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Abstract: Different epidemic models with one or two characteristics of multi-group, age structure and
spatial diffusion have been proposed, but few models take all three into consideration. In this paper,
a novel multi-group SEIR epidemic model with both age structure and spatial diffusion is constructed
for the first time ever to study the transmission dynamics of infectious diseases. We first analytically
study the positivity, boundedness, existence and uniqueness of solution and the existence of compact
global attractor of the associated solution semiflow. Based on some assumptions for parameters, we
then show that the disease-free steady state is globally asymptotically stable by utilizing appropriate
Lyapunov functionals and the LaSalle’s invariance principle. By means of Perron-Frobenius theorem
and graph-theoretical results, the existence and global stability of endemic steady state are ensured
under appropriate conditions. Finally, feasibility of main theoretical results is showed with the aid of
numerical examples for model with two groups which is important from the viewpoint of applications.
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1. Introduction

Since the pioneering work of Kermack and McKendrick [1], many mathematical models have been
proposed attempting to gain a better understanding of disease transmission, especially for the control
strategy and dynamical behavior of infectious diseases [2—8]. Simple models with assumption that
individuals are well mixed, which implies each individual has the same probability to be infected, are
beneficial in that one can obtain analytical results easily but may be lack of realism. Epidemic models
with population structures, like age, sex and patch (such as communities, cities, or counties), may be
a more realistic way to describe complex disease dynamics. As a matter of fact, the total population
should be classified into different groups and the vital epidemic parameters should vary among differ-
ent population groups. In addition, at different age stages, the effects of infectious transmission are
various, which is another important and key factor that needs necessarily to be included in model-
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ing this infectious transmission process. Thus, considering multi-group and age structure in epidemic
models is very necessary and reasonable. Some recent developments on the transmission dynamics of
multi-group and age structured epidemic models have been discussed in [8—13].

Since that the population distribute heterogeneously in different spatial location in the real life
and they will move or diffuse for many reasons, in epidemiology, there is increasing evidence that
environmental heterogeneity and individual motility have significant impact on the spread of infectious
diseases [14, 15]. In recent years, global behavior of spatial diffusion systems, which are suitable for
diseases such as the rabies and the Black Death, has been attracted extensive attention of researchers
and has been one of the hot topics [16—25]. Among these works, few take age structure or multi-group
into consideration. Yang et al. [24] proposed a novel model incorporated with both age-since-infection
and spacial diffusion of brucellosis infection, and the basic reproduction number and global behaviors
of this system were completely investigated. Fitzgibbon et al. [19] considered a diffusive epidemic
model with age structure where the disease spreads between vector and host populations. Then, the
existence of solutions of the model was studied based on semigroup theory and the asymptotic behavior
of the solution was analyzed. Luo et al. [21] incorporated spatial heterogeneity in n-group reaction-
diffusion SIR model with nonlinear incidence rate to investigate the global dynamics of the disease-free
and endemic steady states for this model. Zhao et al. [25] modeled host heterogeneity by introducing
multi-group structure in a time delay SIR epidemic model and showed that basic reproduction number
determines the existence of traveling waves of this system. To determine how age structure, multi-
group population and diffusion of individuals affect the consequences of epidemiological processes,
Ducrot et al. [18] formulated a multi-group age-structured epidemic model with the classical Fickian
diffusion and studied the existence of travelling wave solutions for this model.

To the best of our knowledge, epidemic models established by researchers except for [18] only
include one or two characteristics of multi-group, age structure and spatial diffusion. All the three
characteristics are incorporated into epidemic model in [18], however, this model does not include
the class of latent individuals. For some epidemic diseases like malaria, HIV/AIDS and West Nile
virus, latent individuals may take days, months, or even years to become infectious. Moreover, the
travel of latent individuals showing no symptoms can spread the disease geographically which makes
disease harder to control. Motivated by the above discussion, in this paper, we investigate a diffusive
version of multi-group epidemic system with age structure which is generalization of the model studied
in [26] for the first time to allow for individuals moving around on the spatial habitat x € Q c R" with
smooth boundary dQ. The organization of this paper is as follows. Firstly, we present our model
in the next section. In section 3, some preliminaries including the positivity, boundedness, existence
and uniqueness of solution, and the existence of compact global attractor of the associated solution
semiflow, are established. In section 4, the sufficient conditions on the existence and global stability
of disease-free and endemic steady states are stated and proved. In section 5, we conduct numerical
simulations to illustrate the validity of our theoretical results. In section 6, a brief conclusion is given.

2. The model

In 2015, Liu et al. [26] introduced age-of-latent and age-of-relapse into epidemic model which is
appropriate for diseases such as tuberculosis and herpes virus infection. For these diseases, latent
individuals may take days, months, or even years to become infectious and the treatment efficacy
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may decline with time for recovered individuals then cause recurrence of disease. In order to study
the global dynamics o for these diseases, they formulated the following SEIR epidemic system with
continuous age-dependent latency and relapse

(dS
TY) = A — uS(t) — BS(DI(1),
8€(t, Cl) + aE(I, Cl) = —0’((2)6([, a) - (/J + 61)€(t, a)’
ot Oa
% — / O'(Cl)e(t, a)da _ (/J + 62 + C)I(t) + / 'y(b)r(t, b)db, (21)
0 0
ar(t,b) or(t,b) _
o + T y(b)r(t, b) — ur(t,b),

e(t,0) = BS(OI(1), r(t,0) = cl(),
for ¢ > 0 and with initial conditions

S(0)=Sy>0, e(0,a) = ey(a) € L1(0, +c0),
1(0) =1y > 0, r(0,b) = ry(b) € L (0, +0),

for a,b > 0, where L}r(O, +00) is the space of functions on (0, +c0) that are nonnegative and Lebesgue
integrable. At time ¢, the densities of susceptible individuals, latent individuals with latent age a,
infectious individuals and removed individuals with relapse age b are denoted by S (), e(t,a), I(t),
r(t, b), respectively. o(a) and y(b) denote the conversional rate from the latent class and the relapse
rate in the removed class, which depend on age a and age b, respectively. Furthermore,  is the
transmission rate of the disease between susceptible and infectious individuals, A is the density of the
recruitment into the susceptible class (including the births and immigration), u is the natural death rate
of all individuals, ¢, and ¢, are the additional death rate induced by the infectious diseases, and c is the
recovery rate from the infectious class. All parameters are assumed to be positive.

