be analyzed in detail to ensure that the objective function is 

optimized.  

(3) If the QPSO does not meet the convergence condition, the position of particles will be updated. 

When the QPSO reaches the convergence condition, the best projection direction 𝒂∗  and the 

projection value 𝒁(𝑖)of the computation set can be obtained. In the calculated set of projection values 

𝒁(𝑖), 𝑖 = 1,2,3,⋯ , 𝑝 ∗ 𝑛 + 𝑘. The projection value 𝒁(𝑖) of the calculation set includes the projection 

value 𝒁1(𝑖) of the standard sample set and the projection value 𝒁2(𝑖) of the evaluation index set. 

(4) Squaring each element in the best projection vector 𝒂∗ yields the objective weight of each 

index [31], which is the best projection value in the Figure 1. 

Step 3. Determine the evaluation level by the interpolation algorithm 

(1) According to the principle of PPM, the projection value is calculated as discrete data. 

Interpolation adds continuous function on the basis of discrete data, so that this continuous curve 

passes through all given discrete data points. Interpolation method has strong applicability in 

projection pursuit algorithm. According to the projection value 𝒁1(𝑖) of the standard sample set and 

its preset risk grade 𝒀1(𝑖) , the mathematical model of risk evaluation is constructed by the 

interpolation method [46]: 

𝒀 = 𝑓(𝒁1) (15)  

(2) By introducing the projection value 𝒁2(𝑖) of the evaluation sample set into the mathematical 

model 𝒀 = 𝑓(𝒁1), the waterlogging risk level of each evaluation sample can be calculated. 

4. Case study 

4.1. Background and data source 

Chengdu Rail Transit Line 11 is placed in Chengdu, China. It has a total length of 22.0 km and 

includes 19 underground subway stations. Construction of this project officially started in June 2017 

and was expected to be completed in June 2020. Chengdu is in a humid subtropical climate zone with 

abundant rainfall, the average annual rainfall is 879.3 mm, the maximum annual rainfall is 1343.3 mm, 

the annual rainfall days are 141, and the maximum daily rainfall is 167.6 mm. Rainfall is mainly 

concentrated from May to September, which accounts for 84.1% of the annual rainfall. According to 

the Chengdu water resources bulletin and local yearbook, there were 28 serious regional waterlogging 

disasters in Chengdu from 2000 to 2018. 

Obtaining engineering data is always one of the main difficulties in engineering papers. Before 

2000, China did not establish relevant data release mechanism. During our writing, the data of 2019 

could not be obtained. Probably due to the COVID-19, the Chengdu Government of China postponed 
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the release of the data of rainstorm waterlogging disasters in 2019. During the authors' writing, only 

the engineering data related to the subway station project in 2018 was able to be obtained.  

Lushan Avenue Station, Miaoeryan Station, Shenyang Road Station, and Tianfu CBD North 

Station are four typical station projects of the Chengdu Rail Transit Line 11 Project. The four stations 

selected in this case study include the core urban area, CBD area under construction, suburban 

development zone and suburban rural area of Chengdu, and cover almost all the common surrounding 

environments of subway station construction. Among these four stations, there are China Construction 

Third Bureau Infrastructure Construction Investment Co., Ltd. and China Construction Railway 

Investment and Construction Group Co., Ltd., and Southwest Branch of China Construction Third 

Bureau Group Co., Ltd. The management level and technical level of these construction enterprises 

are quite different. The geological conditions of these four stations are different, almost including the 

types of geological conditions of subway stations in Chengdu. In addition, this study had tried to collect 

the data of subway stations under construction in Wuhan, Chongqing, Shenzhen, Tianjin and other 

places. Due to the lack of cooperation with relevant construction enterprises, it was difficult to obtain 

the detailed information of the site. 

Twenty experts were invited to score the qualitative indexes in the evaluation index system of the 

waterlogging disaster resilience capabilities of these four station projects. The selection criteria of the 

twenty invited experts were mainly considered from five aspects, namely their work unit, title, 

experience, time working in this project, and age [48]. The 20 experts in this paper are all in the field 

of civil engineering. 

Table 3. Results of 20 experts on various qualitative indexes of Lushan Avenue Station. 

No. R15 R16 R23 R25 R32 R33 R34 

Expert 1 20 85 60 70 90 30 10 

Expert 2 15 80 65 75 95 40 5 

Expert 3 20 85 65 70 85 35 10 

Expert 4 20 90 60 75 85 40 15 

Expert 5 15 85 65 75 85 35 15 

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 

Expert 16 15 90 65 70 90 30 20 

Expert 17 10 75 60 75 80 25 10 

Expert 18 20 85 65 70 90 30 15 

Expert 19 15 80 60 75 90 30 10 

Expert 20 20 90 65 75 90 40 20 

Average score 17.5 83.5 63.5 73.5 89 34.5 13.5 

The reliability of the questionnaire survey results of Lushan Avenue Station was tested by SPSS 

22 software and the value of Cronbach’s α was found to be 0.703. This exceeded the required minimum 

value of 0.6 [49], thereby indicating that the questionnaire survey results were reliable. Due to spatial 

constraints, the scoring results of the 20 experts on the qualitative indexes of Miaoeryan Station, 

Shenyang Road Station, and Tianfu CBD North Station are not reported here. However, the reliabilities 

of the questionnaire surveys were also tested by SPSS 22 software, and their respective Cronbach’s α 

values were 0.728, 0.706, and 0.968. This analysis verifies that the reliability of the qualitative index 

scores for the case study conducted in this work was good and reasonable. 
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The quantitative indicators were selected by consulting project management data, on-site 

investigation, and calculation. According to the project management requirements of Chengdu Rail 

Transit Line 11, the upper limits of the quantifiable indexes R12, R13, R14, R21, and R26 were 

respectively set to 18, 80, 500, 80, and 500. 

Table 4. Indicator’ scores of the four evaluation objects. 

Secondary 

Indicators 

Lushan Avenue 

Station 

Miaoeryan 

Station 

Shenyang Road 

Station 

Tianfu CBD North 

Station 

R11 6.82 3.91 5.54 9.09 

R12 1 1.2 1 1.6 

R13 21 2 27 11.2 

R14 46.4 53.7 21.875 63.6 

R15 17 54.83 58.67 64.38 

R16 84.5 33 39.5 57 

R21 4 4 4 4 

R22 21.35 16.53 16.53 10.87 

R23 63 40.5 24.5 13 

R24 2.5 2.5 2.5 2.5 

R25 73 22 44.5 60.7 

R26 71.31 37.42 15.73 53.26 

R31 36.59 27.03 19.61 20.83 

R32 88 46.5 22 17 

R33 33.5 52.5 55 84.5 

R34 13 40.5 56.5 24.5 

4.2. Mathematical evaluation model of waterlogging disaster resilience capability with the 

interpolation algorithm 

The calculation steps outlined in section 3.2.3 were used to construct the model. 

