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Abstract: Mathematical modeling for cancerous disease has attracted increasing attention from the
researchers around the world. Being an effective tool, it helps to describe the processes that happen
to the tumour as the diverse treatment scenarios. In this paper, a density-dependent reaction-diffusion
equation is applied to the most aggressive type of brain cancer, Glioblastoma multiforme. The model
contains the terms responsible for the growth, migration and proliferation of the malignant tumour.
The traveling wave solution used is justified by stability analysis. Numerical simulation of the model
is provided and the results are compared with the experimental data obtained from the reference papers.
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1. Introduction

World Health Organization (WHO) reported in [1] that cancer is the second leading cause of death.
Worldwide, nearly 1 in 6 deaths is due to cancer and about 9.6 million deaths registered in 2018. There
are more than 100 types of cancer and in all the types the abnormal cells are dividing constantly and
form the growths called tumours [2].

Cancerous tumours are malignant and they invade the surrounding tissue, moreover, the tumours
can spread to other parts of human body, producing the new, metastatic, tumours. The International
Agency for Research on Cancer (IARC) classifies the malignancy of tumours by grade I-IV. The brain
tumour is considered to have the most severe health consequences. Diagnosis of the brain tumours
is very difficult and almost impossible for being detected in the early stages. According to [3], the
brain cancer and cancer of the central nervous system (CNS) appear in 1.6% of new cases and 2.5% of
deaths out of all cancers. According to statistics published in [4] in January 2020, approximately 18
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000 people may die from brain and CNS tumours within a year.

Glioblastoma Multiforme (GBM) is an aggressive malignant brain tumour rated by WHO as a
grade IV astrocytoma, i.e. of the highest grade and most malignant of all gliomas [5]. The patients
with GBM have a very low chance to overcome the disease, the median survival time is approximately
14.6 months. GBM is highly invasive and the tumour cells easily dissipate into the normal brain tissue.
Consequently, researchers around the world are intensively investigating the questions about the brain
neoplasms such as formation, growth, invasion and spread of the tumour. Mathematical modeling of
the tumour dynamics and treatment becomes increasingly popular since it allows researchers to study
those problems by formulating and testing various clinical scenarios based on plausible assumptions.
Earlier mathematical models on the GBM growth can be found in [6—8] while modeling efforts on
GBM treatments can be found in [9, 10]. Readers interested in modeling GBM growth and treatments
may benefit from the review papers on the subject in [11, 12] and an excellent chapter in [13]. More
interesting and complicated mathematical models for GBM take into account the natural behavior of
the tumour e.g., hypoxic and normoxic cell migration [14], phenotypic switching or so called ”go-
or-grow” cells strategy [15, 16]. Most of existing modeling efforts focused on qualitative comparison
of model simulation results to clinical observations. One of the rare exceptions is the recent GBM
growth modeling effort presented in [17] which contains careful model formulation, data validation
based on the data published in [18] and a rigorous mathematical study of the existence of a traveling
wave solution in the model describing the growth of the GBM.

A well formulated and data-validated mathematical model may produce tumour growth pattern
mimics the experiment’s result and predict future tumour growth by simulation. The logistic, Gom-
pertz, Malthusian, von Bertalanffy and Bernoulli growth functions are widely used in mathematical
models of tumour growth [19, 20]. To accurately describe tumour spatiotemporal dynamics, appro-
priately selected spatial terms are needed in a serious mathematical model. As a result, most existing
GBM growth and/or treatment models take the form of reaction-diffusion equations (RDEs) or systems
of PDEs involving RDEs, see e.g. [12,16,17,19,21-23].

The growth of GBM can be described by the reaction-diffusion equations or proliferative-invasive
models. Many of such invasive phenomena in biology, medicine, ecology and the problems in physics
and chemistry with a traveling wave solution were observed since 1937 when two important papers
were published [30]. R. A. Fisher in his work "The wave of advance of advantageous genes” [24]
considered the following nonlinear equation

ou 0u

E :Dﬁ+g(u), (11)

where g(u) = ku(1 — u). He found that the traveling wave solution exists for all ¢ > ¢y = VDk with c a
wave speed.
At the same time A.N.Kolmogorov et al. [25] published the proof that solution under initial condi-
tion
u(0,x) =0,x < 0,u(0,x) =1, x>0
converges to the travelling wave w of minimal speed ¢y in sense that u(t, x + m(t)) — w(x) for
t — oo and m(r) taken appropriately, and m(t) — cy. Contributions to the study of solution and its