It is clear that the variations of different epidemic parameters between or within different groups can
be well realized according to the description of multi-group epidemic models. Hence, Liu and Feng
[27] extended model (2.1) to the situation in which the population is divided into n groups according
to different contact patterns and derived the following multi-group SEIR epidemic model

(ds -
dkt(l) = Ak —,ukSk(t) - jzzl,gkjSk(t)Ij(t)’
(9ek(gt, a) + derlt, a) = —or(a)er(t,a) — (u + o1)ex(t, a),
t da
dl - )
C’;Y) = /0 or(@e(t, a)da — (i + 62 + c) k(1) + /0 Yi(b)ri(t, b)db, (22)
or(t,b)  Or(t,b
D) TR0 e, D) - s )
ex(t,0) = Y BSiOI(1).  re(t.0) = iy (o),
\ J=1
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for ¢ > 0 and with initial conditions

S1(0) =89 >0, ex(0,a) = e(a) € L (0, +0),
(0) = I} > 0, r(0,b) = r(b) € L1(0, +c0),

for a,b > 0. A4, pi and ¢, denote the recruitment rate of the susceptible class, the per-capita natural
death rate and the recovery rate from the infectious class in group k, respectively. [; denotes the
transmission rate of the disease between susceptible individuals in group k and infectious individuals
in group j. 61 and 6y denote the additional death rates of exposed and infectious individuals induced
by the infectious diseases in group k, respectively. o(a) denotes the conversional rate from the latent
class in group k, which depends on age a and vy, (b) denotes the relapse rate from the removed class
into the infectious class in group k, which depends on age b.

Spatial diffusion is an intrinsic characteristic for investigating the roles of spatial heterogeneity on
diseases mechanisms and transmission routes and can lead to rich dynamics. Based on this fact, we
generalize (2.2) by taking account of the case that individuals move or diffuse around on the spatial
habitat x € Q c R"” with smooth boundary 0Q. Let S (¢, x) and I;(¢, x) be the densities of susceptible
individuals and infectious individuals at time ¢ and location x € € in group k, respectively, where the
habitat Q is bounded and connected. And let ¢, (¢, a, x) and (¢, b, x) denote the densities of individuals
in the latent class with age a and the removed class with age b at time ¢ and location x in group k,
respectively. Hence, the n-group diffusive SEIR epidemic model with age-dependent latent and relapse
has the following form

( oS i(t, x n
ka(t ) _ d &S (1, x) + Ay — S i (8, x) — ]2:1 BiiS u(t, I (¢, x),
Oei(t,a,x) Odeyt,a,x
( ) + k( ) = dyre(t, a, x) — or(a)e(t, a, x) — (ug + O1x)
ot da
X er(t,a, x),
oI (1, o0
ML) dy AL (1, x) + / o(@e(t, a, x)da — (g + 6 + )i (t, x) .
4 0 23)

+ / Yi(D)r(t, b, x)db,
0

or(t, b, x) N or(t, b, x)
ot ob

ek(t’ O’ x) = E ,BkjSk(t, X)I](t’ X), rk(t, 0’ .X) = Cklk(ta )C),

\ J=1

= duysri(t, b, x) — yi(D)ri(t, b, x) — pri(t, b, x),

for x € Q, a,b € R, = (0, +00), with the homogeneous Neumann boundary conditions

OSi(t,x) _ Oelt,a,x) OL(t,x)  Or(t,b,x)
P ov 9y ov B

0, x € 09,

and initial functions

S1(0,x) = S%(x), €x(0,a,x) = e)(a, x), (0, x) = I)(x), r(0,b,x) = rl(b, x).
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dik, do, dai, dy. denote the diffusion coefficients of susceptible individuals, exposed individuals, in-
fectious individuals and removed individuals in group k, respectively. And the other parameters have
the same biological meanings as in (2.2). The homogeneous Neumann boundary conditions imply that
there is no population flux across the boundary 9<.

We define the functional spaces X = C(Q,R) and Y = L'(R,, X) for model (2.3) equipped, respec-
tively, with the norms

[#lx = suplp(0l,  liglly =/0 le(a, )lxda,

xeQ)

for ¢ € X, ¢ € Y. The positive cones are denoted by X, and Y. In addition, we define a vector space
Z = (C([0, T, X))*" with the norm

lWllz = max sup [, )lx, ¥ = W1, ¥2,....,¥2,) € Z

Loo0<i<T
Throughout this paper, for convenience, we always denote S = (5,52,....5,), e = (e1,€2,...,€,),
I =, bL,... 1), r=(r,r,..r, and S° = (SO,Sg,...,Sg), e’ = (e?,eZ,. . n) I° = (10,13,. IO
= (1,19, ....,r°). We also denote (y1,¥2, ..., yu)T > (21,225 -, 20)T @sy; > z; foralli = 1,2, ...,n. For

each i =1,2,3,4, we suppose that Ty : C(Q,R) - C(Q,R) is the Cy semigroup generated by d; A
subjects to the Neumann boundary condition in group k. From subsection 2.1 in [28], we have

(Tik(t)[¢])(x):/grik(t’ x, Y)$(y)dy,

forallt > 0and ¢ € C(Q,R), where I';(t, x, y) is the Green function. We have that Ty, i = 1,2,3,4,
k =1,2,...,n are compact and strongly positive for each r > 0 by the Corollary 7.2.3 in [29]. Integrating
the second equation in model (2.3) along the characteristic line t — a = ¢, where c¢ is a constant, we
obtain

JoTala, x, y)eu(t = a,0,y)dyn i (a), t2a,
elt,a,x) = rila 2.4
x( ) { fQ Iy (a, x, y)ek(a —t, y)dym:é )t)’ t<a, (2.4)
where 7 (a) = e~ Jo lutore+o(s)lds Similarly,
Jo e, x, )it = b,0,y)dym(b), 12 b,
Lbx)=q 0 f n 2.5
rk( x) { fQ r4k(b X, y)r]({)(b - t y)dyﬂ Zélgb)t), < b’ ( )

where 1y (h) = e~ Jolunlds To study the asymptotic behaviors of the dynamics of model (2.3), we
require the following assumptions on the model parameters.

Assumption 2.1. Foreachk,j=1,2,...,n,
(Hy) dik, do, dsp, dages Ax, i O1k> 0ok, €k > 0.
(H>) Bij € R., and the n-dimensional square matrix (By;)uxs is irreducible.

(H3) (), vi(-) € LRy, Ry), 0 > 0 and y, > 0, where 7 := ess sup oi(a), yi := esssup yi(b).
a€eR, beR .
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3. Preliminaries
We define Ai(t, x) = ei(t,0, x), Bi(t,x) = ri(¢,0,x) for (t,x) e R, x Q, and let A = (A1, A, ..., A,),
B = (By, By, ..., B,) and C = (A, B). Positiveness of the solutions of model (2.3) is given below.

