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Abstract: In this paper we introduce a new hybrid model based on variational mode decomposition 
(VMD) and Gated Recurrent Units (GRU) network improved by attention mechanism to enhance 
the accuracy of stock price indices forecasting. In the process of establishing the model, VMD is 
made a use to decompose the primary series into some almost orthogonal subsequences. The 
attention mechanism is introduced into GRU to assign different weights to the input elements in 
advance so that better predictive results can be achieved for each component. In empirical 
experiment, London FTSE Index (FTSE) and Nasdaq Index (IXIC) are adopted to examine the 
performance of VMD-AttGRU model. Empirical results report that the developed hybrid model 
outperforms the single models and indeed raises the accuracy of stock price indices forecasting. In 
addition, the introduction of attention mechanism can increase the level predictive accuracy but 
decrease the correctness of direction forecasting. 

Keywords: variational mode decomposition; Gated Recurrent Units; attention mechanism; forecasting; 
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1. Introduction  

As stock markets gradually enter the public vision, the precise prediction of stock price indices 
has become one of the most promising research projects in forecasting of time series. The commonly 
used forecasting methods are simply divided into two classes: econometric methods and artificial 
intelligence (AI) based models. The latter, represented by artificial neural networks (ANNs), have been 
proved to outperform the econometric methods in dealing with non-stationary and non-linear time 
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series [1–4]. As an improvement of traditional ANN, recurrent neural networks (RNN) [5] establish 
connections between the hidden layer units, through which the dependency of data at different time 
points can be further explained. The before-after associated structure ensures that RNN is especially 
suitable for predicting time series data [6]. By introducing three gate mechanism into the hidden units 
of traditional RNN, long short-term memory (LSTM) network overcomes the short comings existing 
in RNN, such as gradient disappearing and exploding in long time span [7]. Recently, LSTM has been 
widely utilized to predict time series and obtained outstanding results [8,9]. Gated recurrent units 
(GRU) network integrates the three gates of LSTM into reset gate and update gate, which effectively 
improves the computing efficiency of LSTM [10], and GRU achieved better results than LSTM in 
different time series forecasting tasks [11,12]. In this paper, the attention mechanism is introduced to 
assign weights to different input elements of GRU and obtain a more precise forecasting result. 