Step 1. Data collection and preprocessing. 

According to the evaluation grading standards of each secondary index in Table 2, 100 standard 

evaluation objects [6,42] were generated in five evaluation grade intervals by the random sampling 

method, and the standard sample set 𝐗𝟏 = [𝑥𝑖𝑗]500×16  was obtained. The resilience grade 𝐘𝟏 =

(𝑦1, 𝑦2, ⋯ , 𝑦500)
T  of each standard evaluation object in the standard sample set was known. 

According to the data of 𝐗𝟐 = [𝑥𝑖𝑗]4×16 of each unit to be evaluated presented in Table 4, the sample 

set 𝐗 = {
𝐗𝟏
𝐗𝟐
} = [𝑥𝑖𝑗]504×16 was substituted into a self-made program based on MATLAB R2016a 

software for calculation.  

The parameter setting of QPSO is relatively simple, and only two calculation parameters, namely 

the population number and convergence condition, need to be set [32]. Referring to the parameter 

setting in previous researches [34,50], QPSO parameters in this case study were set as follows: the 

contraction and expansion factor 𝛼 = 0.4 , initial population number 𝑁 = 100 , and the iterative 
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termination condition was when the number of iterative calculations reached 1000 or the minimum 

accuracy reached 0.00001. Like previous studies [32–36], the parameter setting of this paper was 

conservative to ensure that the QPSO could converge effectively under the current parameter setting. 

In the research of algorithm, the parameters of QPSO should be analyzed to find the best parameter 

setting. However, when solving engineering problems, the parameter setting method in this paper is 

feasible. In different cases, different input data sets, or different index systems, the best parameter 

settings of QPSO are likely to be different. When solving engineering problems, the parameter setting 

of QPSO should be conservative to ensure that QPSO can converge as much as possible, instead of the 

fastest and best convergence [51]. 

Step 2. Calculate the weights and projection values by the PPM and QPSO. 

The convergence curve of the PPM proposed in this paper obtained after program calculation is 

presented in Figure 2, from which it can be seen that QPSO converged between 100 and 200 

generations. A detailed analysis of Figure 2 was carried out in section 5. 

 

Figure 2. Convergence curves of QPSO-PP, PSO-PP, and GA-PP. 

The fitness function of QPSO was tracked during each iteration, as showed in Table 5. Due to the 

length of the paper, we selectively listed some calculation results in combination with Figure 2. Before 

the 113th generation, the calculation errors of the fitness function were unacceptable, and a large 

number of calculation errors were larger than 0.00001. That is to say, before the 113th generation, the 

QPSO did not effectively find the optimal projection vector of PPM. In the 114 iterations, the 

calculation error of the fitness function was 0.000011218 > 0.0001, but the calculation error after 114 

generations was less than 0.0001. After the 115th generation, the calculation errors of the fitness 

function were less than 0.00001. In other words, QPSO converged in the 115th generation. Combined 

with Figure 2, it can be considered that the objective function had been effectively optimized. 

QPSO, a typical meta-heuristic algorithm, is a random algorithm. Because many operations are 

required in the optimization process, the calculation results may be unstable. Therefore, Step 1 and 

Step 2 were replicated ten times. In each calculation, the standard sample set 𝐗𝟏  was randomly 
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sampled again. The maximum and minimum standard deviations of the best projection value in the ten 

calculation results are presented in Table 6. In this case study, 𝑛 = 100 , and the maximum and 

minimum standard deviations of the best projection value were very small. When 𝑛 = 100 , the 

calculated results had good stability due to the sufficiently large amount of data. A detailed analysis of 

Table 6 was performed in the discussion in section 5. 

Table 5. Precision level and calculation termination in the 1000th iteration. 

Iteration (n) Fitness (n-1) Fitness (n) Fitness (n) – Fitness (n−1) Result 

113 0.358670282 0.358670282 0 ＜ 0.00001 Continue 

114 0.166415693 0.166404475 0.000011218 ＞ 0.0001 Continue 

115 0.166404475 0.166404475 0 ＜ 0.0001 Continue 

1000 0.166404475 0.166404475 0 ＜ 0.0001 Stop 

Table 6. Stability analysis of the calculation results. 

𝑛 20 40 60 100 200 

Maximum standard deviation 0.145853 0.0056 0.001116 0.000296352 0.000012839 

Minimum standard deviation 0.005268 0.000351 0.00017 0.0000171668 0.00000038728 

The optimum projection direction 𝐚⃗ ∗ = (0.1513, 0.3317, 0.2161, 0.0954, 0.2086, 0.0990, 0.3817, 

0.3305, 0.3661, 0.3489, 0.3915, 0.1817, 0.0173, 0.0300, 0.0400, 0.2419) was calculated by the 

program. The objective weight of each index was then obtained by squaring the numerical value of 

each element in the optimal projection vector. 

Figure 3 presents the scatter diagram of the projection value set 𝐙𝟏 and corresponding recovery 

ability level set 𝐘𝟏 of 500 standard evaluation objects. In the figure, the abscissa is the best projection 

vector, and the ordinate is the restoring force level. 

 

Figure 3. Scatter diagram of the projection values and resilience grades. 
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Step 3. Obtain the evaluation level by the interpolation algorithm. 

Using the interpolation algorithm, the mathematical model is constructed as follows: 

𝑦 =

{
 
 
 
 
 
 

 
 
 
 
 
 

1 𝑧 ≥ 3.1737 

1 +
3.1737 − 𝑧

3.1737 − 2.1015
2.1015 < 𝑧 < 3.1737

2 2.0146 ≤ 𝑧 ≤ 2.1015

2 +
2.0146 − 𝑧

2.0146 − 1.6526
1.6526 < 𝑧 < 2.0146

3 1.5273 ≤ 𝑧 ≤ 1.6526

3 +
1.5273 − 𝑧

1.5273 − 1.1610
1.1610 < 𝑧 < 1.5273

4 1.0474 ≤ 𝑧 ≤ 1.1610

4 +
1.0474 − 𝑧

1.0474 − 0.4595
0.4595 < 𝑧 < 1.0474

5 𝑧 ≤ 0.4595

 (16)  

By substituting the best projection values of the four station projects into Equation (16), their 

resilience levels could be calculated. 

4.3. Analysis of calculation results 

4.3.1. Analysis of weight calculation results 

The objective weight of each index was obtained by squaring the numerical value of each element 

in the optimal projection vector λ∗ calculated in section 4.2 [31]. The calculation results are reported 

in Table 7. 

Table 7. Weight calculation results of secondary indicators. 

