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Abstract: To analyze the rigid–flexible coupling effects on the dynamic performance of a robot 
system, a dynamic model of a parallel robot with flexible spatial links is derived in detail using a 
floating frame of reference (FFR) formulation. Compared to the previous rigid–flexible coupling 
model where the kinematic chains are all flexible links or where the joints are all flexible components, 
the inertia matrix and the stiffness matrix are not constant matrix which leading to the differences in 
respect of dynamic performance in model. To verify the correctness of the derived dynamics equations, 
the dynamics solutions of the spatial parallel robot from an ideal rigid–body model and the FFR model 
containing rigid and flexible coordinates were established by an FFR formulation. Furthermore, a 
finite element analysis (FEA) model, which included rigid links and flexible spatial links, was 
constructed for comparison. The comparison of the three models showed that the trajectory trends 
were the same, but the motion trajectories of the end-effector obtained by the FFR and FEA models 
varied within a certain range, and the maximum variations occurred at the peaks of the trajectories. 
However, since the FFR model considered the coupling effects of rigid and flexible links and the 
micro-displacement of the end-effector, the amount of deformation was the largest. 

Keywords: rigid–flexible coupling; floating frame of reference; multibody systems; dynamics; spatial 
mechanism 
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1. Introduction 

In multibody systems, the demand for lightweight designs requires researchers and designers to 
account for the impact of the link flexibility of the mechanisms. However, research on link flexibility 
has mainly focused on planar mechanisms and robotic arms, whereas there have been fewer studies 
focused on rigid flexible spatial parallel mechanisms with non-linear coupling effects. The parallel 
mechanism with rigid links and flexible spatial links is widely used in aerospace, industrial production, 
and other practical engineering fields. In particular, in the field of industrial production, robots with 
fewer degrees of freedom have been widely used [1–5]. Ideally, all the components should be set as 
rigid links for dynamics analysis, but at high speeds, the slender links will be elastically deformed, and 
the flexible deformation of the links and the coupling effects with the rigid links will have an important 
impact on the dynamic performance of the system. Therefore, it is of great significance to derive a 
reasonable dynamics model [6–9] of the rigid–flexible spatial parallel mechanisms with nonlinear 
coupling effects for analyzing the forces acting on a system and ensuring the trajectory accuracy of the 
end-effector. 

The absolute nodal coordinate formulation (ANCF) [10–13] and the floating frame of reference 
(FFR) formulation [14,15] are widely used methods for establishing dynamics models of flexible 
multibody systems. The advantages of the former include the mass matrix being constant and the 
centrifugal and Coriolis forces being zero. However, the stiffness matrix is highly complicated and 
inefficient for use in calculating the dynamics solutions. In the FFR formulation, the coupling effects 
between the rigid and flexible coordinates are included in the dynamics [1,16–18], which can be 
applied with modal reduction techniques. There are two sets of coordinate systems in the FFR 
formulation. The first set is used to define the configuration of the local coordinate system, whereas the 
second set is applied to describe the configuration of the deformed body. Lugrís et al. [19–22] provide 
detailed derivations for the inertia terms, shape integrals, and elastic forces of planar mechanisms 
based on the FFR formulation. For instance, the dynamic performance of the rigid–flexible coupling of 
a hub-beam was considered in Liu and Liu [23]. Long et al. [24] presented a new method for 
determining the dynamics of a parallel robot with a flexible platform. In Zhang et al. [25,26], flexible 
multibody dynamics models of planar parallel robots were established, and the coupling effects were 
analyzed. Liu et al. [27] verified the importance of thermoplastic coupling using a 
rigid–flexible–thermal coupling model and a simulation verification. In Liu et al. [28], Lagrange’s 
equations were applied to analyze the dynamic characteristics of a spatial parallel manipulator with a 
rigid end-effector and three flexible kinematic chains. Han et al. [29] implemented dynamics analysis 
and a simulation of a flexible beam element using the ANCF and FFR methods. 

This paper makes six new contributions: 
1) By setting the local coordinate system of the flexible spatial links as a non-centroid coordinate 

system, the influence of the coupling term in the inertia tensor on the dynamic performance of the 
system is considered. 

2) Unlike previous models, this model uses the FFR method to determine the dynamics while 
accounting for the coupling effects between the rigid and flexible coordinates and the 
micro-displacement of the end effector. This allows the elastic vibrations and motion errors of the 
system to be more accurate. 

3) Since the coupling term in the inertia tensor has an important influence on the dynamic 
performance of the system, it is considered in this analysis by setting the local coordinate system of the 
flexible spatial link as a non-centroid coordinate system. This coupling term was not taken into account 
in previous studies. 
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4) Three typical models were compared. The FFR model was established using the FFR 
formulation and Lagrange’s equations, and simulation code was written in MATLAB. The FEA model 
was implemented using a co-simulation of SOLIDWORKS, ANSYS, and ADAMS. The ideal 
rigid–body model, which was established based on Lagrange’s equations of the first kind, and an 
analytical solution were obtained. 

5) The dynamics equation of the FFR model is a highly coupled, highly nonlinear, high-index 
differential-algebraic equation. The mass matrix is no longer a symmetric matrix, and the stiffness 
matrix is no longer a constant matrix. Converting the dynamics equation into a pure differential 
equation to obtain a numerical solution avoids the problem of numerical divergence caused by the 
inaccurate estimation of the initial value of the Lagrange multiplier and the new solution problem 
caused by the expansion of the model. 

6) The results indicate that the FFR model is more accurate for calculating the influence of the 
flexible deformation on the dynamic performance of the spatial parallel robot. The recursive 
formulas are also applicable to other flexible spatial links. 

2. FFR formulation of flexible spatial link 

As depicted in Figure 1, the O-XYZ system is a global coordinate system that defines the large 
rigid-body displacement, and the o-xyz system is a local coordinate system that defines the small 
deformation body displacement. 
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k
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Figure 1. Coordinate system in FFR. 