convergence were made by the different authors e.g. [26,27] but the papers [28,29] by Aronson and
Weinberger in 1975 resolved the speed discussion [30]. They introduced the notion of asymptotic
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speed of propagation of disturbances and proved that even in higher space dimension, this speed is the
minimal velocity of the travelling plane wave. All these influential papers gave rise to publications
in application of the reaction-diffusion equations in biology. The equation itself is now referred in
the literature as a Fisher-KPP equation (FKPP), Fisher’s equation, Kolmogorov—Petrovsky—Piscounov
equation or KPP equation.

The travelling wave u(x, t) represents a solution of FKPP equation and is assumed to have the same
shape at all time and the speed of this wave ¢ appears stationary, i.e. it can be written in the form
of [31] u(x,t) = u(x — ct) = u(z), z = x — ct. The dependent variable z is called the wave variable.
After substitution it into the PDE, the equation in x, # becomes an ordinary equation in terms of z. The
Fisher’s equation is invariant in x and thus u(x, t) = ¢(x + ct) is also a wave solution with the boundary
conditions ¢(—co0) = 0, ¢(c0) = 1. If we consider the radius instead of x then the Fisher’s equation in
radially asymmetric disk case looks as follows

_:D_+D__+pu(1—i). (12)

The term ];% depends on r and therefore the substitution z = r — ¢t does not lead to ODE. Wave
solution takes time to form and emerges in locations distant from the origin. For large values of r, the
solution of Eq (1.2) tends asymptotically to a traveling wave solution with a certain speed ¢ of the
classical Fisher’s equation.

The first models of GBM growth appeared in [32, 33] and improved in [8]. In [8], GBM tumor
growth is described by the following Fisher equation [20, 34],

du :DV2u+pu(1 —i). (1.3)
ot Uy

Here u(r, t) describes GBM cell density at time ¢ in position r, p is a constant rate of GBM cell pro-
liferation, uy, is GBM cell density upper limit (carrying capacity) and D is the GBM cell diffusion
rate.

The model presented in [18] takes into account the different behavior of proliferating and invasive
cells. The tumor core is modeled as a sphere increasing in radius at constant rate v, and shedding
invasive cells at rate s. The invasive cells u;(r, ) diffuse and proliferate as in Fisher equation but move
away the tumor spheroid at speed v;. The model of Stein et al. [18] is as follows

i _ g2y, + ou; (1 - ﬁ) — V.V, - u; + 56(r — R(1)) (1.4)
ot Uy

where the forces such as random diffusion, logistic growth, taxis, cells shedding from the tumor core
acting upon invasive cells ;. Again, D is the diffusion constant, u,, is the carrying capacity for the
GBM cell density, ¢ is a Dirac delta function, R(¢) is the radius of tumor core, R = Ry + v.t, Ry 1s
the initial radius of core. This model is motivated by experimental observations and the images taken
during the experiment were used for model validation and numerical analysis. Notice that the tumor
boundary represented by R(¢) is artificially described by a linear function of ¢ instead of as the wave
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front of a traveling wave of a RDE model in most other existing models. To overcome this major
shortcoming of the above model, a modified version of the Stein’s model for GBM is presented by
Stepien et al. in [17] as follows

u _ V-(D(l)Vu)+pu(l —l)—sgn(x)viv-u (1.5)
ot Uy Uy

which is a density-dependent convective-reaction-diffusion equation. Here, the logistic growth term
for the number of cells, the taxis term for GBM cells are kept, but the term for the cell shedding is
neglected. The diffusion is not constant but depends on density. It is shown that the model generates
traveling wave solutions accurately match the experiment images reported in [18] without the need of
assuming the tumor size growing linearly.

While logistic equation is mathematically preferred by theoretical modeling efforts due to the sim-
plicity of its quadratic function form, other growth functions such as the Bernoulli growth function may
fit experimental data equally well or even better. To this end, we consider one-dimensional convective-
reaction diffusion equation of GBM proliferation and migration with a generic growth function g(u).
Our choice for one dimensional model is motivated by the fact that it is simpler in analysis and fast
in numerical computations. Indeed, the previous study done by Stepien et al. [17] suggests that one-
dimensional density-dependent GBM models can better fit the real data than two-population GBM
model of Stein et al. [18].