Theorem 3.1. Suppose that there exists a solution (S (t,-),e(t,-,-),I(t,-), r(t,-,")) € X" X Y" X X" X Y"
of (2.3) corresponding to (S°, €%, I°, 1) € X" X Y" x X" x Y" with an interval of existence [0,T], T > 0.
Then

(S, ), et ), 11, ), 1ty ) € X0 X YT X X0 X Y7,

forallt € [0,T].

Proof. From the first equation of (2.3), we have

fat |:/1k+ilﬁkjlj(7,x)i| dr
j=

t _
St x) = Fg (t,x) + / e Ax / L(f — a, x,y)dyda,
0 Q

. = Jy [ty ] e . o 0
where Fg, (t,x) = e J=1 fQ (2, x,y)S(v)dy. The positivity of A, and S} ensures

S«(t,x) > 0 for each (t,x) € [0,T] x Q. The positivity of C which means the positivity for A; and
By, k=1,2,...,nis established by constructing Picard sequences as follows.
Solving equation /; for system (2.3), we have

t
Ik(t’ x) :Flk(ta x) + / e_(llk+62k+6‘k)(t_a) / F3k(t —a, X, )7)
0 Q
X { / ow(b)er(a, b, y)db + / Ye(b)ri(a, b, y)db] dyda, (3.1)
0 0

where F, (1, x) = e”#+ou+adt [ Ty (2, x, y)I{(y)dy. For (¢, x) € [0, T] X Q, by (2.4) and (2.5), we obtain

/ ai(b)e(t, b, y)db = Fu,(t,y) + / (D)1 (b) / Iow(b, y, 2)Aw(t = b, 2)dzdD, (3.2)
0 0 Q

where Fy4, (t,y) = fooo or(b + t)% fg (b + t,y,2)eY(b, 2)dzdb, and

/ Yk(D)ri(t, b, y)db = Fp,(1,y) + / V(D) (D) / Uar(D, y, 2)Bi(t = b, 2)dzdD, (3.3)
0 0 Q

where Fp,(1,y) = [o” vi(b + D205 [ Tup(b + 1,, 2)r{(b, 2)dzdb. From (3.1)=(3.3) and the definitions
of A; and B;, we have

Ak(l, X)

n t
= E Bi;S «(t, x){sz(t, x) +/ e_("f'””“j)(t_a)/F3j(t_a’ X, y) {FA/'(‘I’J’)
J=1 0 Q

+ / O'j(b)ﬂ'lj(b)/ [2;(b,y,2)Aj(a — b,z)dzdb + Fp,(a,y) + / y(b)mo(b)
0 Q 0
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N / I'4j(b,y,2)Bj(a - b, z)dzdb} dyda},
Q

and
By (1, x)
:ck{F,k(t, x) + /Ot e~ Witduter)i=a) /Q 3t — a, x,y) [FAk(a, y) + /Oa ow(b)
X 11(b) /Q Low(D,y, 2)A(a — b, z)dzdb + Fg(a,y) + /O u V(D)1 (D)
X /Q Ly(b,y,z)Bi(a — b, z)dzdb] dyda}.
Let
A1, x) :an‘ﬁk S, x){FIj(t, x) + /0 t g WroryFe)i=a) /Q T3t - a, x,y)
i
X [Fa(a,y) + F B,-(a,y)]dyda},
and

t
BY(t, %) =ck{F1k(t, x) + / e~ rorTai=a) / T3(f — a, x,Y)
0 Q
X [Fa/a,y) + Fp/a, y)]dyda}-

Then it is obvious that A{”(z, x) > 0, B”(t,x) > 0. Now we assume that A" (¢, x) > 0, B{"(t, x) > 0
(m € N) for e? > 0, r) > 0 and (¢, x) € [0, T] x Q. Then

Al(<m+1)(t’ X)
n t a
=400+ BySi, x){ / g2 / T3t - a, m){ / 7 (b)
j:1 0 Q 0

xm6) [ Tolby. A= b.axdzds + [ yyims®) [ Tobn2
Q 0 Q
x BY"(a - b, z)a’zdb} dyda},

and

t a
:Bg))(f, x) + Ck{ / e~ ctoute)li=a) / I3 (t —a, x,y) {/ oi(b)m (D)
0 Q 0

></sz(b,y,z)A,(cm)(a—b,z)dzdb+/ )’k(b)ﬂzk(b)/r4k(b,y,2)
o 0 o
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x B"(a - b, z)dzdb] dyda}.

From the positivity of B, o and 4, together with the positivity of I'y, I's, and I'y, it follows that

AP, x) - AV(2, %)
n t a
:E Bi;S i(t, x){ / o~ Wito2jc))(1=a) / T3t - a, x,y) {/ o (b)
o 0 Q 0

x 11;(b) /Q (b, y, AV (a — b, z)dzdb + /0 ' y(b)(b) /Q T.(b,y,?)
x B(a - b, z)dzdb] dyda}
>0,
and

B (1, x) - BY(t, x)

t a
:Ck{/ e_(””éz”c")(t_a)/Fsk(f—a, x,y)[/ O'k(b)ﬂlk(b)/rzk(b,y,Z)
0 Q 0 Q

a

x A% (a — b, 7)dzdb + / V(D)o (b) / Ty(b, y,2)BO(a - b, z)dzdb} dyda}
0 Q
>0,

which lead to CV(z, x) — CO(t, x) > 0 for (¢, x) € [0, T]x Q. We assume that C"(t, x) — C™ V(¢, x) > 0
for all m > 2, that is, A\ (7, x) — AV"""(¢,x) > 0 and B{" (1, x) = B" "(t,x) > 0,k = 1,2, ...,n. Then,

A"V, x) = A2, x)
n t a
:§ BkjSk(t, x){ / e—(ﬂj+52j+cj)(t_a) / F3J(t —-a, X, y) (/ O-](b)
=1 0 Q 0

x 11,(b) / D2(b,y,2) [A"(a - b,2) - A" P(a - b,2)] dzdb + / y,(b)
Q 0
X 12,(b) / I4j(b,y,2) [Bi-m)(a -b,72)— Bg-m_l)(a - b, Z)] dzdb) dyda}
Q
>0,
and

B"V(t,x) - B{"(t, x)

t a
:Ck{/ €_W+62k+ck)(l_a)/F3k(f—a, XJ)(/ O'k(b)ﬂ'lk(b)/FZk(bay,Z)
0 Q 0 Q

a

x [A{"(a - b,2) — AV "(a - b,2)] dzdb + / V(D) (b) / Cy(b,y,72)
0 Q
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x [B(a-b,z) - B{" "(a~-b,2)| dzdb> a’yda}
>0.
Hence applying mathematical induction, we show that the sequence {C"™}5 is monotonically increas-
ing.
Next, applying the contraction mapping principle, we show the sequence {C"™}§ converges to
C(t, x) for any (z, x) € [0, T] X Q as m approaches infinity. To this end, we define a variable
C™(t, x) = e MC™(t, x), for some A € R,.