To further improve the forecasting accuracy of stock price indices, hybrid models containing two 
or more individual models have been developed gradually, in which the unique advantages of different 
individual models can be exploited. Following “Divide-and-Conquer” principle, “Decomposition-and-
Ensemble” is a typical framework employed in time series forecasting [13], the main idea of which is 
to decompose an raw complex sequence into several subseries with simple patterns so as to establish 
a prediction model for every subseries, and the final result is concluded by summing up the prediction 
results of the subseries [14]. Based on the excellent performance, hybrid forecasting models are 
becoming the mainstream gradually [15]. As a novel multiresolution technique originated from signal 
processing, variational mode decomposition (VMD) [16] is a completely non-recursive algorithm that 
can decompose the original series into multiple components with a specific bandwidth in the spectral 
domain. It has been proved that VMD performs better than the models of the same kind, such as 
Empirical mode decomposition (EMD) [14], in noise robustness and component decomposing 
accurately. In recent years, the hybrid models based on VMD have been applied successfully in several 
fields. For instance, by integrating the VMD with classical ANNs, Lahmiri [17] established a 
forecasting model VMD-PSO-BPNN for intraday stock prices prediction. The experimental results in 
terms of six stocks suggests that the hybrid model performs better than the single PSO-BPNN model 
significantly. However, there is no methodology regarding optimal selection of the number of 
subcomponents of VMD. In his follow-up research [18], the newly proposed model VMD-GRNN 
demonstrates higher accuracy than the EMD-based forecasting models in the predictions of WTI oil 
prices, CANUS exchange rate and NASDAQ 100 VIX when the parameter of subcomponents number 
ranges from 6 to 12. The similar results are proved in [19], in which the VMD is combined with a 
GRNN optimized by particle swarm optimization (PSO) and the hybrid model is established to predict 
the California electricity and Brent crude oil prices. The performances of EMD and VMD-based 
models are assessed and the number of subseries of VMD is set to be the same as EMD. The above 
researches have confirmed the applicability and superiority of VMD in practice, but it still has some 
room for improvement: Firstly, the optimal number of components decomposed by VMD is still 
difficult to be determined, but the empirical results of literature [18] have indicated that the forecasting 
quality of the VMD-based models will vary with the change of component number decomposed. 
Secondly, the above-mentioned forecasting models are all classical ANNs, which can be replaced with 
the promising RNNs, such as RNN, LSTM and GRU, to further enhance the forecasting ability. Thirdly, 
the evaluating metrics are only limited to error measures without considering the capability of correctly 
predicting the moving direction of the time series, which is of great significance in the short-term 
prediction of financial time series data. 
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Combining the advantages of GRU, VMD network and other variant models, there have been 
several literatures utilizing the hybrid forecasting models to implement various prediction tasks. For 
example, Zhu et al. [20] employed a hybrid model integrating VMD and BiGRU network to forecast 
the daily natural rubber futures price and volatility, validing the effectiveness of this model. The result 
indicated that the improvements in prediction performance largely depended on the time-scale 
matching degree between the predicted target and the mode sub-series. Li et al. [21] introduced an 
error correction strategy into VMD-GRU hybrid model to enhance the model performance in wind 
speed interval prediction, and the experiments based on eight cases from two wind fields demonstrated 
the proposed model is a highly qualified forecasting method. By combining GRU with VMD, Wang 
et al. [22] adopted a hybrid model for addressing the wind power interval prediction problem and 
proposed an optimization method based on constructed intervals for building high-quality training 
labels before applying the Adam algorithm for full training, and the effectiveness of the VMD-GRU 
was confirmed in comparison with other models. However, it is worth noting that the historical 
elements input into the forecasting network play different roles when predicting the target value in 
time series. In general, the impact of the input values closer to the target value is greater than that of 
the farther time points. Moreover, the optimal number of components needs to be preset in VMD, 
which is important to improve the accuracy of the final prediction result. In this work, after 
decomposing the original time series into an optimal number of subseries according to a certain 
standard the ratio of residual energy (rres) by VMD, an attention mechanism is introduced into the 
GRU network to enhance the forecasting quality by assigning different weights to the input elements. 

The contribution of this paper to the literature is to propose a novel hybrid model for the reliable 
stock price indices time series prediction, namely, London FTSE Index (FTSE) and Nasdaq Index 
(IXIC). The evaluations indicate that compared with the counterparts, including the single models and 
the traditional GRU-based models, the proposed VMD-AttGRU model presents more accurate and 
robust results demonstrated by the level forecasting indices. The introduction of attention mechanism 
in the hybrid model VMD-GRU decreases the forecasting error while slightly reduce the ability of this 
model to correctly predict the direction. 

2. Methodologies 

2.1. Variational mode decomposition (VMD) 

Variational mode decomposition (VMD) is a non-recursive and adaptive data decomposition 
technique developed recently [16]. VMD is utilized, in the VMD-AttGRU model, to decompose the 
original stock index ݔሺݐሻ, ݐ ൌ 1, 2, … ,ܰ  into n components, ܿ௜, ݅ ൌ 1,2, … , ݊ , which stands for 
different local vibrations ranging from high frequency to low frequency. Each mode ܿ௜  need to 
compact around a center frequency ߱௞ mostly. The bandwidth of a mode can be estimated by follows: 
At first, for each mode ܿ௜, the Hilbert transform is employed to calculate the correlation analysis data 
and a unilateral frequency spectrum is obtained. Then, for each mode ܿ௜, the spectrum of mode is 
transmitted to the baseband by exponential mixing with the pulses tuned to their respective centers. 
Afterwards, the ܪଵ Gaussian smoothness of the demodulated series is used to calculate the bandwidth. 
The constraints of variational problem can be expressed in the following way:  



7154 

Mathematical Biosciences and Engineering  Volume 17, Issue 6, 7151–7166. 