Indicator R11 R12 R13 R14 R15 R16 R21 R22 

Weight 0.0229 0.1100 0.0467 0.0091 0.0435 0.0098 0.1457 0.1092 

Ranking 11 5 8 13 9 12 2 6 

Indicator R23 R24 R25 R26 R31 R32 R33 R34 

Weight 0.1340 0.1217 0.1533 0.0330 0.0003 0.0009 0.0016 0.0585 

Ranking 3 4 1 10 16 15 14 7 

R25 (Emergency plan of construction order) was found to have the largest weight, and has better 

interpretability. During the disaster recovery process in construction engineering, the emergency plan 

of construction order is the core of management, and all engineering and management measures for 

disaster recovery must be implemented in accordance with this recovery plan. R21 (Exercise frequency 

of the emergency plan) was found to have the second-largest weight. This is because the drilling of the 

emergency plan can reveal its shortcomings, can improve its rationality and feasibility of 

implementation, and is of great significance to improving the resilience of subway station projects to 

waterlogging disasters. Although the weight calculation results in this paper were obtained from the 

measured data of the construction site, they were well explained in combination with the practice of 

construction project management. This is the superiority of this research method compared with other 
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objective weight calculation methods [52]. R23 (Relief supplies) ranked third in weight, which is easily 

understandable. Relief materials are the material basis for a subway station project to recover from a 

waterlogging disaster. R33 (Post-disaster technology update), R32 (Summary of post-disaster 

management), and R31 (Proportion of college students in project management personnel) were found 

to have the smallest weights. 

The weights of the three primary indicators were obtained by summing the weights of the 

secondary indicators included in each primary indicator. The weights of R1 (Resistance), R2 

(Recovery), and R3 (Adaptability) were respectively calculated to be 0.242, 0.6969, and 0.0613. This 

demonstrates that recovery is the most important indicator of the resilience of subway station projects 

to waterlogging disasters. 

4.3.2. Analysis of resilience evaluation results 

The best projection values of Lushan Avenue Station, Miaoeryan Station, Shenyang Road Station, 

and Tianfu CBD North Station were found to be 2.0353, 2.4691, 1.7135, and 1.5531, respectively. 

With the introduction of Eq (16), the values of the resilience of the four stations to rainstorm 

waterlogging disaster were calculated to be 2, 1.6571, 2.8318, and 3, respectively. Therefore, from 

greatest to least, the resilience ranking is Miaoeryan Station > Lushan Avenue Station > Shenyang 

Road Station > Tianfu CBD North Station. This ranking is consistent with the actual loss ranking of 

the four stations in the flood season of 2019, during which Shenyang Road Station and Tianfu CBD 

North Station suffered serious waterlogging disaster losses, and the construction period was delayed 

by about 45 days. In contrast, the waterlogging disaster loss of Lushan Avenue Station was small, and 

the construction period was delayed by about 15 days. Miaoeryan Station hardly suffered from any 

waterlogging disasters, and the construction period was not delayed. It should be pointed out that 

disaster losses in the engineering field are often determined by direct economic losses and casualties. 

The disaster recovery situation is expressed by the number of days of construction delay. The longer 

the construction delay, the more difficult it is for the project to overcome the disaster, and the lesser 

the resilience. 

According to the division basis of the resilience grades presented in section 3.1.3, it is suggested 

that the management of rainstorm waterlogging disasters should be carried out at Miaoeryan Station 

and Lushan Avenue Station in accordance with the low-risk grade, whereas it should be carried out at 

Shenyang Road Station and Tianfu CBD North Station in accordance with the moderate-risk grade. 

4.3.3. The calculation results of different optimization algorithms 

The GA and classical PSO, which were two commonly used meta-heuristic algorithms as a 

benchmark comparison, were used to find the best projection vector of the PPM in the past research. 

In the GA, the number of individuals in the population was 50, the maximum genetic algebra was 1000, 

the binary digits were 20, and the generation gap was 0.9 [33]. In the PSO algorithm, the swarm size 

was 200, the personal learning coefficient and global learning coefficient were both 2, the inertia 

weights decreased linearly from 0.9 to 0.4, the minimum acceptance accuracy was 0.00001, and the 

maximum number of iterations was 1000 [34]. In addition to population size and convergence 

conditions, the key parameter required for QPSO is only the scaling coefficient, whereas the GA and 

PSO require more parameters. Compared with the GA and PSO, the QPSO has the advantage of fewer 
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parameters. 

In the analysis in section 4.2, it was not difficult to find that both the PSO and the GA had found 

the optimal solution. Bring the optimal solution found by the PSO or the GA into section 4.3.1 and 

section 4.3.2 for calculation. The calculation results are shown in Table 8. 

Table 8. The values of the resilience obtained by different optimization algorithms. 

Case QPSO PSO GA 

Lushan Avenue Station 2 2 2 

Miaoeryan Station 1.6571 1.8931 1.9631 

Shenyang Road Station 2.8318  2.7197 2.5678 

Tianfu CBD North Station 3 3 3 

It can be seen from Table 8 that the final calculation results of the three algorithms are almost the 

same. The restoration capacity of each station project was in the same order, but there was a certain 

difference in the restoration capacity grade value between the Miaoeryan Station and the Shenyang 

Road Station. Considering that many scholars [16,29] have prosperously used the PSO or the GA to 

optimize the PPM, the fact that the calculation results were basically the same could preliminarily 

prove the correctness of the calculation results in this paper. 

The three algorithms, namely the GA, PSO, and QPSO, were compared in terms of the parameter 

setting, convergence speed, and the stability of calculation results. Due to the differences in parameter 

settings, it was impossible to compare the computing speeds of the three algorithms under the same 

parameters. 

(1) Parameter setting. There are four parameters of the GA that needs to be set in advance. The 

population size was set to 100, the termination of the evolutionary algebra was set to 500, the crossover 

probability was set to 0.5, and the mutation probability was set to 0.001. Similarly, there are four 

parameters of the PSO that needs to be set in advance: the population size was set to 100, the 

acceleration coefficients C1 and C2 were set to 2, and the termination of the evolutionary algebra was 

set to 1000. However, only two parameters need to be set for QPSO, namely the population size and 

termination of evolutionary algebra. Therefore, as compared with the GA and PSO, fewer parameters 

need to be set for the QPSO. 

(2) Convergence speed. It can be observed in Figure 2 that the QPSO found the best projection 

vector between 100 and 200 generations, whereas the classical PSO found the best projection vector 

between 200 and 300 generations. The convergence speed of the GA was the slowest, and it took about 

500-600 generations to find the best projection vector. By tracking the calculation processes of the 

PSO and GA, it was found that the PSO converged after 256 generations and the GA converged after 

556 generations. In this case study, the QPSO exhibited a faster convergence speed, which is in 

agreement with the analysis results in previous research [23,24,32–34]. This further illustrates the 

superiority of the QPSO, and proves the rationality of the research results in this paper to a certain 

extent. 