By using the FFR formulation, the absolute position vector of point k on the flexible link can be 
written as 

 0 0 0k fr = r + Rξ = r + R(ξ + ξ ) , (1) 

where 0r  is the origin vector of the o xyz  system, 0 ( , , )x y zξ  defines the vector of the point k  in 

o xyz  in the undeformed state, and fξ  represents the vector of point k  relative to the o xyz  

system in the deformed state. o and b are the two nodes of the spatial beam element. The rotation 
matrix R  from the o xyz  system to the O XYZ  system is given by Eq (2). In particular, when 

the flexible link is a spatial link, matrix R  includes more than one transformation angle ( 1, )i i n    

as follows 

1 2
... 

n  R R R R .                                 (2) 
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The finite element method was employed to discretize the deformation field of the flexible spatial 
link. The displacement vector of any point k on the flexible spatial link caused by the deformation can 
be expressed as 

 f fξ Nq ,                                     (3) 

where fq  represents the node displacement vector of the spatial beam element in the local coordinate 

system, and N represents the shape function. The specific expression of fq  is follows 

 =  f ox oy oz bx by bzo o o b b bx y z x y z      q ,              (4) 

where ox , oy , oz , bx , by , and bz  represent deformation displacement vectors along the three 

coordinate axes at the nodes. ox , oy , oz , bx , by , and bz  represent the rotational displacement 

vectors around the three coordinate axes at the nodes. 
It is assumed that the deformation displacement along the axis is described using a first-order 

polynomial, and a cubic polynomial interpolation function is used to describe the elastic angular 
deformation. 

1) Axial interpolation function 
Assuming that the axial interpolation function is a linear function, it can be written as 

   0 1,v x t b b x 
                                     

(5) 

According to the boundary conditions 

 
 
 

0

0 1

0,

,

o

b
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v L t x b b L

 


                                   

(6) 

2) Horizontal interpolation function 
Assuming that the axial interpolation function is a linear function, it can be written as 

   2 3
0 1 2 3, +N x t c c x c x c x     

                          
(7) 

According to the boundary conditions 
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


                                 

(8) 

The axial and horizontal displacements corresponding to nodes o  and b  can be obtained by 
solving Eq (6) and Eq (8), therefore, the shape function N  can be expressed as 

 

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

A o b

B o oz b bz

C o oy b by

x x

y y

z z

 
 

  
      
     

N

N N

N

,         (9) 

where /e x L , ox e , 2 31 3 2o oy z e e    , 2 3( )by bz L e e      , 2 33 2b by z e e   , 
2 3(e 2 )oy oz L e e      , 1bx e  . 

3. Spatial rigid–flexible coupling dynamics modeling 

Lagrange’s equations are typically used to derive the dynamics equations as follows [30] 
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    TT V T Vd

dt

    
  




 

C

q
λ Q

qq
,                       (10) 

where the T  is the kinetic energy, V  represents the potential energy, C  represents constraint 
equations, vectors q  and Q  are the generalized coordinates of the generalized external forces, and 

λ  is a Lagrange multiplier vector. 

3.1. Kinetic energy of each kinematic chain 

3.1.1. Kinetic energy of flexible spatial link 

For the spatial flexible links, translational and rotational kinetic energy must be included. 
1) Translational kinetic energy of flexible spatial link 
The translational kinetic energy of the flexible spatial link based on the energy principle is as 

follows 

 
1

( ) ( )
2

T
k kVf TT Vd   r r  , (11) 

where   is the density of the material. The global position vector kr  is equal to 

 
1 20  ... 

nk   r = r + R R R ξ . (12) 

The velocity vector of the flexible spatial link is computed from Eq (12), yielding the following 
equation 

 
 

1 2

1 20

...
...n

nk ft

  
  


   



R R R
r r ξ R R R Nq Hq    . (13) 

The matrix H  and generalized velocity vector q  can be expressed as 

 

 ...

...d

dt




   


0 1 2 n n+1

0 1 2 n f

H = I I I I I

r θ θ θ q
q =

, (14) 

where 0I  is a 3 × 3 identity matrix, and 1 2 1, ,..., nI I I  can be expressed as follows: 

 

1 2

1

1 2

1

2

2

1

2

1

...

...

...

...

n

n

n

n

n

n N

  

  

  

  

 






 

I R R R

I R R R ξ

I R R R ξ

I R R R






.                              (15) 

By means of Eq (11), the translational kinetic energy of the flexible spatial link may be written as 

  0

1 1

2 2

LT T T
f T f TT A dx  q H H q q M q    , (16) 
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where A  represents the cross-sectional area of the flexible spatial link. The mass matrix f TM  of the 

translational kinetic energy is expressed in the following compact form 

 

1 2

1 1 1 2 1 1

2 2 2 2

- 0

...

...

...

... ... ...

n

n

n f

n n n

tt t t t tf

f

L

f T

f

ff

M M M

M M
A dx

M
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  

      

    

  



 
 
 
 
 
 
 
 
 
 

 T

M M M M M

M

M
M = H H =

M

M

,

         

(17) 

where ttM  represents the purely translational inertia terms, ffM  is the purely flexible component, 

( 1,2, )
nt n j  M  is the coupling term containing the translational and rotational coordinates, tfM  

represents the coupling term between translational coordinates and flexible coordinates, 
( 1,2, )

n n
M n j     is the purely rotational component, and ( 1,2, )

n f n j  M  is the coupling term 

between rotational coordinates and flexible coordinates. 
The matrix ttM  is a constant matrix, and  ,   ,   ,   ,   

n n n nff t tf fM   M M M M  can be written as 
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



 





 

 



 

 

  





 

M I I

M I I

I I

M I I

M I I N N

.                (18) 

When the flexible spatial link degenerates into a rigid spatial link, the deformation coordinates of 
the flexible link are zero ( 0f q ). Hence, the translational kinetic energy of the rigid spatial link can 

be further written as 

  1
...