The main purpose of this paper is to give a criteria for the existence of the traveling wave solution
for density-dependent reaction-diffusion equation with a generic growth function. Our main result,
Theorem 3.1, proves the existence of the traveling wave solution under the condition of

C > Cpin = 2D0)p + v;,

where D(0) is the diffusion level when there is no cell density, p is the intrinsic growth rate and v; is
cell migration rate. Finally, for the numerical simulations we choose the Bernoulli’s growth function,

|
re., g(u) = pu(l - (ﬁ)ﬂ ), u > 1, as it generalizes the logistic growth. We performed parameter

sensitivity analysis for the chosen diffusion and growth functions. The results are compared with the
experimental in vitro data provided in [18]. Numerical simulations reveal that the model is able to fit
the experimental data better when u is close to 3/2 compared to the logistic equation, i.e., when u = 2.

2. Model formulation

Motivated by the work of Stepien et al. [17], we consider the following density-dependent reaction-
diffusion equation with a general reaction function.

ou(x, t u u
(x.7) = V. (D(—) Vu) —sign(x)v;V - u+ puf(—) . 2.1
ot Uy S oo’ Upm
taxis
density-dependent diffusion ! growth function

Here u represents the invasive cells of the tumor at a position x and time ¢, uy, is the carrying capacity,
p > 0 1s the intrinsic growth rate, v; > 0 is the degree at which cells migrate. As in [17], inspired by
the experimental study of Stein et al. [18], we impose following conditions on the density-dependent
diffusion function:
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e (A1) D(i*) is a continuous and differentiable function;
e (A2) D(u*) is a positive and decreasing function for u* > 0, i.e., D(u*) > 0 and D’(u*) < O for
u* >0,

where u” = --. Examples include the following diffusion functions.

Dzu”
ar + u"’

D] — Dz tanh(au), D1 -

where Dy > D, a > 0, n > 1 so that D(u) is positive.
For the growth function we know that tumor cells grow fast if u is small and grow slowly as u
approaches its carrying capacity uy,. Thus, we impose the following conditions:

e (C1) f(0) =1 and f(1) = 0;
e (C2) f(u") is a decreasing function for u* > 0, i.e., f'(u*) < 0 for u* > 0.

There are many growth functions that satisfy these conditions. Let us define g(u) = puf (#) If
we choose f(u*) = 1 —u" thatis f () = 1 - 2 then g(u*) = pu’ (1 — ") is the logistic growth
function and the model (2.1) is the same as in [17]. We can choose f(u*) = 1 — (u*)*~!, u > 1, then
gu”) = puyu” (1 - (u*)“‘l) is the Bernoulli growth function. One can show that all of these choices

satisfy above conditions on the function f.
3. Traveling wave solutions
This section is devoted to the analysis of traveling wave solutions with a focus on rigorously estab-

lishing the existence of positive traveling wave solutions.
In one-dimensional Cartesian coordinates, the Eq (2.1) has the following form.

ou u\oPu 1 (u)\(ou 2 ou u

u
pt-=t, xypHx, — P u,
Upm

Let us substitute

and define a new parameter
Vi
p=

\/ﬁ

to obtain the following equivalent form of the Eq (3.1).

ou Pu ., (ou\  ou
E:D(u)@+D (u)(a) —pa+uf(u). 3.2)

We are seeking to find a traveling wave solution of the Eq (3.2) of the form
u(x,t) = h(x —ct) := h(y), (3.3)

where ¢ > 0 is the speed of the traveling wave and the function A(y) is defined on the whole real line R
and satisfies the following boundary conditions:

lim A(y) =1 and lim A(y) = 0. (3.4)
y—00

y—>—00
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By substituting (3.3) into (3.2) and applying the chain rule, we arrive at the following second-order
ODE with boundary conditions.

D(h)R" (y) + (¢ = pYH' (¥) + D' (h()H (7)) + h(y) f(h(y)) = 0. (3.5

By the choice of the function D we have D(h(y)) > 0. Therefore, by dividing the Eq (3.5) by D(h(y))
and setting k = dh/dy we reduce (3.5) to the following system of first-order ODEs.