(3) Stability of calculation results. Although the QPSO, the PSO, and the GA had found the optimal 

solution, the stability of the calculated results might be different. The 5-fold cross-validation [53] and 

the analysis of variance (ANOVA) [54,55] are commonly used detection methods. In this paper, 

variance analysis is selected according to the characteristics of data. In this paper, the QPSO, the PSO, 

and the GA were used to analyze cases 200 times. The standard deviations of 200 calculation results 
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of the three optimization algorithms are shown in Table 9. 

Table 9. Standard deviation of calculation results of three optimization algorithms. 

Case QPSO PSO GA 

Lushan Avenue Station 0.000155318 0.0012241 0.03189 

Miaoeryan Station 0.000139837 0.002564 0.031891 

Shenyang Road Station 0.000168777 0.0051055 0.03076 

Tianfu CBD North Station 0.000126528 0.0102063 0.025302 

In the Table 9, the standard deviation of the calculation results of QPSO is obviously smaller than 

that of PSO or GA, which also proves that the stability of QPSO is better than that of PSO and GA. 

Taking the calculation results of Miaoeryan Station as an example, the GA incorrectly calculated the 

station's resilience level as 2 for 7 times in 200 calculations, PSO algorithm for 3 times, and QPSO 

algorithm for none. The fundamental reason for this was that particles were able to appear at any 

position in the solution space in QPSO algorithm, which effectively avoided the problem of finding 

the local optimal solution [23,24]. 

5. Discussions 

In this work, the PPM improved by QPSO was developed to evaluate the resilience of subway 

station projects to rainstorm waterlogging disasters. However, the following limitations existed. (1) 

The influences of different index systems on the resilience evaluation results are not discussed. (2) The 

temporal and spatial evolution characteristics of the waterlogging disaster recovery ability of subway 

station projects are not deeply analyzed or revealed. (3) The covariance matrix adaptation evolutionary 

strategies (CMA-ES) [56], the coyote optimization algorithm (COA) [57], and other state-of-art 

approaches are suggested to solve the optimization problem of PPM. 

5.1. Comparative analysis of different evaluation methods 

At present, fuzzy comprehensive evaluation method and AHP method are commonly used to 

evaluate the resilience of waterlogging disasters in subway station projects [13,14]. The basic idea of 

these studies is to use the AHP method to calculate the weights, and then use fuzzy comprehensive 

evaluation method to calculate the resilience grade. This section analyzed and compared the calculation 

results of these traditional methods with the model proposed in this paper, in order to highlight the 

progressiveness of the model proposed in this paper. 

The theory and the calculation process of AHP could refer to the relevant research results [13,14], 

so we would not repeat them here. In this paper, 20 experts in the Section 4 were selected and divided 

into 4 groups. The calculation results of weights calculated by the AHP method are shown in Table 10. 

It could be clearly seen from Table 10 that the index weights calculated by four groups of experts 

were obviously different. This difference was determined by the subjectivity of the AHP method. Due 

to the large number of indicators, it took many expert questionnaires to pass the consistency test when 

using the AHP method to calculate the weight of each indicator. In this paper, the PPM was used to 

calculate the optimal projection vector to obtain the weights, which was an objective calculation 

method based on the data-driven. The PPM determined the index weight according to the quantitative 
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and qualitative data actually obtained from the construction site, instead of the subjective judgment on 

the importance of the index.  

The theory and the calculation process of fuzzy comprehensive evaluation could refer to previous 

research results [13]. The key work of fuzzy comprehensive evaluation method was to beforehand 

determine the membership function according to the experience and judgment of experts before 

evaluation. Obviously, this method of presetting membership functions was greatly influenced by 

subjective factors of experts, and the calculation results of different membership functions might be 

different. In this paper, 20 experts in the section 4 were selected and divided into four groups. Four 

groups of experts set different membership functions [13], and the calculation results are shown in 

Table 11. 

Table 10. Weight calculation results of the AHP method. 

Indicators 
First group Second group Third group Fourth group 

Weight Ranking Weight Ranking Weight Ranking Weight Ranking 

R11 0.0458 12 0.0291  11 0.0681 7 0.0145  14 

R12 0.0147 16 0.0096  16 0.0743 4 0.0087  16 

R13 0.0527  8 0.0781  5 0.0155 15 0.0221  9 

R14 0.0275  13 0.0545  7 0.0591 9 0.0156  12 

R15 0.0556  6 0.0452  9 0.0486 11 0.0174  10 

R16 0.0556  5 0.0559  6 0.1759 1 0.0147  13 

R21 0.1133  2 0.0332  10 0.0735 6 0.0928  4 

R22 0.0208  15 0.0277  13 0.0218 13 0.0239  8 

R23 0.0647  4 0.0261  14 0.0487 10 0.0345  6 

R24 0.0540  7 0.0278  12 0.0998 3 0.0166  11 

R24 0.0510  10 0.0498  8 0.0374 12 0.0091  15 

R26 0.0523  9 0.0181  15 0.0622 8 0.0442  5 

R31 0.1068  3 0.1059  2 0.0218 14 0.3124  1 

R32 0.0239  14 0.1059  3 0.0128 16 0.2308  2 

R33 0.0477  11 0.2335  1 0.0742 5 0.1075  3 

R34 0.2136  1 0.1059  4 0.1063 2 0.0343  7 

Table 11. Results of resilience level by the fuzzy comprehensive evaluation. 

Case First group Second group Third group Fourth group 

Lushan Avenue Station 2 2 2 2 

Miaoeryan Station 1 2 1 1 

Shenyang Road Station 3 2 2 3 

Tianfu CBD North Station 3 3 3 3 

The membership functions set by the four groups of experts were different, so the calculation 

results were obviously different in the Table 11. Experts in the first group, the third group, and the 

fourth group thought that the restoration ability of Miaoeryan Station was 1, while experts in the second 

group thought that the restoration ability of Miaoeryan Station was 2. In addition, the fuzzy 

comprehensive evaluation was not able to make full use of a large number of measured data. However, 

the new model in this paper could directly use a large number of measured data, and adopt the method 
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of data-driven rather than subjective judgment of experts. 

In addition, compared with the calculation results of the model proposed in this paper, it was 

considered that the resolution of the calculation results by the AHP and the fuzzy comprehensive 

evaluation was poor. According to the calculation results of the first group of experts, the recoverability 

levels of Shenyang Road Station and Tianfu CBD North Station were 3, and the calculation results of 

the second group of experts showed that the recoverability levels of Lushan Avenue Station, Miaoeryan 

Station, and Shenyang Road Station were 2. This was due to the fine mathematical model constructed 

by interpolation algorithm in this paper. 