௠௜௡ሺఠೖ,௨ೖሻ ൝෍ฯ߲௧ ൤൬ߜ௧ ൅
݆
ݐߨ
൰ ∗ ܿ௜ሺݐሻ൨ ݁ି௝ఠ೔௧ฯ

ଶ

ଶ௡

௜ୀଵ

ൡ

.ݏ .ݐ ෍ܿ௜

௡

௜ୀଵ

ൌ ሻݐሺݔ

 (1)

where ሼܿ௜ሽ ൌ ሼܿଵ, ܿଶ, … ܿ௡ሽ  and ሼ߱௜ሽ ൌ 	 ሼ߱ଵ, ߱ଶ, …߱௡ሽ  respectively denote the set of the ݅௧௛ 
subcomponent and its corresponding central frequency. ߲௧ indicates the differential processing of 
t, ‖൉‖  indicates the norm processing, ߜ௧  represents the Dirac function, and * denotes the 
convolution symbol. 

To solve the optimization problem of constrained variational decomposition, an augmented 
Lagrangian function ܮ is introduced: 
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in	which	  ሻ is the Lagrangian multiplier. In order to obtainݐሺߣ denotes the penalty parameter, and ߙ
the saddle point of the above formula, which also is the solution of the original constraint conditions, 
VMD adopts the Alternate direction method of multipliers (ADMM) [23].  

Prior to VMD, the number of components n should be properly determined in advance. If the 
number is large, additional computing resources will be occupied, but if n is small, it may lead to 
an insufficient decomposition and inaccurate forecasting results finally. The ratio of residual energy 
rres to original data sequence energy is used to determine the optimal number, which can be 
formulated as follows: 

௥௘௦ݎ ൌ
1
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௡
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 (3)

where rres is the residual after decomposition, which can be used as the optimization index of VMD 
process. In empirical, when rres is smaller than 1% or there is no obvious trend of downwards, the 
component number can be defined [24]. 

2.2. Long short-term memory network and gated recurrent unit network 

The long short-term memory (LSTM) network [8] creatively introduces the “gate” mechanism to 
improve the conventional recurrent neural network (RNN): it replaces the hidden layer nodes of the 
RNN with special memory cells. Each memory cell contains three gates: input gate ݅௧, forget gate ௧݂, 
and output gate ݋௧ that implement the filtering and processing of historical states and information, 
and the problems of gradient disappearance and explosion can be effectively resolved. The LSTM has 
been successfully applied in time series prediction [8,9]. The gated recurrent unit (GRU) network [10] 
integrates the three gates of the LSTM into two gates: reset gate ݎ௧ and update gate ݖ௧ and achieves 
better performance in time series forecasting tasks [25]. The reset gate measures how much the 
historical information will be kept at this moment and how much the latest information will be added, 
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which helps to grasp the dependency of short-term existing in the series data, while the update gate 
determines the degree of “forgetting” historical information, and the information with arbitrary-lengths 
of the input ݔ௧ can be memorized in this gate effectively. The basic steps of GRU can be shown in 
the following: 

At first, the reset gate ݎ௧ and update gate ݖ௧ at the current state (time t) are established by the 
latest input ݔ௧ and the hidden state produced by the previous cell ݄௧ିଵ, and the outputs of the two 
gates are respectively given as:  

௧ݎ ൌ 	ሺߪ ௧ܷ௥ݔ ൅ ݄௧ିଵܹ௥ ൅ ܾ௥ሻ (4)

௧ݖ ൌ 	ሺߪ ௧ܷ௭ݔ ൅ ݄௧ିଵܹ௭ ൅ ܾ௭ሻ (5)

Secondly, the current candidate hidden state ෨݄௧ can be formulated: 

෨݄
௧ ൌ ௧ܷ௛ݔሺ݄݊ܽݐ ൅ ሺ݄௧ିଵ ∗ ௧ሻܹ௛ݎ ൅ ܾ௛ሻ (6)

Finally, the outcome of current hidden state ݄௧ can be computed by implementing the linear 
combination of the current candidate hidden state ෨݄௧ and the previous hidden state ݄௧ିଵ, where the 
sum of weighting coefficient is equal to 1. 