N =k,
1
K = ———((c — p)k + D' (Wk* + hf(h)). 3.6
D@«cp) (W) + hf () (3.6)
Since f is monotone and f(1) = 0, the system (3.6) has two biologically meaningful steady-state
solutions: (h,k) = (0,0) and (h,k) = (1,0). Linearizing the system (3.6) around these steady-state
solution we compute the Jacobian matrices as follows.

0
h=ﬂ&®=L;_pJ
D(0) D(0)

| —

and

0 1
Jz = J(I,O): S p=—c |-

D) D(1)

(1
One can easily see that detJ, = ]10)21; < 0 since D(1) > 0 and due to the condition (C2) f is a
decreasing function. Therefore, we conclude that (1, 0) is a saddle point.
Similarly, we compute det J; = % > 0 and trJ; = % < 0 if we assume p < c. In this case,

(0,0) is either a stable node or a stable spiral. We must rule out the second case because oscillations
are not possible in the tumor cell dynamics. This implies we must require roots from the characteristic
equation of the Jacobian at (0, 0) be negative. An elementary algebraic derivation leads to the following
condition.

¢ > Cpin = 2+4D0) + p, (3.7
which in terms of the original parameters is equivalent to the following

C > Cpmin = 2D(0)p + v;.
Next, we aim to prove the existence of a traveling wave solution under the condition (3.7) that satisfies
yl_igo(h’ k) =(1,0) and yll_)rg (h, k) = (0,0). Thus, we need to construct a heteroclinic orbit connecting the

two steady-state solutions. To this end, we use phase plane analysis and construct a positively invariant
region to trap the unstable orbit emanating from the saddle point (1, 0).
Consider the line

Ly ={hk)y: 0<h<1,k=0}. (3.8)
Note that the horizontal line £ = 0 is A—nullcline of the system (3.6). Moreover, on L; we have
1
k' = ———(hf(h)).
B
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This implies that & < 0 on L; since f(h) > 0 for i € (0, 1). Thus, the direction fields on the line L; is
in the negative k direction.
Next, let us consider the line

L, ={(h,k): 0<h<1, k=Ah}, (3.9)

where A, is the more negative eigenvalue of Ji, i.e.,

_(c=p)+ (c=p)*-4D(0)

A = 3.10
I 2D(0) (3.10)
One can verify that A, satisfies the following equation
Ai(c = p) = =D(0)A} - 1. (3.11)

The normal vector to the line L, in the positive k direction is given by (-4, 1). Along L, the system
(3.6) is equivalent to

]’l/ = /l]]’l,

1
K=-50 ((c = p)ih + D'()(ih)* + hf (). (3.12)

Thus, the inner product between the normal vector to L, and the vector field gives us

1
(0, 1) (0 K) = =25 = s (e = P+ DAY + hf ()
___M (D) + (c = p)A; + D' (WAh + f(h)).

D(h)

Due to the relation (3.11) we have

h
(D (k) = =55 (A1D(h) = DO} = 1+ D'(W A + f(h))

h 2 ’
=50 (31D — D(O) + D' (W] + f(i) - 1).
Note that by monotonicity of the diffusion function we have 0 < D(h) < D(0) and D’(h) < O for
h € (0, 1]. Thus, we have % > (0 and Af[D(h) — D(0) + D’(h)h] < 0. Further, since f(0) =1 and fisa
decreasing function we have f(h) — 1 < 0 for & € (0, 1]. Therefore, the inner product satisfies

(-, 1) - (W, k) <0.

The last inequality means that the direction fields and the normal vector make an acute angle.

Finally, we define the line
Ly ={(hk): h=1, 4, <k <0}. (3.13)

It is easy to see that the direction fields across L; is in the negative & direction. Thus, the triangular
region L bounded by L, L, and L; is positively invariant.
Thus, we summarize our discussion in the following theorem.
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Figure 1. Phase portrait of the system (3.6) with the diffusion function D(k) as in (4.1),
f(h) = 1 —h*~! and parameters as in Table 1. The arrows show direction of flow. The dashed
orange line is L, the vertical nullcline, the dashed purple line is L, the eigenvector of the
linearized system at (0, 0), the dash-dotted green line is L;. The blue curve is the unstable
manifold.