By the definitions of A" and B, we have

A‘im+l)(t’ X)
n ¢ t—a
=AY (1) + ) Bkjsk(l’x){ / e e / F3j(a,x,y){/ 71
= ° ? "

< 11,(b) /Q Lay(b,y, ) DAY (¢ - a — b, 2)dzdb + /O - ¥ i(b)ma;(b)
X /Q T4(b,y, 2)e "B (t —a - b, z)dzdb} dyda},
and
BV (1, x)
=e "By (t,x) + ck{ /0 g tnsinson /Q T5i(a, x,y) { /0 " rbymud)
x /g To(b, y, 2)e A (t — a — b, 2)dzdb + /O Yi(b)m(b)

x / Cu(b, y,2)e I B™(t —a — b, z)dzdb} dyda}.
Q

For any m € N,

A (m+1) A (m)
Ak - Ak

n

t t—a
< E BkjSAk{ / o~ (i+o2j+c)a) / I55(a, x,y) {/ o j(b)ryj(b) / (b, y,2)
0 Q 0 Q

J=1

t—a
x e "D dzdb + / y(b)my;(b) / L4j(b,y, Z)e_/l(ﬁb)dzdb} dyda}
0 Q

X J[C = ¢

BS T+ A A
<Y S EICT = C N,
j=1

Mathematical Biosciences and Engineering Volume 17, Issue 6, 7248-7273.
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where S; = max |S(z, -)ly, and
1€10,7]

S(m+1) 5(m)
Bk - Bk

t t—a
Sck{/ €_w"+62k+ck)a/r3k(a, x,y)[/ O'k(b)ﬂlk(b)/rzk(b,y,z)
0 Q 0 Q

t—a
xé“mﬁ%+/ nwmmq/mwmmﬂW%w4WM}
0 Q

X J[C™ = C Dy

SCk(O'k + )

A A(m—1
SEIC - C D,

Hence,

A(m+1 A A A(m—1 Al A0
ICD = EPlly < KAIC™ = EU DYl < KFICY = CO

n A
S (G ity P
where K, = max {M,,N,}, M, = mEX{ZW}’ N, = ml?x{"‘(“/{‘—;”‘)}. Therefore, for any
=
my > nmy, my,myp € N,
i

A A K/l A(l A(0
[C0) = C2lly < L6 = CO
—

We choose A sufficiently large such that iw < 1 and Ck(‘7+;yk) <1forallk =1,2,...,n, then
j=1

K, < 1. Hence, [|C™ — C™)||, — 0 as m, — oo which implies that C™ — € and thus C™ — C as
m — oo. Furthermore, we have A,((m) — Ay and B,(c’") — Bifork =1,2,...,nas m — oo. Since sequence
{C (’")}ff i1s monotonically increasing, we obtain A; and By are positive for k = 1,2, ..., n.

By (2.4) and (2.5), together with the positivity of eg, r,?, Ay and By, we conclude that e (7, a, x) and
ri(t, a, x) are positive. For the positivity of [, we prove this by contradiction. Suppose that there exist
Xxo € Q and 1y = inf{r € R,|[(¢, xp) = 0} such that

Ol (ty, xo0)

I t, :0, I t, 0’
«(to, X0) (1, x0) > ot

<0, t€]0,1).

By the third equation of system (2.3), we can easily obtain

0L (1o, xo)
ot

fo
=Fy,(to, x0) + Fp (20, X0) + / O'k(a)ﬂlk(a)/ I'oy(a, x0, Y)Ai(to — a,y)dyda
0 Q

]
+/ 7k(a)ﬂ2k(a)/r4k(aa X0, Y)Bi(ty — a, y)dyda
0 Q
>0.

This leads to a contradiction. Hence, for any ¢ € [0,T], we have (S(¢,-),e(t,-, "), I(t,-), r(t,-,*)) €
XX Y X X! X Y. O
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Let Ni(t) = [, [Sit, ) + [; et a, x)da + L(t,x) + [; ri(t, b, x)db] dx denotes the total popula-

tion at time ¢ in group k and region Q.

Theorem 3.2. If
lim e (t,a,x) =0, blim r(t,b,x) =0,
a—+oo —+00

forallt >0, x € Q, the region 11 defined by

A
Il = {(Sk,ek,lk, r) | Ny < ﬂ—ﬂm},
k

is positively invariant for system (2.3).

Proof. Following condition (3.4) and the equations of system (2.3), we have

aSk(t’ x) /'00 aek(t’ a, X) aIk(t7 x) /‘X’ ark(t7 b’ x)
ot +0 ot da+ ot +0 ot db

=d 1 AS i (1, x) + doy / Aei(t,a, x)da + d3y AL, x) + dy / Ar(t, b, x)da
0 0

‘ “ dei(t,a, x) °°
+ Ay — ,leSk(I, X) — jEZI BkjSk(t’ X)Ij(l, X) — /0 Tda - /0‘ o(a)

X e (t,a, x)da — / (U + oex(t, a, x)da + / o(a)ei(t, a, x)da
0 0

“ or(t, b,
ri(t x)db

— (g + 0ok + ci)i(t, x) + / vi(b)ri(t, b, x)db — / b
0 0

— /O‘x’ vi(b)ri(t, b, x)db — /O‘X’ wiri(t, b, x)db

=d 1 AS i (1, x) + dyy /000 Aei(t, a, x)da + d3 AL, x) + dy /0°° Ar(t, b, x)da
+ Ay — S (2, x) — /0ka + 01ex(t, a, x)da — (g + 621 (2, x)
- /0°° wiri(t, b, x)db

<d AS i (t, x) + do /0°° Aer(t,a, x)da + ds AL(t, x) + dy /000 Ari(t, b, x)da

+ A — S (2, X) — pge / ex(t,a, x)da — i li(t, x) — py / ri(t, b, x)db.
0 0

(3.4)

Noting the Neumann boundary conditions of system (2.3) and using the Gauss formula, we derive

/dlkASk(t,x)dxz// doyrrei(t, a, x)dadx
Q aJo

= / dy AL (8, x)dx = / / dy.Ari(t, b, x)dadx = 0.
Q QJO
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It follows that

dN(2)
dt
:/ 8Sk(t’ X) + / aek(t’ a, -x)da + alk(ta -x) + / ark(ta b7 x)db dx
o ot 0 ot ot 0 ot

< / {Ak — Wi {Sk(t, X) + /°° e(t,a, x)da + I (t, x) + /OO r(t, b, x)db] }dx
Q 0 0

=AilQf — N (1).
Thus if N (1) > %|Q|, then % < 0. Moreover, we observe the ordinary differential equation

dN (1)
dt

= Ap|Qf — e Ni (),

with general solution

A A
<Mm:-ﬁgu{mmy_imqu,
Hk Hk

where N;(0) means the initial value of total population in group k and region Q. By applying the
standard comparison theorem, we have for all r > 0,

A A
Ni(®) < 25100, if N(0) < ZXq.
Hi Hi

Hence, I1 is positive invariant for system (2.3). O

The existence and uniqueness of the solution of model (2.3) follow from Banach-Picard fixed point
theorem.