5.2. The influence of the number of indicators on the calculation results 

In the researches of disaster risk or resilience evaluation, the selection of indicators has a 

significant impact on the calculation results. According to the definition of subway waterlogging 

disaster resilience in the introduction and the typical subway waterlogging disasters, the index system 

in Table 1 was constructed. This index system included 3 primary indicators and 16 secondary 

indicators. If different typical projects were selected for analysis, the index system of resilience would 

be different. It is worth mentioning that there is almost no research on the resilience of subway to resist 

floods or disasters. In the case analysis of this paper, this index system had achieved good research 

results. Therefore, this section would not study the influence of adding secondary indicators on the 

calculation results. This section mainly discussed the influence of deleting secondary indicators on 

calculation results, in order to find the smallest indicator set. 

The evaluation results after deleting any secondary index were calculated in detail. For reasons 

of space, only some calculation results are listed in Table 12. The calculation results showed that 

deleting a secondary index would hardly change the calculation results, the restoration ability grades, 

and restoration ability rankings of four typical station projects. However, when the index R25 or R21 

was deleted, the change of calculation result was the biggest. This was consistent with the weight 

calculation results in section 4.3.1. R25 and R21 were the two indexes with the greatest weights, and 

should also have the greatest influence on the calculation results [58]. 

This paper also calculated the evaluation results after arbitrarily deleting two indicators, as shown 

in Table 12. The calculation results showed that deleting two secondary indexes might cause changes 

in the calculation results. Among them, the indexes R21 and R25 were deleted, and the indexes R21 

and R23 were deleted. In these two cases, the calculation results would change and the resolution of 

which calculation results would decrease. It could be preliminarily considered that the reduction of 

input indexes led to the reduction of the computational resolution of the model. This was also 

consistent with the weight calculation results in section 4.3.1. R21, R23 and R25 were the three 

secondary indexes with the greatest weights, which should also have the greatest influence on the 

calculation results [58]. Therefore, on the basis of the index system in section 3.1, deleting one index 

would not change the calculation result, while deleting two indexes might change the calculation result. 

However, this conclusion needed more case studies to support it. 

Because the author's research time and materials were limited, this paper did not make further 

analysis on the number of indicators. However, with the continuous enrichment of related research 

results, a unified and applicable evaluation index of subway flood disaster resilience would be formed. 
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Table 12. Calculation results after deleting some secondary indicators. 

Case name 
Lushan Avenue 

Station 

Miaoeryan 

Station 

Shenyang Road 

Station 

Tianfu CBD 

North Station 

Deleting R21 2 1.7637 2.5610 3 

Deleting R25 2 1.7562 2.7536 3 

Deleting R21 and R25 2 2 3 3 

Deleting R21 and R23 2 2 3 3 

5.3. Influences of different random sampling numbers on the calculation results 

A data-mining method was proposed in this work, and the data characteristics had a great 

influence on the calculation results. In section 3.2.3, N standard samples were generated in each grade 

interval by random sampling. By choosing a different value of n, different standard sample sets can be 

obtained. In the case study analysis, 𝑛 = 100 was easily set. In fact, while many similar research 

works [6,42] directly provided the value of n when using the interpolation algorithm, they did not 

analyze the influences of different values of 𝑛 on the calculation results. Therefore, four cases of 𝑛 =

20, 40, 60, 200 were calculated, and the influences of the different values of 𝑛 on the calculation 

results were investigated. 

After calculation in the four cases of 𝑛 = 20, 40, 60, 200, the characteristics of the 𝐙𝟏 and 𝐘𝟏 

scatter plots were found to be similar to those of 𝑛 = 100, and they were all descending line segments. 

The mathematical models constructed under the three conditions of 𝑛 = 20, 40, 60  were quite 

different from those constructed under the condition of 𝑛 = 100. 

When 𝑛 = 20, the mathematical model is as follows: 

𝑦 =

{
 
 
 
 
 
 

 
 
 
 
 
 

1 𝑧 ≥ 2.9250

1 +
2.9250 − 𝑧

2.9250 − 2.2829
2.2829 < 𝑧 < 2.9250

2 2.1355 ≤ 𝑧 ≤ 2.2829

2 +
2.1355 − 𝑧

2.1355 − 1.8043
1.8043 < 𝑧 < 2.1355

3 1.6476 ≤ 𝑧 ≤ 1.8043

3 +
1.6476 − 𝑧

1.6476 − 1.2562
1.2562 < 𝑧 < 1.6476

4 1.1172 ≤ 𝑧 ≤ 1.2562

4 +
1.1172 − 𝑧

1.1172 − 0.6923
0.6923 < 𝑧 < 1.1172

5 𝑧 ≤ 0.6923

 (17)  

The best projection values of Lushan Avenue Station, Miaoeryan Station, Shenyang Road Station, 

and Tianfu CBD North Station were found to be 2.1709, 2.6830, 1.6574, and 1.7698, respectively. 

With the introduction of Eq (17), the values of the resilience of the four stations to rainstorm 

waterlogging disasters were calculated as 2, 1.3769, 3, and 3 respectively. Therefore, the resilience 

ranking is Miaoeryan Station > Lushan Avenue Station > Shenyang Road Station = Tianfu CBD North 

Station. However, according to the order of the best projection values, Shenyang Road Station > Tianfu 

CBD North Station. The calculation results when n = 20 are consistent with the actual loss ranking of 

the four stations in the flood season of 2019. However, as compared with the model when n = 100, this 
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mathematical model has poor resolution. 

According to the results in Table 6, when 𝑛 = 20 , the maximum standard deviation of ten 

calculation results was 0.145853, and the minimum standard deviation was 0.005268. In other words, 

when 𝑛 = 20, the calculation result of the optimal projection value is very unstable [59]. 

When 𝑛 = 40, the mathematical model is as follows: 

𝑦 =

{
 
 
 
 
 
 

 
 
 
 
 
 

1 𝑧 ≥ 2.9064 

1 +
2.9064 − 𝑧

2.9064 − 2.2225
2.2225 < 𝑧 < 2.9064

2 2.0307 ≤ 𝑧 ≤ 2.2225

2 +
2.0307 − 𝑧

2.0307 − 1.7415
1.7415 < 𝑧 < 2.0307

3 1.5404 ≤ 𝑧 ≤ 1.7415

3 +
1.5404 − 𝑧

1.5404 − 1.2299
1.2299 < 𝑧 < 1.5404

4 1.0709 ≤ 𝑧 ≤ 1.2299

4 +
1.0709 − 𝑧

1.0709 − 0.6071
0.6071 < 𝑧 < 1.0709

5 𝑧 ≤ 0.6071

 (18)  

The best projection values of Lushan Avenue Station, Miaoeryan Station, Shenyang Road Station, 

and Tianfu CBD North Station were found to be 2.0913, 2.7065, 1.9700, and 1.6921, respectively. 