2 j j

T
f T r T ttT M      q M q  . (19) 

2) Rotational kinetic energy of flexible spatial link 
The rotational kinetic energy of the flexible spatial link is defined as 

 2
- 0

1

2

L

f RT d  cθ J ,                                 (20) 

where  ,x tθ  is the absolute rotation angle of the micro-segment with a distance x and a width dx 

from the local coordinate system origin in actual motion, and cd dxJ J  is the area moment of 

inertia around the center of mass. 
The link area moment of inertia in the O-XYZ system can be expressed as 



7107 

Mathematical Biosciences and Engineering  Volume 17, Issue 6, 7101–7129. 

 
1 2 1 1 2

... ...( )
n n

T
     

J R R R J R R R ,                          (21) 

where 
x

y

z

I

I

I

 
   
  

J , xI , yI , and zI  represent the respective area moments of inertia of the 

flexible spatial link with respect to the local coordinate axes x , y  and z  the rotational kinetic 

energy of the flexible spatial link can be written as 

 
1

2
T

f R f RT   q M q  ,                                (22) 

where f RM  is the mass matrix corresponding to the rotational kinetic energy and is expressed as 

follows 

 

1 2

1 1 1 2 1 1

2 2 2 2

...

...

...

... ... ...

n

n

n f

n n n

rr r r r rf

f

f R

f

ff

m m m

m m

m

symmetric

  

      

    

  



 
 
 
 
 
 
 
 
 
 

m m m m m

m

m
Μ

m

m

.                (23) 

The matrices ,  ,  ,  ,  
n n nrr ff r rf m  m m m m , and 

n fm  can be written as 

 

   

 

1 2

3 3

3 1

1 12

0

0

0

( (

0 1 0 0 1 0

0 0 1 (

n

n n

n
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r r r
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L TC C
ff

L T

Lf C
f

d d
dx

dx dx

m dx

d d
dx

dt dx

  

 
















   
 





 

 








m 0

m m m 0

m 0

N N
m ) J )

J

q N
m )

. (24) 

When the flexible spatial link degenerates into a rigid spatial link, the deformation coordinates of 
the flexible link are zero ( 0f q ). Hence, the rotational kinetic energy of the rigid spatial link can be 

further written as 

  1
...

2 j j

T
f R r R rrT m m      q q  . (25) 

3) Total kinetic energy of flexible spatial link 
The total kinetic energy of the flexible spatial link is calculated as follows: 

 f f T f RT T T   .                                  (26) 

The total kinetic energy of the rigid spatial link is calculated as follows: 
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 r r T r RT T T   .                                   (27) 

However, the generalized coordinates of the flexible spatial link are expressed in the o xyz  

system, and they must be expressed in the O XYZ  system. Therefore, the transformation 
relationships from fq  to mu  are expressed as follows 

 m

m m

f

f


  

q Bu

q Bu Bu 
,                              (28) 

where B  is given by 

 
-1 1- - -n n  B = R R ...R .                             (29) 

Substituting Eqs (28) and (29) into Eq (26), the total kinetic energy of the flexible spatial link in 
the O XYZ  system is 

 
1

2
T

O f O fT   i iq M q  .                             (30) 

The specific forms of iq  and O fM  are shown in Appendix 1. Since the mass matrix in the 

o xyz system is a symmetric matrix, but the total mass matrix of the system must be converted to the 

O XYZ  system for representation, so it needs to be multiplied by the transform matrix B , and 
because the matrix B is a asymmetry matrix. Therefore, the system mass matrix is no longer a 
symmetric matrix. 

3.1.2. Total kinetic energy of each kinematic chain 

By assembling the differential equations of the rigid and flexible links, the kinetic energy of each 
kinematic chain can be expressed as 

 
1

2
i i i T i

O O f O r i OT T T T    i iq M q  ,                           (31) 

where q  represents the generalized coordinates of the kinematic chain, and iM  represents the mass 

matrix of the kinematic chain. 

3.2. Generalized forces of each kinematic chain 

3.2.1. Generalized elastic forces of each kinematic chain 

According to the virtual work principle, the elastic force virtual work of any beam element in the 
flexible spatial link can be written as 

 T

V

W dV  σ ε ,                                 (32) 
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where   and   represent stress and strain vectors, respectively. For linear isotropic materials, 
Eσ ε , and the strain–displacement relationship is fqε DN . Substituting Eσ ε  and fqε DN  

into Eq (32), the beam element stiffness matrix can be written as 

 ( )T
f

V

E dV k DN DN ,                              (33) 

where E  and D  represent the partial differential operator of the strain–displacement and the shear 
modulus of the flexible spatial link, respectively. The specific expression of fk  is shown in Appendix 1. 

Because the rigid links cannot produce generalized elastic forces, the stiffness matrix of the 
kinematic chain in the o xyz  system can be expressed as 

 

0

0

0

0

...

i

f

 
 
 
 

  
 
 
 
  

k

k

.                           (34) 

Since fk  is a constant matrix, ik  is also a constant matrix, but the total stiffness matrix of the 

system must be converted to the O XYZ  system for representation, so it needs to be multiplied by 
the transform matrix B , and because the matrix B is a time-varying related to generalized 
coordinates. Therefore, the system stiffness matrix is no longer a constant matrix, and its specific form 

iK  is shown in Appendix 1. 

The generalized elastic forces of the kinematic chain may be expressed by deriving the elastic 
potential energy relative to the elastic coordinates 

 
i

i e
elastic i i

i

V
 


F K q
q

.                                   (35) 

where i
eV  represent the elastic potential energy of the kinematic chain i. 