Theorem 3.3. Let initial functions satisfy (S°, €% 1°,7°) € X" x Y" x X" x Y". Then the system (2.3)
has a unique solution (S (t,-),e(t,-,-),I(t,-),r(t,-,-)) € X7 X Y X X} x Y fort € [0,T].

Proof. Solving equation S for system (2.3), we have

t
Sk(t9 -x) = FSk(t’ -x) + / e—,ltk(t—ll) / I_‘lk(l( —a, X, y)[Ak - Ak(a’ )’)]dyda, (35)
0 Q

for (¢, x) € [0, T]xQ, where Fy (t,x) = e fQ (2, x, y)Sg(y)dy. From (3.1)—(3.5) and the definitions
of A; and B;, we have

Ai(t, x)

n t
=) Bkj{Fsk(t,XH / e =) / Tt — a,x,y) [Ar — A, y)] dyda}
=1 0 Q

t a
% {Flj(t, x) + /0' e—(/.lj+62j+c_j)(t_a) /.Q F3](t bl a, x’ y) |:FAJ.(a, y) + /O 0-](b)

X 11 ;(b) /Q [2;(b,y,2)Aj(a — b,z)dzdb + Fp,(a,y) + /0 Yj(b)m2j(b)
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X / I'4j(b,y,2)Bj(a — b, z)dzdb} dyda}
Q
:ﬁk[C](t, X), (36)
and

Bk(t’ x)
t a
:ck{Flk(t, x) + / e_(“"+62"+c")(t_a)/ [ (t —a, x,y) [FAk(a, y)+ / ow(b)
0 Q 0

X 714(b) / Coc(byys DA — by 2)dzdb + Fi(a,y) + / D)D)
Q 0

X / Ly(b,y,2)Bi(a — b, Z)dzdb} dyda}
o

:%k[C](t, X)’ (37)

where ¥, Fo : Z — C([0,T], X) are nonlinear operators for each k = 1,2,...,n. For the sake of
convenience, we define for each (¢, x) € [0, T] X Q,

t
Fe (t, x) Fs, + / e =) / it — a, x,y)Avdyda,
0 Q

t
Fp(t,x) = Flk(t,x)+/ e_("‘”‘sz“ck)(’_“)/ng(t—a,x,y)[FAk(a,y)
0 Q
+Fp(a,y)|dyda,
t
01(A) = / e ) / ['i(t = a, x, y)Aw(a, y)dyda,
0 Q
t a
Ox(Ap) = / g~ rroutenli=a) / [3(t —a, x,y) / o (b)mi(b)
0 Q 0

X / (b, y, 2)Ax(a — b, z)dzdbdyda,
Q

t a
O3By = / g~ Hirourent=a) / Tyt - a, x,y) / Yi(b)myy(b)
0 Q 0
X/ 'y (b,y,2)Bi(a — b, z)dzdbdyda.
Q
Then
FilCl = E BiilFc, — ©1(ADIFp, + ©2(A)) + O3(B))],
j=1

FulCl = clFp, + Ox(Ay) + O3(By)].

For any C, C € Z, we set C = C — C. Then, from the positivity of A; and By proved in Theorem 3.1,
we have

FilCl — Fix[C] :Zﬂkj{FCk [©,(4)) + O3(B))] - FDjGI(Ak) - 0(Ay)

J=1
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X [0:(A)) + ©3(B)] — ©1(A)[O:(A)) + Os(B))1}

SZﬁkchk [®2(Aj) + ®3(BJ')]

j=1

<> BulFc, (O, + G)ICllz,

J=1

and
FaulCl — FaulCl =ci[O@2(Ay) + O3(By)]
<cil®; + Os(IICllz,
where
t a
0, = / e~ (ctoute)(i=a) / (= a, x,y) / or(b)m(b)
0 Q 0
X / (b, y, 2)dzdbdyda,
Q
t a
6, = / e~ (ctoute)(i=a) / I3t —a, x,y) / YD)y (b)
0 Q 0
X / Ty (b,y,2)Bi(a — b, 7)dzdbdyda.
Q
Denote
m(T) =Y Bl Fe (T, )Ox(T. ) + Ox(T. )iy,
j=1
my(T) =cil©:(T, ) + O(T, ")y,
m(T) = max{m;(T), mo(T), ..., m,(T), mp (T), mpp(T), ..., mp,(T)},
and

T[C] = (7:11’ ‘7;12, cees Tlm 7:21’ 7—325 ceey ﬂn)[c] VASVA

Clearly, we can choose 7" small enough such that m(T) < 1 and myu(T) < 1 forall k = 1,2, ...,n.
Consequently, we have m(T) < 1. Then

I7C - FCllz < m(DIIC = Cllz.

Hence, applying contraction operator theorem [30], we conclude that ¥ has a unique fixed point
C = (A,A,,...,A,, B, By, ...,B,). From Theorem 3.1, (2.4) and (2.5), together with A.(t,x) =

Z,BkJ-S k(t, x)1;(t, x) and By(t, x) = cili(t, x), we derive the existence and uniqueness of the solution
=1
(S, ), et ), I(t,-),r(t,-,-) € XI x Y x X} x Y7 for system (2.3). ]

To further establish the global existence of the solution of system (2.3), we need the following
lemma.
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Lemma 3.1. [31]. The following problem

ow(t,
w(;t ») =d,Aw(t,x) + A — puw(t,x), xeQ,
0t 0 _ o e o,
ov

admits a unique positive steady state w* = % which is globally attractive in X.

Theorem 3.4. Let initial functions satisfy (S°, €%, I°,1%) € X" x Y" X X" X Y. Then the system (2.3)
has a unique solution (S (t,-), e(t,-,-), I(t,"), r(t,-,-)) € XT X Y X X X Y7 fort € R,.