With the introduction of Eq (18), the values of the resilience of the four stations to rainstorm 

waterlogging disasters were calculated as 2, 1.2923, 2.2099, and 3, respectively. Therefore, the 

resilience ranking is Miaoeryan Station > Lushan Avenue Station > Shenyang Road Station > Tianfu 

CBD North Station. The calculation results when 𝑛 = 40 are consistent with the actual loss ranking 

of the four stations in the flood season of 2019. According to the results in Table 6, when 𝑛 = 40, the 

maximum standard deviation of ten calculation results was 0.0056, and the minimum standard 

deviation was 0.000351. Although the standard deviation was smaller when 𝑛 = 40 than when 𝑛 =

20, the calculated results were always unstable. 

When 𝑛 = 60, the mathematical model is as follows: 

𝑦 =

{
 
 
 
 
 
 

 
 
 
 
 
 

1 𝑧 ≥ 2.9706 

1 +
2.9706 − 𝑧

2.9706 − 2.2695
2.2695 < 𝑧 < 2.9706

2 2.042 ≤ 𝑧 ≤ 2.2695

2 +
2.042 − 𝑧

2.042 − 1.7515
1.7515 < 𝑧 < 2.042

3 1.5725 ≤ 𝑧 ≤ 1.7515

3 +
1.5725 − 𝑧

1.5725 − 1.2689
1.2689 < 𝑧 < 1.5725

4 1.1032 ≤ 𝑧 ≤ 1.2689

4 +
1.1032 − 𝑧

1.1032 − 0.6366
0.6366 < 𝑧 < 1.1032

5 𝑧 ≤ 0.6366

 (19)  

The best projection values of Lushan Avenue Station, Miaoeryan Station, Shenyang Road Station, 

and Tianfu CBD North Station were found to be 2.1136, 2.8378, 1.9482, and 1.7253, respectively. 
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With the introduction of Eq (19), the values of the resilience of the four stations to rainstorm 

waterlogging disasters were calculated as 2, 1.1895, 2.3238, and 3, respectively. Therefore, the 

resilience ranking is Miaoeryan Station > Lushan Avenue Station > Shenyang Road Station > Tianfu 

CBD North Station. The calculation results when 𝑛 = 60 are consistent with the actual loss ranking 

of the four stations in the flood season of 2019. According to the results in Table 6, when 𝑛 = 60, the 

maximum standard deviation of ten calculation results was 0.001116, and the minimum standard 

deviation was 0.00017. It can therefore be considered that the calculation results were stable when 

𝑛 = 60. 

When 𝑛 = 200 , the mathematical model was almost identical to that when 𝑛 = 100 . 

Additionally, the maximum standard deviation was 0.000012839 and the minimum standard deviation 

was 0.0000038729, which are much smaller than those when 𝑛 = 100. However, when 𝑛 = 200, the 

data dimension is too high and the calculation time is very long. Thus, 𝑛 = 100 is reasonable. 

By comprehensively comparing the preceding analysis results, it is evident that different random 

sampling numbers will lead to different mathematical models for resilience evaluation, which may 

have a certain influence on the evaluation results. However, regarding the present case study, high 

accuracy and stability can be achieved when 𝑛 = 100. 

6. Conclusions 

Considering the weaknesses of disaster management evaluation methods and the lack of research 

on the resilience of subway station projects to rainstorm waterlogging disasters, an evaluation PPM 

was constructed based on QPSO. Sixteen secondary indexes that affected the ability of subway station 

projects to recover from waterlogging disasters were identified from defense, recovery, and 

adaptability. The assessment standard of 16 secondary indexes was provided in combination with the 

Chengdu Metro Line 11 project. The QPSO, PPM, and interpolation algorithm were used to construct 

an evaluation model of the ability of subway station projects to recover from waterlogging disasters. 

In this model, the PPM was utilized to effectively deal with the high-dimensional data, and QPSO was 

used to solve the best projection vector of the PPM, which effectively solved the shortcoming of the 

traditional PSO easily falling into the local extremum due to its limited search space. In addition, a 

case study analysis of four typical station projects of Chengdu Metro Line 11 was conducted, and it 

was found that the key influencing factors of the ability of subway station projects to recover from 

rainstorm waterlogging disasters are the emergency plan of construction order, the exercise frequency 

of the emergency plan, and the relief supplies. Moreover, recovery was considered to be the most 

important indicator. The values of the resilience of Lushan Avenue Station, Miaoeryan Station, 

Shenyang Road Station, and Tianfu CBD North Station to rainstorm waterlogging disasters were found 

to be 2, 1.6571, 2.8318, and 3, respectively. The resilience ranking of the four stations was consistent 

with their waterlogging loss ranking in the flood season of 2019, which proved the reliability and 

effectiveness of the proposed model. In addition, two classical meta-heuristic algorithms, PSO and GA, 

were also used to solve the optimal projection vector of PPM, and the calculation results demonstrated 

that QPSO had the advantages of fewer parameter settings and a fast convergence speed, which also 

proved the superiority of the proposed model.  

However, the following limitations existed. The influences of different index systems on the 

resilience evaluation results are not discussed. The temporal and spatial evolution characteristics of 

the waterlogging disaster recovery ability of subway station projects are not deeply analyzed or 
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revealed. The in-depth analysis and revelation of the temporal and spatial evolution characteristics of 

the ability of subway station projects to recover from waterlogging disasters, are worthy of future 

research. The PPM could reduce the complexity of data and ensure the accuracy and robustness of data 

processing. How to construct projection objective function by using sample aggregation degree and 

inter-class dispersion degree is the key to correct use of PPM. Moreover, solving the projection 

objective function is a typical complex nonlinear optimization problem. There will be more meta-

heuristic algorithms used to solve the objective function in future research. 

Acknowledgments 

This paper is supported by the Science and Technology Project of Wuhan Urban and Rural 

Construction Bureau, China (201943). 

Conflict of interest 

The authors declare there is no conflict of interest. 

References 

1. T. Lin, X. F. Liu, J. C. Song, G. Q. Zhang, Y. Q. Jia, Z. Z. Tu, et al., Urban waterlogging risk 

assessment based on internet open data: A case study in China, Habitat Int., 71 (2018), 88–96. 

2. H. Y. Yu, C. Liang, P. Li, K. J. Niu, F. X. Du, J. H. Shao, et al., Evaluation of Waterlogging Risk 

in an Urban Subway Station, Adv. Civ. Eng., 2019 (2019), 1–12. 

3. Z. E. Yin, J. Yin, S. Y. Xu, J. H. Wen, Community-based scenario modelling and disaster risk 

assessment of urban rainstorm waterlogging, J. Geogr. Sci., 21 (2011), 274–284. 