݄௧ ൌ ሺ1 െ ௧ሻݖ ∗ ෨݄௧ ൅ ௧ݖ ∗ ݄௧ିଵ (7)

where ܷ௥,	 ܷ௭, ܷ௛ and ܹ௥,ܹ௭, ܹ௛ represent the appropriate weight coefficient matrices, ܾ௥, ܾ௭ 
and ܾ௛ denote the corresponding bias vectors, ߪሺ൉ሻ  and ݊ܽݐሺ൉ሻ  are the Sigmoid function and 
Hyperbolic tangent function respectively, and * indicates the dot multiplication between matrices. 

2.3. Attention mechanism 

Attention mechanism is originated from a fact that human brain focuses on only specific parts of 
their visual view when recognizing something [26]. For predicting time series, there is a fact that not 
all elements in the input series contribute equally to the value of context vector at each time step t, 
which is often ignored by the conventional forecasting networks. Therefore, the principle of attention 
mechanism built in neural network is to select crucial elements and give more weight to them, rather 
than taking all elements into account equally. That is, the attention mechanism is a deep learning 
algorithm for identifying the most relevant inputs. After ignoring the irrelevant information and 
amplifying the needed information, the processing efficiency of input information is greatly improved. 
Recently, the attention mechanism has been applied in computational neuroscience [27], text 
representations [28] and image description [29] successfully. Figure 1 depicts the calculation of 
attention value in three steps, through which different weights 	  ௜ are assigned to the elements ofݓ
input series to highlight the important subset of its inputs by training the model at different time. Every 
element of the input data set is assumed to contain an address (Key) and a value (Value). The given 
goal is denoted as G and the attention weight is the result to be calculated. In the figure, F (G, Key) is 
adopted to calculate the relevancy between the given target G and address K. ܴ௜ and ݓ௜ (i = 1, 2, ..., 
m) represent respectively the relevance and weight of attention for the ݅௧௛ element of input sequence 
at time t. The realization of attention mechanism can be formulated as follows: 

݁௧ ൌ Attendሺݔ௧, ,௧ିଵݏ  ௧ିଵሻ (8)ݓ
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	 ௧௝ݓ ൌ
expሺ݁௧௝ሻ

∑ expሺ݁௧௝ሻே
௝ୀଵ

 (9) 

ො௧௝ݔ ൌ ௧௝ (10)ݔ௧௝ݓ

where ݁௧ denotes the attention score that is defined by input data ݔ௧, previous state ݏ௧ିଵ and weight 
 .௧ିଵ of previous attentionݓ

The specific implementation process of attention mechanism utilized in this work is referred to [30]. 
That is, in the first step, the relevancy between every previous input elements and output elements are 
computed. Then, applying the softmax formula to convert the relevancies into the probability form. 
Lastly in the third step, multiply the obtained probabilities by the implicit expression of the 
corresponding input feature, to make it stand for the feature contribution to the forecasted load and 
sum up all the input contribution features to be the input section to forecast the next load value. 

 

Figure 1. Three steps of attention value calculation. 

2.4. VMD-AttGRU network 

In view of the advantages of VMD, attention mechanism and GRU network, we construct a hybrid 
model named VMD-AttGRU by combining the three techniques. In this model, the VMD is utilized 
to decompose the original time series into several components. The Attention-GRU (simplified as 
AttGRU) is used to establish forecasting model for each component and obtain the predicted output 
separately, in which the GRU layer takes the output of the attention layer as the input so that the 
capability of conventional GRU network is improved. The final forecasting result is calculated by 
summarizing the separate predicted outputs obtained by AttGRU. The flow chart in Figure 2 depicts 
its implementation process, in which the VMD-AttGRU operation is carried out as follows. 
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Step 1: The VMD is utilized to decompose the stock price index series 2 ,1 = ݐ ,(ݐ)ݔ, ⋯ ܰ, into n 
mutually independent subseries, denoted by IMF1, IMF2, ⋯ IMFn, in which the n is determined by a 
specific standard. The initial series is reconstructed in terms of the IMFs as: 

ሻݐሺݔ ൌ ෍ܨܯܫ௞ሺݐሻ

௡

௞ୀଵ

 

Step 2: Each component IMF is split into training and test datasets at a fixed ratio, and the input and 
output sets are split according to the step size. The AttGRU network is utilized to train and establish the 
forecasting model based on the training dataset. The forecasting output of each IMF is obtained. 