3.2.2. Generalized external forces of each kinematic chain 

Based upon the aforementioned generalized forces, the generalized forces of the kinematic 
chain due to gravity of the spatial parallel robot can be written as 

 
i

gi
g

i

V



F
q

.                                        (36) 

The virtual work of the robotic actuated force (torque) can be written as 

 ix iy iz
j j j

x y z
W F F F

q q q
   

  
  

.                            (37) 

The robotic actuated force (torque) of the kinematic chain can be derived by differentiation as 
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i

i F
F

i

W


Q
q

.                                       (38) 

By means of Eq (10), the matrix form of the dynamics equations of the kinematic chain can be 
obtained as follows 

 i i i
i i i g F V   iM q K q F Q Q ,                             (39) 

where i
VQ  includes the Coriolis and centrifugal force matrices of the kinematic chain, which can be 

written as 

 
1

2
i T
V i i

i

        
i i iQ M M

q
q q q   .                            (40) 

3.3. Dynamics equations of spatial rigid flexible coupling model 

The dynamics equations of the spatial rigid–flexible coupling model can be expressed by 
assembling the dynamics equations of the kinematic chain and the constraint equations as follows 

 ˆ
ˆ ˆ ˆ ˆˆˆ ˆ

g F V    T
qMq Kq F C λ Q Q , (41) 

where M  and K  are the mass and stiffness matrices of the spatial rigid–flexible coupling model, 

respectively,  ˆ
gF  and ˆ

FQ  are the generalized gravitational and robotic actuated force (torque), 

respectively, ˆ
VQ  represents the Coriolis and centrifugal forces, q̂  and ˆ

ˆ T
qC  are generalized 

coordinates and constraint Jacobian matrix of the spatial rigid–flexible coupling model, respectively. 
Among them, the constrained Jacobian matrix ˆ

ˆ T
qC  can be obtained by deriving the generalized 

coordinates from the constrained equations. 
The matrices M , K and q̂  can be expressed as 

1

2

...

i

 
 
 
 
 
 

M

M
M =

M
, 

1

2

...

i

 
 
 
 
 
 

K

K
K =

K
, 

01 11 12 1 11...1 02 21 1...ˆ [ ... ... ]n m m mmu u   q r r ,              (42) 

where n and m represent the number of the rigid and flexible coordinates of the spatial parallel robot, 
respectively. 

4. Numerical examples 

4.1. Physical description 

A typical 3-RRRU spatial parallel robot with rigid links and flexible spatial links is shown in Figure 2. 
This robot has three triangular symmetric kinematic chains. It is composed of ten parts, a driving 

link AiBi (i = 1,2,3), an intermediate link BiCi (i = 1,2,3), a passive link CiPi (i = 1,2,3), and the 
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end-effector P1P2P3. The fixed base and driving links are connected by a revolute pair Ai (i = 1,2,3), 
whereas joints Bi (i = 1,2,3) and Ci (i = 1,2,3) are passive revolute pairs. The end-effector and passive 
links are connected by universal joints. Among these ten parts, the passive link CiPi (i = 1,2,3) is a 
slender link that will be elastically deformed under high-speed motion. Therefore, it is treated as a 
flexible-body, and the other parts are treated as a rigid body. The link CiPi (i = 1,2,3) can perform 
arbitrary movements in space. However, the component connected to it is a rigid component, so the 
end-effector can only perform translational movement along three coordinate axes. 

 

Fixed base

Kinematic 
chain_1

Kinematic 
chain_ 2

Kinematic 
Chain_3

End-effector

A1

A2

A3

P1

P2

P3

 

Figure 2. 3-RRRU spatial parallel robot. 

The joint variables of the robotic kinematic chain with rigid links and flexible spatial links is 
illustrated in Figure 3. 

Z

O X

ZAi

XAi

Bi

Ai

Ci

Pi P

θi1

θi2

θi3

φi

Y

YCi

 

Figure 3. Joint variables of the robotic kinematic chain. 

The global coordinate system O-XYZ is attached to the geometric center of the fixed base. The 
Z-axis is perpendicular to the fixed base, and the X-axis is opposite to the undeformed neutral axis of 
each link. The local coordinate is fixed at the upper joint of each link. The driving link AiBi (i = 1,2,3) 
and intermediate link BiCi (i = 1,2,3) are in the same plane, the rotating axis in the global coordinate 
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system is the Y-axis, but the rotation axis of passive link CiPi (i = 1,2,3) is the Z-axis. Therefore, the 
passive link CiPi (i = 1,2,3) is a spatial link. 

The lengths of components AiBi, BiCi, and CiPi (i = 1,2,3) are L1, L2, and L3, respectively. 1i , 2i  

and 3i  are the angles between the rotation axis and links AiBi, BiCi, and CiPi (i = 1,2,3) in the local 

coordinate system, respectively. φi (i = 1,2,3) denotes the angle between the coordinate system 
O XYZ  and ( 1,2,3)i Ai Ai AiA X Y Z i   in the Z direction, and AiZ  is parallel to Z . 

4.2. The dynamic analysis and comparison of the three robotic models 

To ensure the correctness of the derived dynamic equations, it is necessary to verify the influence 
of the flexible deformation on the system by comparing the end-effector motion trajectories in the FFR 
and the ideal rigid-body models and to verify the accuracy of the derived formula by comparing the 
motion trajectory deviations of the FFR and FEA models relative to that of the ideal rigid-body model. 
The dynamics equations of the three models were established using Lagrange’s equations of the first 
kind and solved by numerical integration. 

4.2.1. FFR model of robotic dynamics  

1) Dynamic equations of the spatial flexible link 
Dynamics models can be established using the dynamics equations derived in section 2 and 3. 

First, by means of Eq (12), the vector kr  is described as follows: 

 0 1 2k  r r R R ξ ,                                   (43) 

where  0

T
x y zξ , f fξ = Nq . 

The absolute rotation angle vector can be written as 

 2

3

0 0

0

0
i i

C
i

d

dx

 



 
   
       
     
 

θ R

N

.                               (44) 

Figures 4 and 5 show the flexible coordinates in the o xyz  and O XYZ  systems, 

respectively. 
By means of Eq (28), the relationship between the generalized coordinates fq  and iu  can be 

obtained. 
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Figure 4. Flexible coordinates in the o-xyz system. 
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Figure 5. Flexible coordinates in the O-XYZ system. 