Proof. To extend the domain of existence from 7 € [0, T] to t € R,, it suffices to show that the solution
does not blow up in finite time. In fact, by Theorem 3.1, we have that

aSk(l, X)
ot

for all # > 0 and x € Q. From Lemma 3.1 and the comparison principle, we get that S (¢, x) is bounded
above by the upper solution %

We now claim that e;(f,a,x) < +ocoforallt > 0,a >0, x e Qand k = 1,2,...,n. From (2.4), it is
sufficient to show that e,(z,0, x) < +oco for all # > 0 and x € Q. Suppose on the contrary that there exist
t, > 0 and x, € Q such that

< dlkASk(t, x) + Ak —/.lkSk(t, x),

lim ¢e(¢,0, x,) = +00.

t—t,—0

We then have from (3.5) that
limOSk(t, Xp) = —00,

t—t,—
which implies that S(z, x,) is negative in the neighborhood of #,. This contradicts to the positivity of
Sk, which has been proved in Theorem 3.1. Furthermore, from e,(r,0,x) = > B Skt x)1(t, x) and
=1
ri(t,0,x) = cili(t, x) in (2.4), we obtain [;(¢, x) < +oo and (2,0, x) < +co. And from (2.5), we get
r(t,a,x) < 4o forallt > 0,a >0, x € Qand k = 1,2,...,n. Thus, blow up never occurs, and we
obtain a solution (S (¢, ), e(t, -, -), I(t,-), r(t,-,-)) € X7 X YT X X} x Y fort € R,. O

Theorem 3.5. The solution semiflow ®(t) = (S(¢,-),e(t,-,-),I(t,-),r(t,-,)) + XI X Y! X X! X
Y7\(0,0,0,0) — X7 X Y7 x X7 x Y"\(0,0,0,0) of model (2.3) has a compact and global attractor
as condition (3.4) holds.

Proof. According to Theorem 3.2, we know that system (2.3) is ultimately bounded, which implies that
solution semiflow ®(7) is point dissipative on X} X Y7 x X" x Y7\(0,0,0,0). By Theorem 2.6 in [15],
we can get that ®(¢) is compact for any ¢ > 0. Thus, from Theorem 3.4.8 in [32], we further obtain that
®(7) has a compact and global attractor in X X Y7 X X7 x Y7\(0,0,0, 0). O

4. Global stability

4.1. Existence of equilibria
It is easy to see that model (2.3) has a unique disease-free steady state £ = (§,0,0,0)" where
S = (Sl,gz,...,gn)T andSk = ﬁ, k= 1,2,...,1’1.

Hi
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We denote E* = (S*,e*(-),I*,r*(-))T as the space-independent endemic steady state of (2.3),
where S* = (57,83,..8)7, ¢'() = (€[(), &) mei), I = (ILL,..,I)7 and r*() =
(1), 75(), ooy 75())T. Then, E* satisfies
(

Ak—,ukSZ— E BkjS]th :O,
j=1

de; .
ec’;(“) = —[04(@) + 1 + Suilel(a),
t
/ or(a)e(a)da — (ug + 6o + el + / Y(b)ri(b)db = 0, 4.1)
0 0
dri(b
% = ln®) + D),

e, (0) = E BiiSilis 1 (0) = cily.
\ J=1

We denote fi.(I*) = Z,Bkjl;f R = Ry, (1) = #k+’]\{([*) : RT = Ry, k = 1,2,...,n for brevity. By
j=1

solving the Eq (4.1), we get
Sy =), ela) =S ma)fil), 1) =cmu®d), (4.2)

where m1(+) and 7y () are given in (2.4) and (2.5), respectively. Substituting (4.2) into the third equa-
tion in (4.1) and rearranging it, we have

Lih(I") fi(I")
(x + Ok + cx) — ckPy

I = 4.3)
where L, = foooak(a)mk(a)da and P, = foooyk(b)mk(b)db. Let us define a matrix-valued function M(x)

L;Biih; . .
on R” to R™", where M(x);; = (/H—&—%’ x = (x1, X2, ..., x,)T € R". Then, (4.3) is equivalent to

I'=MIHI. (4.4)
On the existence of the endemic equilibrium E* of system (2.3), we prove the following theorem.

Theorem 4.1. Let M° = <%>m If p(M®) > 1, where p(M°) represents the spectral radius

of M°, then system (2.3) has a space-independent steady state E*.

Proof. From (4.4), we only need to show that the nonlinear operator M(x) := M(x)x, x € R’, has at
least one positive fixed point x* € R’. We define IM(x)| = {n];ax |M(x);|, where M(x); denotes the
<k<n

k-th entry of vector M(x). Then, M(x) is monotone increasing with respect to x € R’ and uniformly

AkLk
bounded above by {Isllfls)z Garnte—aPr |

It is obvious that M(0) = 0 and M(0) is the strong Fréchet derivative of M(-) at the origin. Since
M) = M°, we have p(M(0)) > 1. Thus, it follows from the Perron-Frobenius theorem (see [33])
that p(M(0)) is a simple eigenvalue of M(0) corresponding to a strictly positive eigenvector, and there
exists no nonnegative eigenvector of M(0) corresponding to eigenvalue 1. Hence, we apply Theorem
4.11 of [34], to conclude that operator M(-) has at least one positive fixed point x* € R”. O
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4.2. Global stability of equilibria
Theorem 4.2. Forallk =1,2,...,n, if

/ o (O)m(0)do < 1, / Yi(O) o (6)dO < 1,
0 0

n -
>-SiBix
h = =
where @ = oz

steady state E is globally asymptotically stable.

Proof. We construct a Lyapunov function

V(t)y = Vi),
k=1

where
Vi(®) = / [Vik(t, x) + Var(t, x) + V(2 x) + Vi(t, x)] dx,
Q
Viet, x) = 8 [Sk(_t’ %) —1-In Sk(_t’ x)} ,  Vult,x) = /oo/\(k(a)ek(t, a,x)da,
Sk Sk 0
Var(t, x) = apdi(t, x), Va(t, x) = / Yi(b)ri(t, b, x)db,
0
and - ) - :
i@ = / ™D g, ) = / 02D g,
a mi(a) b mor(b)

Taking the derivation of Vy,(¢, x) along the trajectory of (2.3) with respect to ¢, we have

Vi Si(t,x) =8, 0S,(1, x)
o Sit,x) ot

Ay [Sit0) = 8] 88 x) e [Sit ) -5 L
= S0 - S0 + Sk?kjlj(t’ x)
= Sut.0)) Bt x).
=1

Recalling (2.4), we can rewrite Vy(t, x) as follows

t
Vor(t, x) =/ Xt —a) / I (t — a, x,y)Ar(a, y)dyn i (t — a)da
0 o

® +1
+ / Yela+1) / FZk(aH,x,y)eg(a,y)ddea
0 Q

m(a) '
Thus, we calculate % along the solution of system (2.3) and get

oV *
— O ) + / (i@ = |+ 01 + o@) — s yada) §
0

4.5)

mi(+) and 7y () are given in (2.4) and (2.5), respectively, then the disease-free