Step 3: The final predicted result of the original stock price index series is calculated by 
summarizing the separate predicted outputs. 

Step 4: Multiple performance measures, i.e., MAE, RMSE, MAPE, TIC, and ܦstat, are adopted to 
evaluate the prediction capacity of VMD-AttGRU from different perspectives. 

 

Figure 2. The structure of VMD-AttGRU. 

3. Data selection and processing 

In this work, the daily closing price of London FTSE Index (FTSE) and Nasdaq Index (IXIC) are 
used to examine the validity of the proposed VMD-AttGRU model. The selected two stock price 
indices are both representative in the global stock markets and regarded as important benchmarks of 
social and economic development. They are collected from the global important stock price indices of 
Wind database, which stored in the form of [date, price] time series. The FTSE cover the time period 
from 2007/03/09 to 2020/06/05, which accounts 3348 data points, and the IXIC cover the time period 
from 2007/02/20 to 2020/06/05, which also account 3348 data points. To conduct experiments, the 
first 80% of each sample is used to train the model, and the remaining 20% is used as test sets. Figure 3 
displays the curves of price samples of FTSE and IXIC. Table 1 exhibits the details illustration of the 



7158 

Mathematical Biosciences and Engineering  Volume 17, Issue 6, 7151–7166. 

selected two stock price indices. Table 2 shows the descriptive statistic information of the samples in 
terms of mean, standard deviation, skewness, kurtosis, Jarque-Bera (JB) test for normality and 
Augmented Dickey Fuller (ADF) test for stationarity. It is shown that with the standard deviation value 
of 2114.71 for IXIC and 894.81 for FTSE, the IXIC has more volatility than the FTSE. The FTSE is 
negatively skewed with skewness value of −0.56 while the IXIC is positively skewed with skewness 
of 0.67. Both of them have kurtosis less than 3, implying no leptokurtosis. The results of JB test 
indicate that both FTSE and IXIC price index series are distinctly non-Gaussian distributed at the 5% 
confidence level. The results of ADF test suggests the significantly non-stationary of both prices. 

To reduce the impact of noise and facilitate optimize the solving process, each component 
ܿሺݐሻ, ݐ ൌ 1,2, …ܰ	 obtained by VMD will be normalized to the range of [0,1] by the following 
maximum and minimum standardized formula: 

ܿሺݐሻ′	 ൌ 	
ܿሺݐሻ െ min ܿሺݐሻ

max ܿሺݐሻ െ min ܿሺݐሻ
 (11)

Then the normalized data is input into the AttGRU network for training and prediction. In order to 
obtain the real predictive value and compare it with the actual value intuitively the normalized output 
ܿᇱሺݐሻ can be reverted to x(t) after prediction as follows: 

ܿሺݐሻ ൌ 	 ܿᇱሺݐሻ൫max ܿሺݐሻ െ min ܿሺݐሻ൯ ൅ min ܿሺݐሻ (12)

Table 1. Datasets of the selected stock price indices for forecasting. 

 FTSE IXIC 

Time period 2007/03/09 ~ 2020/06/05 2007/02/20 ~ 2020/06/05 

Total number 3348 3348 

Train sets 2007/03/09 ~ 2017/10/13 2007/02/20 ~ 2017/10/05 

Train number 2678 2678 

Test sets 2017/10/16 ~ 2020/06/05 2017/10/06 ~ 2020/06/05 

Test number 670 670 

 

Figure 3. Daily closing prices of FTSE and IXIC stock indices. 
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Table 2. Descriptive statistics of the FTSE and IXIC. 