Theorem 3.1. There exists a traveling wave solution in the form (3.3) of the convention-reaction-
diffusion Eq (3.2) which satisfy the boundary conditions (3.4) i.e., u(x,t) = 1 as x - —oo and u(x,t) —
0 as x = oo with 0 < u(x,t) < 1, whose orbit connects the steady states u = 0 and u = 1 if and only if
(3.7) is satisfied.

Proof. Let us show that the unstable separatrix that is leaving the saddle point (1, 0) has intersection
with L. To this end, consider k—nullclines which satisfy

D' (k> + (¢ — p)k + hf(h) = 0. (3.14)
Since the Eq (3.14) is a quadratic equation the solutions can be computed as
¢ —p* (c—p) - 4D'(Whfh)
2D’ (h) '

By monotonicity of f we have f’(1) < 0. Thus, the slope of the nullcline k;(h) at h = 1, k = 0 is given
by

kl,z(h) =

f'
c—p
On the other hand, we can show the eigenvector of J, corresponding to positive eigenvalue can be

chosen as
1
=1, =
. [,2
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It is easy to see that

\/(p —cP _4f() _ \/(p o _4f() | QFWP _p-c_2f()

D*(1) D(1) D*(1) D)  (p-c¢? D) p-c’
Thus,
l{p-c (p—c? 4| p-c [
2l * \/ o) D | S by poe R

Therefore, we conclude that the slope of the eigenvector v is less than k}(1). Note that the trajectory
(unstable manifold) that leaves (1, 0) in the negative k direction has the tangent vector v at (1, 0). Thus,
these trajectories leave (1,0) above k;. Further, we know that near 7 = 1, k;(h) is contained in L and
the direction fields on the curve k; is horizontal in the negative / direction. Hence, we have that the
unstable separatrix that is leaving the saddle point (1, 0) remains in the region L. Moreover, the w—limit
set of this orbit is also in L. Since A’ = k < 0 in the region L and there is no steady state solutions in
the interior of L, Poincaré—Bendixson theorem implies that there is no periodic solution in the interior
of L. Thus, the w—limit set cannot be in the interior of L and it must be on the boundary of L. So, one
can see that the w—limit set is (0, 0). Thus, under the condition (3.7) we conclude that there exists a
heteroclinic orbit connecting (0, 0) and (1,0). This finalized the proof as it proves the existence of a
traveling wave solution. O

Remark 3.1. Since Eq (2.1) is more general then the one considered in [17], Theorem 3.1 is an
extension of the main result (Theorem 3.1) in [17].

4. Numerical results

In this section, we show numerical results of the model, compare it with experimental data obtained
in [18] and provide optimal model parameters. We focus on the US7WT cell line for our model
validation. The experimental data was obtained using GRABIT [35] from the experimental work [18].

Following the paper [17], we have used the following diffusion function,

Dzu"
ar+ u"’

D(u) = D, — 4.1
where the constants are chosen so that D; > D,, n > 1, and a > 0 to satisfy the conditions (A1) — (A2).

The partial differential Eq (3.2) describes normalized concentration u(x, f) which simulates migra-
tion of the invasive cell. Since solution vanishes at the boundary (front of the traveling wave solution)
and tumor is symmetric with respect to tumor center, we need only to consider half of domain from
x = 0to x = 1. In other words, u(x,t) = 0 for x = 1 cm and D(u)% = 0 for x = 0 cm. Time
step is 0.01 and Ax = 1/1000. Equation (3.2) with f(u) = 1 — u*~! was solved numerically by using
pdepe tool in Matlab. We note that p can be neglected in sensitivity analysis since it vanishes in the
normalized PDE (3.2).

We have used the relative error estimation from [17].

N M
|rdata(t) - rmodel(t)l |udata(3’ xi) - umodel(3a xi)l
rdata(t) udata(?” xi)

Error = /IIN+M~—-qg-1) 4.2)

=1 i=1
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Figure 2. Numerical solution of the density-dependent diffusion glioblastoma model with

optimized parameter values.

where N is total number of days (N = 7), M is total number of cell density data points at day 3
(M = 17) and ¢q is number of optimized parameters (g = 6).