4. S. L. Cutter, K. D. Ash, C. T. Emrich, Urban–Rural Differences in Disaster Resilience, Ann. Am. 

Assoc. Geogr., 106 (2016), 1236–1252. 

5. W. L. Lai, H. R. Wang, C. Wang, J. Zhang, Y. Zhao, Waterlogging risk assessment based on self-

organizing map (SOM) artificial neural networks: a case study of an urban storm in Beijing, J Mt. 

Sci., 14 (2017), 898–905. 

6. H. Wu, J. W. Wang, Assessment of Waterlogging Risk in the Deep Foundation Pit Projects Based 

on Projection Pursuit Model, Adv. Civ. Eng., 2020 (2020). 

7. B. L. Turner, R. E. Kasperson, P. A. Matson, J. J. McCarthy, R. W. Corell, L. Christensen, et al., 

A framework for vulnerability analysis in sustainability science, Proc. Natl. Acad. Sci. U. S. A., 

100 (2003), 8074–8079. 

8. S.Hunt, M. Eburn, How Can Business Share Responsibility for Disaster Resilience, Aust. J. Public 

Adm., 77 (2018), 482–491. 

9. W. N. Adger, T. P. Hughes, C. Folke C, S. R. Carpenter, J. Rockstrom, Social-Ecological 

Resilience to Coastal Disasters, Science, 309 (2005), 1036–1039. 

10. A. Bozza, D. Asprone, F. Fabbrocino F, Urban Resilience: A Civil Engineering Perspective, 

Sustainability, 9 (2017), 103. 

11. R. Leichenko, Climate change and urban resilience, Curr. Opin. Environ. Sustain., 3 (2011), 164–

168. 



7329 

Mathematical Biosciences and Engineering  Volume 17, Issue 6, 7302–7331. 

12. S. Qasim, M. Qasim, R. P. Shrestha, A. N. Khan, K. Tune, M. Ashraf, Community resilience to 

flood hazards in Khyber Pukhthunkhwa province of Pakistan, Int. J. Disaster Risk Reduct., 18 

(2016), 100–106. 

13. Y. M. Liu, C. Lu, X. M. Yang, Z. H. Wang, B. Liu, Fine-Scale Coastal Storm Surge Disaster 

Vulnerability and Risk Assessment Model: A Case Study of Laizhou Bay, China, Remote Sens., 

12 (2020), 1301. 

14. G. F. Li, X. Y. Xiang, Y. Y. Tong, H. M. Wang, Impact assessment of urbanization on flood risk in 

the Yangtze River Delta, Stoch. Environ. Res. Risk Assess., 27 (2013), 1683–1693. 

15. S. Ayesha, M. K. Hanif, R. Talib, Overview and comparative study of dimensionality reduction 

techniques for high dimensional data, Inf. Fusion, 59 (2020), 44–58. 

16. G. Z. Zhi, Z. L. Liao, W. C. Tian, J. Wu, Urban flood risk assessment and analysis with a 3D 

visualization method coupling the PP-PSO algorithm and building data, J. Environ. Manage., 268 

(2020), 110521. 

17. N. Suwal, X. F. Huang, A. Kuriqi, Y. Q. Chen, K. P. Pandey, K. P. Bhattarai, Optimisation of 

cascade reservoir operation considering environmental flows for different environmental 

management classes, Renew. Energy, 158 (2020), 453–464. 

18. A. Berro, S. L. Marie-Sainte, A. Ruiz-Gazen, Genetic algorithms and particle swarm optimization 

for exploratory projection pursuit, Ann. Math. Artif. Intell., 60 (2010), 153–178. 

19. H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, Y. Nakanishi, A particle swarm optimization 

for reactive power and voltage control considering voltage security assessment, IEEE Trans. 

Power Syst., 15 (2000), 1232–1239. 

20. S. Chalermchaiarbha, W. Ongsakul, Elitist Multi-objective Particle Swarm Optimization with 

Fuzzy Multi-attribute Decision Making for Power Dispatch, Electr. Power Compon. Syst., 40 

(2012), 1562–1585. 

21. W. Elloumi, N. Baklouti, A. Abraham, A. M. Alimi, The multi-objective hybridization of particle 

swarm optimization and fuzzy ant colony optimization, J. Intell. Fuzzy Syst., 27 (2014), 515–525. 

22. J. Sun, B. Feng, W. Xu, Particle swarm optimization with particles having quantum behavior, 

2004 Congress on Evolutionary Computation, 2004. Available from: 

https://ieeexplore.ieee.org/document/1330875. 

23. K. Meng, H. G. Wang, Z. Y. Dong, K. P. Wong, Quantum-Inspired Particle Swarm Optimization 

for Valve-Point Economic Load Dispatch, IEEE Trans. Power Syst., 25 (2010), 215–222. 

24. Q. Q. Zhang, S. F. Liu, D. Q. Gong, H. K. Zhang, Q. Tu, An Improved Multi-Objective Quantum-

Behaved Particle Swarm Optimization for Railway Freight Transportation Routing Design, IEEE 

Access., 7 (2019), 157353–157362. 

25. J. J. Zeng, G. R. Huang, Set pair analysis for karst waterlogging risk assessment based on AHP 

and entropy weight, Hydrol. Res., 49 (2018), 1143–1155. 

26. A. Y. Lo, B. X. Xu, B. F. Chan, R. X. Su, Household economic resilience to catastrophic 

rainstorms and flooding in a Chinese megacity, Geogr. Res., 54 (2016), 406–419. 

27. H. M. Lyu, Y. S. Xu, W. C. Cheng, A. Arulrajah, Flooding Hazards across Southern China and 

Prospective Sustainability Measures, Sustainability, 10 (2018), 1682. 

28. P. Cui, D. Z. Li, Measuring the Disaster Resilience of an Urban Community Using ANP-FCE 

Method from the Perspective of Capitals, Soc. Sci. Q., 100 (2019), 2059–2077. 

https://ieeexplore.ieee.org/document/1330875


7330 

Mathematical Biosciences and Engineering  Volume 17, Issue 6, 7302–7331. 

29. S. J. Wang, X. L. Zhang, Z. F. Yang, J. Ding, Z. Y. Shen, Projection pursuit cluster model based 

on genetic algorithm and its application in Karstic water pollution evaluation, Int. J. Environ. 

Pollut., 28 (2006), 253–260. 

30. J. W. Gong, C. M. Jiang, X. J. Tang, Z. G. Zheng, L. X. Yang, Optimization of mixture proportions 

in ternary low-heat Portland cement-based cementitious systems with mortar blends based on 

projection pursuit regression, Constr. Build. Mater., 238 (2020), 117666. 