Index Mean Std. Skewness Kurtosis JB test ADF test 

FTSE 6273.01 894.81 -0.56 2.90 177.20* (0.00) −0.25 (0.56) 

IXIC 4320.50 2114.71 0.67 2.28 323.25 *(0.00) 2.13 (0.99) 

4. Performance evaluation metric 

We would like to better validate the robustness of the prediction network of VMD-AttGRU, this 
work adopts five commonly-used criteria to examine the superiority of the model from the various 
perspectives. They are including the mean absolute error (MAE), root mean square error (RMSE), 
mean absolute percentage error (MAPE), Theil Inequality Coefficient (TIC) and directional statistic 
Dstat, in which the first four indices are employed to measure the level forecasting accuracy and the 
Dstat is employed to measure the correctness of predicted direction for a time series in terms of 
percentage. They are respectively defined as follows: 

ܧܣܯ ൌ
1
ܰ
෍|ݔ௧ െ |ො௧ݔ
ே

௧ୀଵ

 (13)

ܧܵܯܴ ൌ ඩ
1
ܰ
෍ሺݔ௧ െ ො௧ሻଶݔ
ே

௧ୀଵ

 (14)

ܧܲܣܯ ൌ
1
ܰ
෍ฬ

௧ݔ െ ො௧ݔ
௧ݔ

ฬ

ே

௧ୀଵ

 (15)

ܥܫܶ ൌ 	
ට1
ܰ∑ ሺݔ௧ െ ො௧ሻଶேݔ

௧ୀଵ

ට1
ܰ∑ ௧ଶேݔ

௧ୀଵ ൅ ට1
ܰ∑ ො௧ݔ

ଶே
௧ୀଵ

 (16)

௦௧௔௧ܦ ൌ 100% ∗
1
ܰ
෍݀௧

ே

௧ୀଵ

 

(17)

݀௧ ൌ 	 ൜
1, if	 ሺݔො௧ െ ௧ݔො௧ିଵሻሺݔ െ ௧ିଵሻݔ ൒ 0, ݐ ൐ 1

0, otherwise	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
 

where	  ො௧ signifies the forecasting value, N is the length of sample ofݔ ,௧ expresses the actual valueݔ
forecasting results, the same applies hereinafter. The MAE is used to measure the average absolute 
error between the actual series and the predicted series. The RMSE, which is more sensitive to outliers, 
is used to measure the deviation between the actual and the predicted series. The MAPE is designed 
to compute the average relative errors between the actual series and the predicted series in terms of 
percentage, while the directional statistic Dstat is adopted to evaluate the capability of correctly 
predicting the moving direction of the time series. In general, the smaller value of the MAE, RMSE, 
MAPE and TIC indicates the less difference between the forecasting and the actual values, that is, the 
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more accuracy of the prediction of the model. The higher Dstat value corresponds to the better 
performance of the model. 

5. Empirical results 

In this section, the predictive performance of VMD-AttGRU model for stock price indices 
forecasting is analyzed. To comprehensively demonstrate the advantages of the proposed hybrid model 
and the effectiveness of the attention mechanism in stock price index prediction, single models (LSTM, 
GRU, AttGRU) and hybrid model VMD-GRU are considered for comparison. According to the 
“decomposition and ensemble” strategy, at first the prices are decomposed by VMD technique, in 
which the number of subseries IMFs should be determined first. Table 3 displays the ratio of residual 
energy rres in VMD approach under different n for the stock price indices. All rres are below 1%. In 
FTSE, the downward tendency of rres tends to be stable when n is larger than 15, while the descending 
tendency of rres tend to be stable when n is larger than 16 in IXIC. Therefore, the suitable number of 
components in FTSE is set 15, and that in IXIC is set 16. 

Taking FTSE as an example, Figure 4 displays the subseries obtained by VMD. They are listed 
ranging from high to low frequency, depicting different local oscillations embodied in the data series. 
It can be seen intuitively that the decomposed subseries is more regular than the original series, which 
helps to reduce the complexity of datasets to be forecasted. Among them, the high frequency 
components with relatively small values reflecting the detailed short-term volatilities information of 
the original price series, and the low frequency components composed of large values represent the 
whole changes of tendency of the daily closing prices.  