Finally, the translational and rotational kinetic energies of the flexible spatial link of the 3-RRRU 
spatial parallel robot can be obtained by substituting Eqs (43) and (44) into Eqs (11) and (20), 
respectively, and the total kinetic energy of the flexible spatial link in the global coordinate system can 
be obtained according to Eq (30), as follows: 

 
1

2
T

O f i O f iT   q M q  ,                                 (45) 

where 
 1 2 3( )i i i m

i

d

dt


θ θ θ u
q . 

2) Dynamic equations of rigid components 
Because the driving link AiBi (i = 1,2,3) is purely rotated, its rotational kinetic energy is 
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 22
1 1 1

1 1

6 2i i i i

T
i iA B i A BT m L   q M q  .                          (46) 

The intermediate link BiCi (i = 1,2,3) has both translational and rotational kinetic energy, and its 
kinetic energy is expressed as follows 

 2 2
2 1 1 2 1 2 1 2 2 2 1 1

2 21 1 1 1
cos

6 2 6 2i i i i

T
i iB C i i i i i B CT m L m L L m L        q qM     .           (47) 

The kinetic energy of each kinematic chain can be obtained by substituting Eqs (45)–(47) into 
Eq (31). 

The potential energy of rigid component of the kinematic chain can be written as 

 
1 1 1

2 2 2

1
sin( )

2
1

sin( )
2

i i

i i

A B i

B C i

V m gL

V m gL





 

 


. (48) 

The generalized gravitational force i
gF  of the kinematic chain can be obtained by substituting 

Eq (48) into Eq (36). 
The generalized coordinates and the driving force of the CiPi (i = 1,2,3) can be expressed as 

 1 1 1 1

1 1

[ cos( ) 0 sin( )]

[ sin( ) 0 cos( )]
i i

i i

AB L L

F F F

 
 

  
  

.                      (49) 

The actuated torque i
FQ  of the robotic system can be obtained by substituting Eq (49) into Eq 

(38). 
However, the elastic deformation of the flexible links will cause positional errors in the kinetic 

trajectory of the end-effector, Therefore, the micro-displacement and micro-rotation generalized 

coordinates of the end-effector can be assumed to be x y zP P P    P  x y zP P P       , 

the actual kinetic trajectory ' ' ' ' ' 'x y z x yP P P P P  P 'zP , the ideal motion trajectory 

[           x y z x y zP P P P P P    P , and the relationship between 'P , P  and

 

P  can be expressed as 

 P P' P U ΔP ,                                   (50) 

where 

1 0

1 0

1 0

z y

P z x

y x

P P

P P

P P

 
   
  

U . PU  represents geometrical constraint relationship [31] 

between the actual kinetic trajectory and ideal kinetic trajectory of the end-effector. Thus, the kinetic 
and potential energy of the end-effector can be written as 

 
 

1 1

2 2
0 0 1 0 0 0

T T
end effector P P

end effector p

T m J

V m g





  

 

' '

'

P P ω

P

 


.                      (51) 

3) Constraint relationship 



7115 

Mathematical Biosciences and Engineering  Volume 17, Issue 6, 7101–7129. 

The constraint equations are defined as follows. 
(1) Constraint equation of the length of link BiCi (i = 1,2,3) 

    2 2 2
1 2 2 2 2 2cos( ) sin( ) 0i Ci x i Ci z iC r L r L L         .             (52) 

(2) Constraint equation for the distance between point Pi (i = 1,2,3) and P 

      22 2 2
2 0i x ix y iy z izC P P P P P P r        . (53) 

(3) Constraint equation for joint Ci (i = 1,2,3) can be expressed by the position vector of the rigid 
joint Ci (i = 1,2,3) equal to the position vector of the flexible joint Ci (i = 1,2,3) 

 13 1 2 1C C ri f    r 0C r .                          (54) 

(4) Constraint equation for joint Pi (i = 1,2,3) can be expressed by the position vector of the rigid 
joint Pi (i = 1,2,3) equal to the position vector of the flexible joint Pi (i = 1,2,3) 

 14 1 3 1P P ri f    r 0C r ,                          (55) 

The constraint equations can be written as 

1 1 1 2 1 3 2 1 2 2 2 3 3 1 3 2 3 3 4 1 4 2 4 3
ˆ T T T T T TC C C C C C              C C C C C C C

    
(56) 

The velocity constraint matrix and the angular velocity constraint matrix can be obtained by 
calculating the first and second derivative of the position constraint matrix Ĉ with respect to time t, 
the specific expression are as follows 

  ˆ
ˆ ˆˆq t C q C 0                                       (57) 

ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( ) 2 t    ttq q q qq q qC C C Cq   
                               

(58)
 

The Eq (56), ,  ,  i i
O FT Q i

gF  and Eq (51) are substituted into Eq (41) to obtain the matrix form of 

the system dynamics equations of the spatial rigid–flexible coupling model. 
4) Numerical solution 
The FFR model of the spatial parallel robot with rigid links and flexible spatial links was 

established using the FFR formulation. The number of generalized coordinates for the FFR model was 
42, which included 12 rigid and 30 flexible coordinates. By means of Eq (41), the dynamics equations 
can be rewritten as 

ˆ
ˆ ˆ ˆˆ  T

qMq C λ Q ,
                                    

(59) 

where ˆ ˆ ˆ ˆˆF V g   Q Q Q Kq F . 

Since the Eq (59) in this study were differential algebraic equations with a high index of 3, and 
numerical divergence occurred readily. Therefore, to obtain the solution, they were combined with the 
acceleration Eq (58) to solve. 