31. Z. G. Lan, M. Huang, Safety assessment for seawall based on constrained maximum entropy 

projection pursuit model. Nat. Hazards, 91 (2018), 1165–1178. 

32. D. Yumin, Z. Li, Quantum Behaved Particle Swarm Optimization Algorithm Based on Artificial 

Fish Swarm, Math. Probl. Eng., 2014 (2014), 592682. 

33. W. Fang, J. Sun, Y. R. Ding, X. J. Wu, W. B. Xu, A Review of Quantum-behaved Particle Swarm 

Optimization, IETE Tech. Rev., 27 (2010), 336–348. 

34. Y. G. Fu, M. Y. Ding, C. P. Zhou, Phase Angle-Encoded and Quantum-Behaved Particle Swarm 

Optimization Applied to Three-Dimensional Route Planning for UAV, IEEE Trans. Syst. Man 

Cybern. Part A Syst. Hum., 42 (2012), 511–526. 

35. K. Yang, W. M. Feng, G. Liu, J. F. Zhao, P. Y. Su, Quantum-behaved particle swarm optimization 

for far-distance rapid cooperative rendezvous between two spacecraft, Adv. Space Res., 62 (2018), 

2998–3011. 

36. H. Talbi, A. Draa, A new real-coded quantum-inspired evolutionary algorithm for continuous 

optimization, Appl. Soft. Comput., 61 (2017), 765–791. 

37. H. Khodadadi, S. Vatankhah, T. Sadeghi, Indexes of caring for elderly in earthquakes according 

to the Iranian experience: a qualitative study, Dis. Med. Public Health Prep., 12 (2018), 493–501. 

38. M. S. Chang, Y. L. Tseng, J. W. Chen, A scenario planning approach for the flood emergency 

logistics preparation problem under uncertainty, Transp. Res. Part E Logist. Transp. Rev., 43 

(2007), 737–754. 

39. W. Yi, L. Ozdamar, A dynamic logistics coordination model for evacuation and support in disaster 

response activities, Eur. J. Oper. Res., 179 (2007), 1177–1193. 

40. D. Liu, J. P. Feng, H. Li, Q. Fu, M. Li, M. A. Faiz, et al., Spatiotemporal variation analysis of 

regional flood disaster resilience capability using an improved projection pursuit model based on 

the wind-driven optimization algorithm, J. Clean Prod., 241 (2019), 118406. 

41. S. F. Ardabili, B. Najafi, S. Shamshirband, B. M. Bidgoli, R. C. Deo, K. W. Chau, Computational 

intelligence approach for modeling hydrogen production: a review, Eng. Appl. Comp. Fluid Mech., 

12 (2018), 438–458. 

42. R. Taormina, K. W. Chau, ANN-based interval forecasting of streamflow discharges using the 

LUBE method and MOFIPS, Eng. Appl. Artif. Intell., 45 (2015), 429–440. 

43. J. Sun, X. J. Wu, V. Palade, W. Fang, C. H. Lai, W. B. Xu, Convergence analysis and 

improvements of quantum-behaved particle swarm optimization, Inf. Sci., 192 (2012), 81–103. 

44. M. S. Alajmi, A. M. Almeshal, Prediction and Optimization of Surface Roughness in a Turning 

Process Using the ANFIS-QPSO Method, Materials, 13 (2020), 2986. 

45. G. G. Wang, A. H. Gandomi, A. H. Alavi, S. Deb, A hybrid method based on krill herd and 

quantum-behaved particle swarm optimization, Neural Comput. Appl., 27 (2016), 989–1006. 

46. X. H. Yang, Z. F. Yang, Z. Y. Shen, et al, Interpolation model for flood disaster assessment based 

on projection pursuit, Disaster Sci., 04 (2004), 3–8. 



7331 

Mathematical Biosciences and Engineering  Volume 17, Issue 6, 7302–7331. 

47. C. L. Wu, K. W. Chau, Prediction of rainfall time series using modular soft computing methods, 

Eng. Appl. Artif. Intell., 26 (2013), 997–1007. 

48. V. R. Renjith, G. Madhu, V. L. J. Nayagam, A. B. Bhasi, Two-dimensional fuzzy fault tree analysis 

for chlorine release from a chlor-alkali industry using expert elicitation, J. Hazard. Mater., 183 

(2010), 103–110. 

49. M. H. P. Passos, H. A. Silva, A. C. R. Pitangui, V. M. A. Oliveira, A. S. Lima, R. C. Araujo, 

Reliability and validity of the Brazilian version of the Pittsburgh Sleep Quality Index in 

adolescents, J. Pediatr., 93 (2017), 200–206. 

50. C. T. Cheng, W. J. Niu, Z. K. Feng, J. J. Shen, K. W. Chau, Daily reservoir runoff forecasting 

method using artificial neural network based on quantum-behaved particle swarm optimization, 

Water, 7 (2015), 4232–4246. 

51. J. Derrac, S. Garcia, S. Hui, P. N. Suganthan, F. Herrera, Analyzing convergence performance of 

evolutionary algorithms: A statistical approach, Inf. Sci., 289 (2014), 41–58. 

52. B. Ji, Y. Ye, Y. Xiao, A combination weighting algorithm using relative entropy for document 

clustering, Int. J. Pattern Recognit. Artif. Intell., 28 (2014), 1453002. 

53. A. Banan, A. Nasiri, A. Taheri-Garavand, Deep learning-based appearance features extraction for 

automated carp species identification, Aquac. Eng., 89 (2020), 102053. 

54. A. Czarn, C. MacNish, K. Vijayan, B. Turlach, R. Gupta, Statistical exploratory analysis of genetic 

algorithms, IEEE Trans. Evol. Comput., 8 (2004), 405–421. 

55. J. Carrasco, S. Garcia, M. M. Rueda, S. Das, F. Herrera, Recent trends in the use of statistical tests 

for comparing swarm and evolutionary computing algorithms: Practical guidelines and a critical 

review, Swarm Evol. Comput., 54 (2020), 10066. 

56. C. Igel, N. Hansen, S. Roth, Covariance matrix adaptation for multi-objective optimization, Evol. 

Comput., 15 (2007), 1–28. 

57. V. J, Chin, Z. Salam, Coyote optimization algorithm for the parameter extraction of photovoltaic 

cells, Sol. Energy, 194 (2019), 656–670. 

58. M. Wang, N. C. Chang, J. B. Liu et al., A multi-index comprehensive evolution method of state 

estimation, Auto Elec. Power Syst., 39 (2015), 94–98. 

59. B. A. Hassan and T. A. Rashid, Datasets on statistical analysis and performance evaluation of 

backtracking search optimisation algorithm compared with its counterpart algorithms, Data Brief, 

28 (2020), 105046. 

©2020 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0) 