Table 3. The ratio of residual energy under different n. 

n FTSE IXIC 

5 0.54% 0.68% 

6 0.45% 0.54% 

7 0.40% 0.42% 

8 0.36% 0.34% 

9 0.31% 0.30% 

10 0.27% 0.28% 

11 0.23% 0.25% 

12 0.20% 0.23% 

13 0.17% 0.22% 

14 0.15% 0.21% 

15 0.13% 0.17% 

16 0.12% 0.14% 

17 0.11% 0.14% 

18 0.10% 0.13% 

Later, the corresponding AttGRU prediction model is constructed for each composed IMF 
subseries. In parameters setting, A historical lag of order 5 is taken to predict the data of the next 
period, considering there are 5 trading days per week that can be regarded as a cycle simply. In other 
word, the number of input data points is set to 5 and that of outputs is set to 1. After repeated 
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experiments, a 5 × 50 × 1 neural network is obtained by setting the number of hidden nodes to 50. 
For convenience, set the number of epochs to 300 and the batch size to 64. It should be noted that all 
of the processes are implemented in Python 3.x running on a Quad-Core Intel Core i5 processor 
operating at 1.40 GHz with an 8 GB installed RAM. 

 

Figure 4. The subseries of FTSE obtained by VMD. 

 

Figure 5. The AttGRU forecasting results for each subseries for FTSE data in the test set. 

Figure 5 shows the comparison of the actual value and forecasted value by AttGRU for each 
subseries in the FTSE test set. It shows that the predicted curve is very close to the real curve of each 
subseries, demonstrating that the AttGRU network can make an accurate prediction of components 
with different frequency information.   

Figure 6 shows the results for VMD-AttGRU for the two stock price indices test sets along with 
the other considered models: LSTM, GRU, AttGRU, and VMD-GRU. Overall, for both stocks, the 
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curves are close together, showing that the predicted curve of each model is near the real price curve. 
The curve for the VMD-AttGRU model is generally the closest to the actual curve, indicating the best 
prediction performance in this comparison. This can be further observed in the inset plots, where a 
certain volatile part of the datasets is magnified. So, we can conclude that the VMD-AttGRU model 
has the highest accuracy for stock price prediction. 

Figure 6. Forecasting results and error of different models for the stock price indices. 

Table 4. Predictive performance of different models for FTSE data. 

Models MAE RMSE MAPE (%) TIC Dstat Time (s) 

LSTM 65.114 91.666 0.943 0.0063 50.00% 42.136 

GRU 63.334 90.061 0.918 0.0062 49.70% 45.844 

AttGRU 53.185 78.302 0.776 0.0054 49.10% 48.012 

VMD-GRU 37.725 46.339 0.551 0.0032 98.19% 687.125 

VMD-AttGRU 24.802 39.683 0.375 0.0027 98.04% 744.332 

Table 5. Predictive performance of different models for IXIC data. 

Models MAE RMSE MAPE (%) TIC Dstat Time (s) 

LSTM 113.998 155.707 1.423 0.0100 49.85% 42.887 

GRU 91.874 133.213 1.176 0.0085 50.00% 45.878 

AttGRU 87.607 131.814 1.132 0.0084 49.10% 49.032 

VMD-GRU 83.503 107.762 1.012 0.0069 98.19% 731.371 

VMD-AttGRU 65.925 94.245 0.858 0.0060 94.88% 798.146 

In order to further analyze the performance of various models, the predictive errors are also 
presented in Figure 4. It can be seen that the upper and lower bounds are not much different for single 
models. The prediction errors of single models are evidently larger than those of the hybrid model. The 
median of the VMD-AttGRU model is closest to 0, and the absolute values of the upper and lower 
quartiles are the smallest in the comparison group. The results further show that the relative error of 
the target model is relatively smaller and more concentrated, illustrating the better performance of the 
proposed model in stock price series data. 
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Figure 7. Forecasting performance evaluation of different models for FTSE and IXIC data. 