Because the dynamics solution was obtained at the acceleration level, as the number of iterations 
increased, it was possible to calculate the position and velocity constraint equation errors. Therefore, 
positional and velocity violations were eliminated using the Baumgarte stabilization method, which 
can be expressed as follows 

 2
ˆ ˆ ˆ ˆ 2 1

ˆ 2ˆ ˆ ˆ ˆˆ ˆ ˆ( ) 2t       ttq q q qC C C Cq q q ε εq    , (60) 
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where   and   are system feedback control parameters, 1ε  and 2ε  represent the displacement 

and velocity constraint stabilization parameters, respectively, expressed as follows 

 
1

ˆ2

ˆ

ˆ ˆˆ

 


  tq

ε C

ε C Cq
.                                    (61) 

It is necessary to estimate the initial values of the generalized position coordinate vector q̂  and 

the Lagrange multiplier vector λ̂ . q̂  can be estimated based on the initial position of the rigid-body 

dynamics, but it is much more difficult for λ̂ . Therefore, the numerical calculation was performed by 
reducing the index to 1. Equation (59) can be rewritten in the following form 

 1 1
ˆ

ˆ ˆ ˆˆˆ ˆ T   q λq M Q M C .                               (62) 

Multiplying both sides of Eq (62) by ˆ
ˆ

qC  yields the following 

 1 1
ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ T  q q q qC C M Q C M C λq .                           (63) 

Vector λ̂  can be obtained by combining Eqs (60) and (63). Vector 2 2ˆ /d dtq  can be obtained by 

substituting λ̂  into Eq (62). Vectors q̂  and ˆd dtq /  were obtained by utilizing the Newmark   

method. 

 +1

2 2
+1

ˆ ˆ ˆ ˆ(1 )

ˆ ˆ ˆ ˆ ˆ(1/ 2 )

h h

h h h

 

 

    


    

i+1 i i i

i+1 i+1 i i i

q q q q

q q q q q

   

  
,                    (64) 

where h  is the step size. Computational programs were written in MATLAB to perform dynamic 
simulation of the FFR model. 

5) Frequency solution 
By means of Eq (41), the free vibration equations of the 3-RRRU spatial parallel robot with rigid 

links and flexible spatial links can be written as 
 ˆ ˆ Mq Kq 0

                                       (65) 

According to the modal analysis theory [32], the natural frequency and modal expressions of the 
system can be obtained as 

 -  M K 0                                       (66) 

When the mass matrix is a non-singular matrix, let  -1S M K  , then Eq (66) can be rewritten 
as 

 2

-

2
m

m mf



 
 

  
 
 

I S 0

                                      

(67) 

where m is the natural angular frequency of the system, and mf  is the natural frequency of the 

system. 
  



7117 

Mathematical Biosciences and Engineering  Volume 17, Issue 6, 7101–7129. 

4.2.2. Ideal rigid-body model of robotic dynamics 

Ideally, the spatial links CiPi (i = 1,2,3) of the spatial parallel robot can be treated as a rigid body, 
and the kinetic energy 

i iC PT  can be directly calculated using Eq (27). The specific expression is 

 3 1 1 3 2 2 3 3 2 3

1
sin( ) sin( ) sin( ) cos( )

2i iC P i i i iT m gL m gL m L       .            (68) 

The potential energy of the spatial link CiPi (i = 1,2,3) can be obtained by the work–energy 
theorem, and its expression is as follows: 

 3 1 1 3 2 2 3 3 2 3

1
sin( ) sin( ) sin( ) cos( )

2i iC P i i i iV m gL m gL m L       .            (69) 

The kinetic and potential energies of the end-effector can be calculated as 

 
 2 2 21

2end effector p x y z

end effector p z

T m

V m gP





   

 

P P P  
.                        (70) 

Therefore, the dynamic model of the ideal rigid-body can be established by introducing the 
kinetic and potential energy of each rigid link into the Lagrange equations of the first kind, which can 
be solved by numerical methods. 

4.2.3. FEA model of robotic dynamics 

To compare and verify with the FFR model, the structural features and numerical solution 
methods of the FEA model are the same as the FFR model. When the spatial parallel mechanism is 
simulated by finite element software, there are many factors affecting its dynamic characteristics. 
Therefore, the following assumptions must be made before establishing a FEA model of a spatial 
rigid–flexible coupled parallel robot. 

1) The elastic deformation of the spatial slender link during system operation will have an 
important impact on the dynamic performance of the system. Therefore, in the FEA model, the spatial 
link is considered to be a flexible body, and the other links are considered to be rigid bodies for 
analysis. 

2) Each pair of components are connected by a rigid motion pair. 
3) There is negligible friction between pairs. 
The FEA model was implemented using a co-simulation of three software packages: ANSYS, 

SOLIDWORKS, and ADAMS. The workflow of the co-simulation using these three software 
packages is shown in Figure 6. 
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Figure 6. Design flow of co-simulation. 

First, the 3D model was established in SOLIDWORKS and imported into finite element analysis 
software in the STP file format. Second, the deformation of the flexible spatial link C P ( 1, 2,3)i i i   is 

described by the FEA method. The bodies of the flexible spatial links were meshed with SOLID 185 
units and contained 48,598 elements and 63,659 nodes. The model was saved as a flexible neutral file 
(.mnf) and imported into ADAMS through the ADAMS connection module in ANSYS. Finally, the 
constraint relationship of the FEA model was defined based on the actual physical prototype in 
ADAMS, and the material properties are shown in Table 1. The dynamics equations were deduced 
using Lagrange’s equations, and an integral solver (SI2, GSTIFF) was used for the simulation analysis 
in ADAMS, and the solution accuracy is 10-4. 

Table 1. Material properties of robot. 

The simulation time was set to 5 s, and the step size was 0.001 s. To verify the correctness of the 
rigid–flexible coupled model, the results of the fully rigid inverse dynamics model were loaded into the 
rigid–flexible coupled model based on the same driver. The validity of the model was determined by 
examining the movement trends and trajectory errors of the two types of models. 
  