(4.6)

4.7)
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X ek(l, a, x)da. (48)
Similarly,
0V3k o o0
5 "wdnsl )+ oy | od@edt,a, xyda+ay | ydb)rdt, b, x)db
0 0
- ZS Bid(t, x) — axeli (2, x). (4.9)
j=1
From (2.5), we get
t
Var(t, x) = / Ui(t — b) / Ty (t — b, x,y)Bi(b, y)dymy(t — b)db
b
/ (b + I)/ Cy(b + t, x,y)r) (b, y)dy Mdb.
7ok (b)
Thus,

ov.
;4’{ = Yi(0)By (1, x) + / {0i(B) = [pic + 7i(b) = dus] Y (b) } 1i2, b, x)db. (4.10)

Hence, comblnlng (4.7)-(4.10), we calculate the derivative of V,(¢) along the solution trajectory of
(2.3) as

84t 0P e [Silt, x) = 5]
il "/ TS2m _/g S:.) d“/g[""(o)_”

X Ai(t, x)dx + /[o,bk(O) — ay | By(t, x)dx + / /Oo{a/kO'k(a)
Q QJo
— [ + 01k + ok(a) — durlyi(a) + xi(a))ex(t, a, x)da

+ / / {ay(D) — [ + yi(b) — dag (D) + Y (D)}
QJO

X 1 (t, b, x)db + / $¢> Pt x)dx — / > 8 Bidi(t, x)dx.
o g Q5

Using (4.6), we yield that
n s 12
dv s [ 18808 / Skt x) — 8]
— == duS d
dt Z ek / sz Si(t, %) *

+Z / Dei(0) = 11Ak(z, x)dx + / [x(0) — e ] By(t, x)dx.

Thus, from (4.5), we have
Xe(0) <1, ¥(0) < ay,

which implies the global asymptotic stability of disease-free steady state E. O
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Theorem 4.3. If p(M°) > 1, lim e(t,a,x) = 0 and blim r(t,b,x) = 0 forallt > 0, x € Q, then the
a—+oo —+00
space-independent steady state E* is globally asymptotically stable.

Proof. We define g(x) = x — 1 — Inx, clearly, g(x) is always positive for x > 0 and g’(x) = 1 — %
Consider a matrix D = (Bi)uxn With entry B; = Bi;LiS;I; and a digraph G = (U, H) which contains a
set U = {1,2,...,n} of vertices and a set H of arcs (k, j) leading from initial vertex k to terminal vertex
J» then, we denote a weighted digraph as (G, D) for which each arc (j, k) is assigned a positive weight
Br . Furthermore, we denote D as the Laplacian matrix of matrix (G, D). Then, the irreducibility of
matrix (B;).x, implies that D is also irreducible. Let g; denote the cofactor of k-th diagonal element
of D. And we construct a Lyapunov function as the following form

W) =Y aWi),
k=1

where
Wi(r) = /[Wlk(f, x) + Wor(t, x) + Wa(t, x) + Wy (2, x)]dx,
Q
Wik(t, %) = LiS}g {Sk(t;xq L Wt ) = / W@ {M} da,
Sk 0 ek(a)
Waelt. x) = Iig {I"(t;x)} L Wax = / Wy (B)ri(bg {”‘(’—b”} db,
Ik 0 rk(b)
and oy oM
_ TS _ TR S
Yi(a) = /a (s ) @ ds, Yu(b)= / Yi(s) Zk(b) 4.11)
For convenience, we denote Ji(t, x) = Z,Bk ili(t, x) and J; = Z,Bk il Taking the derivation of Wy,

j=1
along the trajectory of (2.3) with respect to 7, we have

ank % 1 1 ﬁSk(t, X)
o [S_k CSJtx) | ot
=L, {1 Si | a8, x) — [Sk(t, ) = 7] + LS} J;
Si(t, x) Sk, x)
y { /L) N VRS V1 GF Y1 x)} . “412)
I Sty A

Calculating the derivative of Wy along the solution of system (2.3) yields

0W2k _ /oo « 2 ek(t’ a, x)

:/"" ¥ ir(a) [1 - M} {dzkAek(t a, x) — 2ek(f a, x) — [ug + 01
0 ex(t,a, x) oa

+ o(a)]ew(t, a, x)}da
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- / wqf]k(a) ll— (@) }dzkAek(t,a,x)da— / W\qu(a)e;;(a)
0 0

ex(t,a, x)

elt,a, x 1 0
s [ . 1} [ﬁ Fa %) i+ Ou “"‘(‘”] da

_ / M‘I’lk(a) {1— (@) }deAek(t,a,x)da— / m‘Plk(a)e}:(a)
0 0

ex(t,a, x)

i ei(t,a, x) J
(9ag e;(a) a

_ / W, (a) [1 _ e:zk(z)x)} dyAex(t, a, x)da + ¥1(0)el(0)
0 s Uy

x g {—ek“’ . x)] v / I [ek(t’ = X)} L Wy@ei(@)] da
0

e;(0) e;(a) da
S (1, x)Ji (2, x)]

® ex(a)
= ¥ - —*k dyAe(t,a, x)da + LS J;
/o lk(a)|: ek(t,a,x)} wAer(t,a, x)da + LS, kg|: ST

¥ / " u@el(a) [1 _alhan) el a x)} da. (4.13)
0

ey(a) ex(a)

Similarly,

dy A (1, x) + / o(a)er(t, a, x)da — (L + Oy + ¢i)
0

Wy _[,_ &
o I(t, x)

X I (1, x) + /myk(b)rk(t, b, x)db}
0

) {1 T } {d3kM"(t’ x) + /OOO'k(a)elt(a) {ek(t’ ax _L&n)
0

I.(t, x) e;(a) I;
rk(t, ba x) Ik(ta x)
- db
ri(b) I ] }

+ /O Yi(b)r(b)

. o0 (1, l,a,
_ [ 3 Ik(t/j 5 dy AL (2, X) +/0 or(a)ei(a) [1 _ k(IZX) i €k(ez((;)x)

Liex(t, a, x) 0 . Ii(t,x) r(t, b, x)
LG, x)e;:<a>] dat /0 7o) {1 BARC

Liri(t, b, x)
- ————\db, 4.14
Ii(t, X)r}i(b)] @19

and

oW. © “(b
e / Wor(b) {1 __1i® ]aukArk(r, b, x)db+PkckIZg[
0

Ii(t, x)
0l rk(t’ b, x)

I

0 . r(t, b, x) r(t, b, x)
+/0 Yi(b)ri(b) [1 - 0) +1n 2 0) ] db. (4.15)