To quantitatively measure the predictive performance of each model, the evaluation criteria MAE, 
RMSE, MAPE, TIC, Dstat and processing time are calculated in Tables 4 and 5, and the bar graphs are 
given in Figure 7. It can be observed that: 

1) The hybrid forecasting models following the decomposition-and-ensemble strategy outperform 
the single models comprehensively, especially for the directional statistic Dstat, which is approximately 
at a level of 50% in single models but is improved by more than 40% after combining with VMD. For 
error-type performance measures including MAE, RMSE, MAPE, and TIC, the values of the VMD-
based models are all smaller than single models, which also verifies the superior performance of the 
hybrid models in stock price index forecasting. 

2) When introducing the attention mechanism to the GRU network, the error-type performance 
measures obviously decrease, indicating an improvement of forecasting accuracy. Taking MAPE for 
the FTSE data as an example, the MAPE of GRU is 0.918, while that of AttGRU is 0.776, reduced 
by 15.46%. VMD-GRU has a MAPE value of 0.551 and VMD-AttGRU has a value of 0.375, reduced 
by 51.57%. However, the accuracy measured by Dstat decreases for both FTSE and IXIC data after 
adding the attention mechanism. Specifically, the value for AttGRU and VMD-AttGRU is smaller than 
that for GRU and VMD-GRU respectively. Considering that the final predicted result is determined by 
the linear summation of predicted results of different IMFs and the forecasting quality of each IMF 
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affects the final result largely, Figure 8 further exhibits the comparison of Dstat value of each IMF 
predicted by AttGRU and GRU for the VMD-based hybrid model, in which the Dstat values of different 
IMFs predicted by GRU are generally higher than that predicted by AttGRU for both FTSE and IXIC 
series. These all indicate that the introduction of the attention mechanism does not improve the 
prediction accuracy in terms of direction. 

3) The prediction precision of the proposed VMD-AttGRU model appears to be significantly 
higher than other compared models except for Dstat For FTSE and IXIC data, the values of Dstat for 
VMD-GRU are both the largest, reaching 98.19%, while those for VMD-AttGRU are 98.04 and 
94.88%, respectively, which are 0.15 and 3.31% lower than the largest predicted by VMD-GRU. 

4) The processing time of hybrid models is significantly longer than that of single models, 
meaning that the process of establishing and training the forecasting models for each IMF takes longer 
time. In the comparison of AttGRU with GRU as well as VMD-AttGRU with VMD-GRU, the 
introduction of attention mechanism layer also leads to a longer processing time. Compared with the 
LSTM, the processing time of GRU is relative shorter for both FTSE and IXIC, indicating the 
processing speed by the gates of each hidden layer unit in GRU is slower than that in LSTM. 

In brief, following the “Divide-and-Conquer” principle, on the one hand, the proposed hybrid 
model VMD-AttGRU can improve the forecasting accuracy in terms of error-type performance 
measures. On the other hand, the introduction of attention mechanism weakens the correctness of 
predicted direction. Moreover, the “Decomposition-and-Ensemble” framework of the forecasting 
model inevitably causes greater data processing, which leads to a higher time cost while improving the 
forecasting quality. 

 

Figure 8. The Dstat values of IMFs predicted by AttGRU and GRU for hybrid model. 

6. Conclusions 

A hybrid model VMD-AttGRU is proposed in this study to forecast the stock price indices of 
FTSE and IXIC. Since the price series is non-stationary and non-linear, the VMD approach is applied 
to weaken the adverse effect of too much noise in prediction. Moreover, considering that not all 
elements in the input series contribute equally to the forecasting tasks, the attention mechanism is 
utilized to assign weights to different input elements for the GRU network and achieves a more 
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accurate forecasting result. Compared with single models (LSTM, GRU, and AttGRU) and a hybrid 
model (VMD-GRU), the proposed VMD-AttGRU model exhibits superiority in improving forecasting 
accuracy of stock price indices after analyzing its performance (MAE, RMSE, MAPE, and TIC) 
together with trend-type performance (Dstat). The proposed VMD-AttGRU model can provide an 
effective paradigm for the prediction of financial time series, which could also be applied to predicting 
time series in other fields. 
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