Link AiBi BiCi CiPi End-effector Fixed base 
Young’s modulus (MPa) 2.07 × 105 2.07 × 105 7.17 × 104 2.07 × 105 — 

Density (kg/m3) 7.8 × 103 7.8 × 103 2.7 × 103 7.8 × 103 — 
Poisson’s ratio 0.3 0.3 0.3 0.3 — 
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5. Simulation results and analysis 

To validate the presented method, a circular trajectory of the geometric center point of the 
end-effector was used to carry out the simulation. The circle defined in the plane 0.7 mzP    with a 

radius of 0.1 m can be written as 

 

0.1cos( )

0.1sin( )

0.7

x

y

z

P t

P t

P




  
  
  

,                                (71) 

where   represents the angular velocity of the end-effector, which was set to 2 rad/s. The shearing 
modulus G = 8 × 104 MPa. The geometric properties of all the parts are shown in Table 2, and the 
solution accuracy is 10-4. When the dynamic analysis was performed on an ideal rigid-body model, the 
material properties of all parts were steel. 

 
Table 2. Geometric properties of robot. 

The relationship of the natural frequency of the spatial parallel robot with rigid links and flexible 
spatial links with time can be solved by MATLAB software programming, and the result is shown in 
Figure 7. 
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Figure 7. Natural frequency characteristics of the spatial parallel robot with rigid links and 
flexible spatial links. 

In order to verify the correctness of natural frequency by using the derived dynamics model, 
based on the FEA simulation model, the natural frequency of the system is analyzed through the 
ADAMS/Vibration module. The results are shown in Table 3. 

It can be seen from Table 3 that the first 6 natural frequencies in the vibration simulation model 
are all 0, that is, the rigid body mode corresponding to the system. Therefore, the minimum natural 
frequency of the system appears at the 7th order, and the corresponding natural frequency is 
2.21E-005Hz. The minimum natural frequency of the derived dynamics model calculated by Eq (67) is 

Link AiBi BiCi CiPi End-effect Fixed base 
Length (m) 0.4 0.1 0.8 — — 
Mass (kg) 2 0.3 — 1.5 — 
Radius (m) 0.01 0.01 0.01 0.1 0.4 

Thickness (m) — — — 0.02 0.15 
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3.72E-005Hz. Due to the large number of elements of the flexible spatial link and the system's 
assembly errors, the minimum natural frequency of the simulation model is smaller than the derived 
dynamics model, but the two values are basically the same, thus verifying the correctness of the 
establishment of the dynamics model. 

Table 3. The first 12 natural frequencies of the vibration simulation model. 

Order 1~6 7 8 9 10 11 12 

Frequencies 
/Hz 

0 2.21E-05 0.002 1.496 2.484 12.276 17.799 

A comparison of the displacement of the end-effector between the ideal rigid-body and FFR 
models is shown in the figures below. The displacement trajectories of the geometric center point of 
the end-effector in the X and Y directions with time are shown in Figures 8 and 9, respectively. 
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Figure 8. Variations of the displacement of the end-effector in the X direction. 
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Figure 9. Variations of the displacement of the end-effector in the Y direction. 

As shown in Figures 7 and 8, the trajectory trends of the end-effector of the ideal rigid-body and 
FFR models were basically the same, but the FFR model predictions yielded certain range of 
fluctuations relative to the ideal rigid-body model trajectory. The maximum deviations of the 
fluctuations are shown in Table 4. The fluctuations reached a maximum at the peak point of the motion 
trajectory. 
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Table 4. Maximum deviations of the end-effector between the Ideal rigid-body and FFR models. 

The displacement of the geometric center of the end-effector in the Z direction is shown in Figure 9. 
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Figure 10. Variations of the displacement of the end-effector in the Z direction. 

As shown in Figure 10, when the end-effector was moving in a plane, the Z-direction 
displacement of the rigid system did not change, and the rigid flexible coupling system floated between 
−0.70083 and −0.6993 m. 
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Figure 11. Circular motion trajectories of the end-effector. 

The circular motion trajectories of the end-effector of the ideal rigid-body and FFR models on the 
three planes are shown in Figure 11. 

Figure 11 shows that the motion trajectory of the ideal rigid-body model was an ideal circular 
curve, but the FFR model was no longer an ideal circular curve. This was because the elastic 
deformation of the flexible spatial links in the FFR model affected the dynamic performance of the 
system. Therefore, the elastic deformation of the flexible spatial links cannot be ignored, and it is 
necessary to establish a dynamic model that follows rigid–flexible coupling dynamics. 

Axis 
Displacement/m 

Maximum error/m 
FFR model Ideal rigid-body model

X −0.09623 −0.08955 0.00668 
Y −0.00841 −0.00552 0.00289 
Z −0.70083 −0.6981 0.00273 
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Figures 12 and 13 show the displacement differences of the end-effector between the FFR and 
FEA models in the X and Y directions, respectively.  
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Figure 12. Variations of the displacement of the end-effector in the X direction. 
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Figure 13. Variations of the displacement of the end-effector in the Y direction. 

As shown in Figures 12 and 13, the FFR and FEA models exhibited the same trends and 
fluctuated within a certain range. This was because the FFR and FEA models considered the elastic 
deformation of the flexible spatial links. The maximum fluctuations of both models in the X and Y 
directions mainly appeared at the peaks of the trajectories. However, compared to the FEA model, the 
ranges of the FFR model’s values in the X and Y directions were −0.008942 to 0.0022 m and −0.00471 
to 0.000805 m, respectively. 

The displacements of the end-effector for the FFR and FEA models in the Z direction are shown 
in Figure 14. 

As shown in Figure 14, the motion trajectories of the FFR and the ideal rigid-body models both 
fluctuated within a certain range, and the range of the FFR model was larger than that of the ideal 
rigid-body model. The floating values in the Z direction were −0.00099 to 0.00125 m. 
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Figure 14. Variations of the displacement of the end-effector in the Z direction. 

The comparison of the deviations of the end-effector of the FFR model relative to the FEA model 
in the X, Y, and Z directions is shown in Figure 15. 
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Figure 15. Deviations of the end-effector in the X, Y, and Z directions. 