4.1. Parameter estimation

We have conducted numerical experiments on finding optimal parameters (D, D, a, n, v;, ) using
Jfminsearch [36] function in Matlab. The objective function was chosen to be the relative error, Eq (4.2).
fminsearch is an optimization algorithm based on the Nelder-Mead method. This method depends
on initial condition and derivative of objective function. After various numerical experiments with
different initial conditions we notice that the optimal value for i close to 3/2. Thus, we concentrate on
the sensitivity of five parameters (D, D,, a, n, v;). The results are illustrated in Table 1. From Figure 2
it can be seen that when u = 1.4907, the model is able to fit the experimental data in tumor cell density
and invasive radius better compare to the case with u = 2.

Table 1. Parameters in modeling for US7WT data.

Parameters Initial Estimated
D, 5.54e—4 1.5676e—4
D, 5.391e-6 1.5142e—4
a 0.021188 0.0546
n 1.2 10.1311
u 2 1.4907
\Z 4.6801e-5 8.4283e—-10

Total error 0.2337

4.2. Wave speed computation

Figure 3 shows numerical solutions of our model with optimal parameters for 5, 10, 15, 20, 25 and
30 days. Front of tumor moves linearly as time of simulation increases. The computation of wave

Mathematical Biosciences and Engineering
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speed is performed with optimized parameter values in Table 1. We find x location such that the cell
density is last over 4.2 x 10% cells/cm® (very small in clinical applications). Based on these x values we
fit to time T linearly. Numerical values of slope of the line is k = 0.0252 cm/day. Equation 3.7 gives
kmin = 0.025 cm/day from the optimal values, see Table 1.

8
10
45
— 5 days
4 10 days | A
15 days
3.5 ——20 days | |
— 05 days
—30 days
3t J
c
i=l
=25
=
o
=]
9 a3
]
o
157
1t
057
0 . . . h
] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

distance from core (cm)

Figure 3. Numerical simulations of our model with optimal parameters for 5, 10, 15, 20, 25
and 30 days.

5. Discussions

In this study, we considered a density-dependent reaction-diffusion equation with a general growth
function to describe GBM model governed by the Eq (2.1). The diffusion function is assumed to
be differentiable (the condition (A1)), positive and decreasing functions (the condition (A2)) due to
experimental study in [18]. A general growth function satisfies the conditions specified as (C1) and
(C2) to capture both the logistic and Bernoulli growth functions. In the theoretical part, we carried out
traveling wave analysis of the model with density dependent diffusion and general growth functions
and found that the minimum speed of a traveling wave satisfies

Cmin = 2D(0)p + v;.

This result agrees with the traveling wave analysis of Stepien et al. [17] which was carried out in the
special case of the model (2.1) with the logistic growth function, i.e., f(¢*) = 1 —u"*, and the following

diffusion function
Dzu"

ar +u"

Thus, we extended the main result of Stepien et al. [17] since model (2.1) is more general than in [17].
In the numerical part, we considered the same diffusion function as in Stepien et al. [17], that is,

the Eq (4.1), since in vitro experimental results studied by Stein et al. [18] suggests that diffusion

D(u) = D1 -

Mathematical Biosciences and Engineering Volume 17, Issue 6, 7234-7247.
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is inversely proportional to the cell density, i.e., diffusion is larger in areas where the cell density is
smaller, but diffusion is smaller where the cell density is larger. This could possibly be explained by
cell-cell mutual interference in high density area and cell—cell adhesion in medium density regions
[17,37]. The numerical findings suggest that the numerical values of the diffusion parameters (D; and
D,) are of the same order of magnitude and is much larger compare to the advection parameter in
the model equation. In contrast, in the previous study [17], there was significant difference between
these parameters D; and D, and D; < v. Model (2.1) is able to improve previous fittings to the
realistic data sets, which were digitized in the one-dimensional setting. The main reasons to choose
one dimensional model include its ability of capturing the proliferating tumor core and the invading
migratory cells in a single equation and providing simplicity in analysis and faster convergence in
numerical computations. Naturally, further study of two- or three-dimensional model with multiple
cell populations would be of interest [9, 16,21]. Another possible direction for the future is to consider
different diffusion functions that satisfy the conditions (A1)—(A2) and different growth functions such
as Gompertz and von Bertalanffy.
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