Hence, combining (4.12)—(4.15), we calculate the derivative of W;(¢) along the solution trajectory of
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(2.3) as
D L /WS;y ;;;Izd -, / i@ >'W;;i - x;'2 ads
L /Q S k(;’k’z’;) i dx + ey /Q g [1"(; x)} dx + LkSkZﬂk,

* Ji(t, x) Sk S (t, x)Ji (2, x)
* Ij/sz [ . Sinx) In S:T ] / / o(a)e(a)

CWx)  Kedtax) o elta,x)
* lz Iy Ii(t, x)e;(a) +in e;(a) ] dadx + // Ye(b)ri(b)

% |:2_ Ik(t;X) _ Ikrk(tab*’-x) +1n rk(t*ab’x)
I; Li(t, x)ri(b) r(b)

VS t, x)? Vet 2
:_LkdlkS | k( X)| —————dx —// deek(a)‘Plk( )l ek( @ X)| dadx

} dbdx

Q k(a s X )
V1, (t x)l2 [Vr(t, b, x)l2
—du ) 12"( " dx — / / dyri (bW (b) ,f( ™ dbdx

[Si(t,x) =S k] .
~ L ’“/g Sy ke Jk/ {ka x)} / / 7a)

. Lie(t,a, x) 21kt b, x)
X ey (a)g |:Ik(t Ve )] dadx — // Ye(D)ri(b)g |:Ik( ) k(b)} dbdx

— LS. / {g {—Ik(t;x)} p [—Jk(t;x)} }dx.
Q Ik Jk

By Theorem 2.3 in [35], the following identity holds

qu{LkSZJZ‘/ [g (Ik(ltlx)> -8 (Jk(;lx)) ]dX} =0.
k=1 Q k

Hence, together with the property of g, we have d—W < 0. Furthermore, the strict equality holds only if

Sk, x) =S}, e(t,a,x) = e;(a), Ik(t x) = I, and rk(t b, x) = r;(b). Thus, T* = {E"} C Q is the largest
invariant subset of {(S e, l,r): O} and the Lyapunov-LaSalle invariance principle implies that
the endemic equilibrium E* is globally asymptotically stable when p(M°) > 1. O

5. Numerical simulations

In this section, we present numerical examples to demonstrate the validity and applicability of our
main results, Theorems 4.2 and 4.3. For simplicity, we consider the case of two groups, a normalized
I-dimensional space (€2=[0,3]) and a normalized maximum age (a=2). Firstly, we fix some parameter
values as follows,

dll = 02, d21 = 0.5,d31 = 04, d41 = 0.1,,[11 = 06, c = 0006,
dlz = 04, d22 = 0.1,d32 = 0.3,d42 = 0.2,/.[2 = 07, Cyr = 0.006.
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Then, we take the initial functions as

S?(x) =0.8 X (1 +0.3 X sinmx), e?(a, x)=12x%xe™

I(x) =0.5%x(1.5+02xsinnx), r(a,x) = 1.5xe™
Sg(x) =0.7x (1 +0.2 X sinnmx), eg(a, x)=13xe™",
I(Z)(x) =0.6 X (1.5 + 0.3 X sinmx), rg(a, x)=14xe™

(a) (b)

Figure 1. Time evolution of infective population /;(¢, x) and I,(¢, x) for system (2.3) with
parameters (5.1).

Example 5.1. If we choose other parameters as

A] = 3, ﬁ]] = 004, ,812 = 007, (5]1 = 02, 521 = 09,
A2:2, ,821 _006 ,822—005 512:05 522208
oi(a) = 0.003 x (1 +sin “22), y;(a) = 0.1 x (1 + sin “2%),
oa(a) = 0.002 x (1 +sin “25), y,(a) = 0.2 x (1 + sin “2%),

(5.1)

then we have

Jo @101(®)m11(6)do ~ 0.00051 < 1, [ y1(0)m21(6)dO ~ 0.0817 < 1,
Jo @202(@m12(0)d6 ~ 0.00027 < 1, [, v2(0)man(6)d6 ~ 0.13319 < 1.

In this case, from Theorem 4.2, we expect the disease-free steady state E to be globally asymptotically
stable. In fact, in Figure 1, the infective population I,(t, x) and I,(t, x) converge to zero over time.

Example 5.2. If we choose other parameters as

A] = 5, ﬁ]l = 099, ﬁ]z = 097, 511 = 0002, 512 = 0005,
Ay =77, B =0.96, B2 =0.98, 621 = 0.009, 6, = 0.008,
o1(a) =35x% (1 + sin 2 5)”) vi(a) = 0.1 X (1 + sin 42 5)”)
o>(a) =30 X (1 + sin = 5)”) v2(a) = 0.2 X (1 + sin = 5)”)

(5.2)

then we have p(M®) ~ 3.89217 > 1. In this case, from Theorem 4.3, we expect the space-independent
steady state E* to be globally asymptotically stable. In fact, in Figure 2, the infective population I,(t, x)
and I,(t, x) converge to the positive distribution over time.
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(a) (b)

Figure 2. Time evolution of infective population 7;(¢, x) and I,(¢, x) for system (2.3) with
parameters (5.2).

6. Conclusions

In this paper, as an additional structure of the system, we focus on the spatial diffusion of the
population. Models with spatial diffusion allow individuals to move to adjacent positions through a
random walk process, this is a key factor in considering the geographical spread of infectious diseases.
Firstly, we propose the n-group diffusive SEIR epidemic model with age-dependent latent and relapse,
it is a generalization of the model in [27] to a spatially diffusive system. Then, we investigate the
positivity, boundedness, existence and uniqueness of solution and the existence of compact global
attractor of the associated solution semiflow for this system. For these results, we use the method of
constructing Picard sequences, Banach-Picard fixed point theorem and theories of partial functional
differential equations. Thereafter, we establish the existence of disease-free and endemic steady states
based on Perron-Frobenius theorem. we utilize appropriate Lyapunov functionals, graph-theoretical
results and the LaSalle’s invariance principle to prove the global stability of disease-free and endemic
steady states. Thus, we presented the results of numerical simulations to verify the validity of our main
theorems. This is important from the viewpoint of applications.

In this epidemic model, we are concerned with two kinds of spatial heterogeneity: the patch struc-
ture and spatial diffusion. Furthermore, age-of-latent and age-of-relapse are included into the epidemic
model which is appropriate for diseases such as tuberculosis and herpes virus infection. Dynamical
results obtained in this paper provide theoretical foundation for seeking effective measures to prevent,
control and study disease transmission.

The expressions of basic reproduction number and endemic steady state depends on space are not
analyzed in this paper owing to the complexity of model. In addition, how to improve the sufficient
conditions that ensure the stabilities of steady states and make them be depended on basic reproduction
number is also need to investigate. We leave these issues for future research.
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