As shown in Figure 15, the deviations of the end-effector in the X, Y, and Z directions showed 
periodic variations. The error fluctuations in the X direction were the largest, followed by those in the Y 
direction, and the error changes in the Z axis were the smallest. This was related to the relative position 
of the geometric center of the end-effector and the global coordinate system. 
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Figure 16. Deviations of the end-effector in the X, Y, and Z directions. 
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The comparison of the maximum deviations of the motion trajectories of the end-effector of the 
FFR and FEA models in the X, Y, and Z directions relative to the ideal rigid-body model are shown in 
Figure 16. 

As shown in Figure 16, the maximum deviations of the motion trajectory of the end-effector of 
the FFR model relative to the ideal rigid-body in the X, Y, and Z direction were larger than those of the 
FEA model. The deviations of the trajectories between the FFR and FEA models relative to the ideal 
rigid-body in the X, Y, and Z directions were 0.00372, 0.00015, and 0.000066 m, respectively. This was 
because the FFR model accounted for the micro-displacement of the end-effector in the dynamic 
modeling process and strengthened the influence of the flexible spatial link deformation on the 
dynamic performance of the system by ignoring damping. In addition, the FFR model further 
considered the nonlinear coupling effects of the rigid links and flexible spatial links. Therefore, the 
FFR model could more accurately describe the nonlinear deformation of the flexible links and the 
robotic rigid–flexible coupling effects during the motion, resulting in fluctuations in the trajectory 
compared to the trajectories of the other two methods. 

6. Conclusions 

Compared with an ideal rigid-body model, the FFR and FEA models exhibited a range of 
fluctuations in the X, Y, and Z directions because they considered flexible deformation of the spatial 
links, and the results were consistent with actual observations. The peak values of the end-effector 
were larger for the FFR than those obtained using the FEA model. This occurred because the FFR 
model considered not only the deformation of the spatial flexible links, but also the nonlinear coupling 
effects between the rigid and flexible spatial links and the micro-displacement of the end-effector. The 
FFR model could more accurately describe the influence of the flexible links on the spatial parallel 
robot. Because the effectiveness of the dynamics equations was verified, this method can be used for 
the dynamics modeling of other flexible spatial links where the nonlinear coupling effects cannot be 
neglected. 
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Appendix 1 

Natation 

A cross-sectional area 
B transformation matrix to convert from local coordinate system to global coordinate system 
C constraint equations 
E elastic modulus 

i
elasticF  elastic force of flexible link of kinetic chain 
i

gF  elastic force of kinematic chain 

G  shearing modulus 
Ix, Iy, Iz area moments of inertia of spatial flexible link with respect to the local coordinate x, y, and z 
axes 
kf  stiffness matrix of flexible spatial link 
K stiffness matrix of system 
L length 
M mass matrix 
N shape function 
P trajectory of the geometric center point of the end-effector 
qf  generalized elastic coordinate 
q generalized coordinate of kinematic chain in reference system 
q  generalized coordinate of kinematic chain in global system 

q̂  generalized coordinate of system in global system 

q̂  generalized velocity vector of system in global system 

q̂  generalized acceleration vector of system in global system 
Q generalized external vector 

i
FQ  robotic actuated force (torque) of kinetic chain 
i
VQ  Coriolis and centrifugal forces 

rk  position vector of an arbitrary point 
r0 position vector of the reference 
R transformation matrix 
T kinetic energy 
um elastic generalized coordinate in global coordinate system 
V  potential energy 

,   system feedback control parameters 

0ξ  undeformed state in the reference system 

fξ  deformed state in the reference system 

θ  absolute angle 

1ε  displacement constraint stabilization parameters 

2ε  velocity constraint parameters 

  angular velocity vector defined in global coordinates
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Appendix 2 

3 2 3 2

3 2 3 2

2

2

3 2

3

0 0 0 0 0 0 0 0 0 0

12 6 12 6
0 0 0 0 0 0 0

12 6 12 6
0 0 0 0 0 0

0 0 0 0 0 0 0

4 6 2
0 0 0 0 0

4 6 2
0 0 0 0

0 0 0 0 0

12 6
0 0 0

12 6
0

zz zz zz zz

yy yy yy yy

P P

yy yy yy

zz zz zz

f

zz zz

yy

EA EA

L L
EI EI EI EI

L L L L
EI EI EI EI

L L L L
GI GI

L L
EI EI EI

L L L
EI EI EI

L L Lk
EA

L
EI EI

L L
EI EI

L





  








2
0

0 0

4
0

4

yy

P

yy

zz

L
GI

L
EI

L
EI

Symmetric
L

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 

where G  represents the shear modulus of the flexible spatial link, 2 2( ) p A
I y z dA  , 2

y A
I z dA   

and 2
z A

I y dA   

 0 1 2 ...( )n md r

dt

  


u
q ;

1 2

1 0

1 0

1

...

0 ...

0

0

1 0

n

m m m

d

dt

dd d

dt dt dt
 

 
 
 
 
   
 
 
 
  

q
q

BB B
u u u B

 ; 

 

1 2

1 0

1 0

1 0

... 0

1 0

0 ( ( ... ( n

O f f T f R

T T T TT
m m

T
m

T
dd d

dt dt dt
 

  

 
 
 
 
    
 
 
 
  

M M M

u u u
BB B

) ) ) B

 



7129 

Mathematical Biosciences and Engineering  Volume 17, Issue 6, 7101–7129. 

21 .

1

(

0

1 0

1

.

0

0

1 0

0 ( (

..

. . n

m m m

dd d

dt dt dt
 

 
 
 
 
 
 
 
 
 
  

BB B
)u )u )u B

; 

1 0 1 0

1 0 1 0

1 0 1 0

.

0

.

0

1 0

0

... ...

.0 ..

1 0

0 0 0 0 .0 0

i

T

   
   
   
   

    
   
   
   
   

iK k

B B

. 

©2020 the Author(s), licensee AIMS Press. This is an open access 
article distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/4.0) 

 


