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Abstract: In this paper, we explore the bifurcations and hybrid control in a 3 × 3 discrete-time
predator-prey model in the interior of R3

+. It is proved that 3 × 3 model has four boundary fixed
points: P000(0, 0, 0), P0y0

(
0, r−1

r , 0
)
, P0yz

(
0, d

f ,
r f− f−dr

c f

)
, Px0z

(
d
e , 0,

a
b

)
, and the unique positive fixed

point: P+
xyz

(
br(d− f )+ f (b+ac)

ber , br−b−ac
br , a

b

)
under certain restrictions to the involved parameters. By utilizing

method of Linearization, local dynamics along with topological classifications about fixed points have
been investigated. Existence of prime period and periodic points of the model are also investigated.
Further for 3 × 3 model, we have explored the occurrence of possible bifurcations about each fixed
point, that gives more insight about the under consideration model. It is proved that the model cannot
undergo any bifurcation about P000(0, 0, 0) and Px0z

(
d
e , 0,

a
b

)
, but the model undergo P-D and N-S

bifurcations respectively about P0y0

(
0, r−1

r , 0
)

and P0yz

(
0, d

f ,
r f− f−dr

c f

)
. For the unique positive fixed

point: P+
xyz

(
br(d− f )+ f (b+ac)

ber , br−b−ac
br , a

b

)
, we have proved the N-S as well as P-D bifurcations by explicit

criterion. Further, theoretical results are verified by numerical simulations. We have also presented
the bifurcation diagrams and corresponding maximum Lyapunov exponents for the 3 × 3 model. The
computation of the maximum Lyapunov exponents ratify the appearance of chaotic behavior in the
under consideration model. Finally, the hybrid control strategy is applied to control N-S as well as P-D
bifurcations in the discrete-time model.

Keywords: predator-prey model; bifurcation and hybrid control; center manifold theorem; numerical
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1. Introduction

The Lotka-Volterra equations that represent the system of continuous-time non-linear differential
equations whose solution is deterministic, evolved to determine the dynamics of biological systems.
This system is a more generalized version of the Kolmogorov model because it only focuses on the
predator-prey interactions but ignores competition, disease and mutualism, which the Kolmogorov
model includes. As compared with other mathematical model, following assumptions are made in
order to formulate the Lotka-Volterra equations:

(i) For the prey population there is no shortage of food.
(ii) The amount of food supplied to the prey is directly related to the size of the prey population.

(iii) The rate of change of population is directly proportional to its size.
(iv) The environment is constant and genetic adaptation is not assumed to be negligible.
(v) Predators will never stop eating.

Based on said assumptions a continuous-time, two-species Lotka-Volterra system takes the following
form [1–3]:

dx
dt

= ax − bxy,
dy
dt

= cxy − dy, (1.1)

where x and y respectively denotes the number of prey and predator. The quantities: dx
dt and dy

dt
respectively denotes the instantaneous rates of prey and predator, and a, b, c and d are positive real
parameters. In 1st equation of system (1.1), ax represent that prey are reproduced exponentially
whereas bxy shows that the rate at which the predator kills prey. So, if there is no population of prey
or no population of predator, no decrease in the population of prey can occur. The equation for prey
can be summed up as the rate at which new prey is born, minus the rate at which prey is killed off.
Now in 2nd equation of system (1.1), cxy represent the rate at which predators kill prey except that a
different constant is used to describe this relationship since the rate at which predators kill and the rate
at which they reproduce are not identical. Also, dy is assumed to be an exponential decay, which
mean that prey cannot kill the predators and that the decrease in predator population is due to natural
death or emigration.

It is anticipated that as compared to continuous-time system, discrete-time system designated by
difference equations are widely explored because these models are more reasonable, if populations have
non-overlapping generations, as compared to differential type models, and also one can obtain more
accurate numerical simulations [4–6]. During the last few years, discrete-time predator-prey models
have been extensively investigated by studying fixed points, local and global dynamical properties,
existence of possible bifurcation and chaos [7–9] and references cited therein. So, in this work, we
explore the local dynamics, bifurcations and hybrid control in a 3×3 discrete-time predator-prey model,
i.e., two prey and one predator, representing by the following system of difference equations [10]:

xn+1 = (1 + a)xn − bxnzn, yn+1 = ryn(1 − yn) − cynzn, zn+1 = (1 − d)zn + exnzn + f ynzn, (1.2)

where xn, yn and zn respectively denotes population densities of prey and predator respectively, and
a, b, c, d, e, f and r are real positive parameters. More precisely, r is the net reproductive rate of the
prey population, a denotes the intrinsic rate of growth the prey, b is the rate of conversion of a consumed
prey to a predator, c is the per capita rate of predation of the predator, d is death rate of the predator, e
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is the rate of conversion of a consumed prey to a predator and f is the per-capita rate of predation of
the predator.

It is important here to mention that in 2013 Sagayaraj et al. [10] studied the local dynamics about
three boundary fixed points only: P000(0, 0, 0), P0y0

(
0, r−1

r , 0
)

and P0yz

(
0, d

f ,
r f− f−dr

c f

)
, out of five fixed

points including the unique positive fixed point. So for the interested readers, these results regarding the
local dynamics about fixed points: P000(0, 0, 0), P0y0

(
0, r−1

r , 0
)

and P0yz

(
0, d

f ,
r f− f−dr

c f

)
are summarized

in Table 1.

Table 1. Summarized results of Sagayaraj et al. [10] about fixed points P000(0, 0, 0),
P0y0

(
0, r−1

r , 0
)

and P0yz

(
0, d

f ,
r f− f−dr

c f

)
of the model (1.2).

Fixed points Corresponding behavior for the model (1.2)
P000 sink if r < 1,−2 < a < 0 and 0 < d < 2; source if a > 0, r > 1 and d > 2;

saddle if a > 0, r < 1 and 0 < d < 2; non-hyperbolic if r = 1 or d = 2.
P0y0 sink if 1 < r < 3, −2 < a < 0 and r < f

f−d ; source if r > 3, a > 0 and r > f
f−d ;

saddle if 1 < r < 3, a > 0 and r < f
f−d .

P0yz sink if r > f (b+ac)
b( f−d) and r > f

f−d ; source if r < f (b+ac)
b( f−d) and r < f

f−d ;
saddle if f

f−d < r < f (2c+ac+b)
b( f−d) .

From the Table 1, it is clear that for the said fixed points: P000(0, 0, 0), P0y0

(
0, r−1

r , 0
)

and

P0yz

(
0, d

f ,
r f− f−dr

c f

)
, Sagayaraj et al. [10] cannot give complete local dynamical classifications to

interested readers, which is still further consideration and improvements towards local dynamical
properties along with topological classifications and bifurcation analysis for the model under
consideration. So, in this paper we will study the local dynamics about fixed points, bifurcations like
fold bifurcation, Neimark-Sacker or Hopf bifurcation, supercritical or subcritical Neimark-Sacker
bifurcation, period-doubling or flip bifurcation, supercritical or subcritical period-doubling
bifurcation, and hybrid control in the model (1.2). More precisely, our key contributions in this paper
are as follows:

• To explore the local dynamical properties along with different topological classifications about
fixed points of the under consideration model.
• To explore the existence of prime period and periodic points of the model (1.2).
• To explore the existence of possible bifurcations about fixed points of 3 × 3 model.
• Presentation of numerical simulation to verify theoretical results.
• To control the N-S and P-D bifurcations about the positive fixed point by Hybrid control strategy.

This paper is structured as follows: In Section 2, we explored the existence of fixed points of the
model (1.2) algebraically. The linearized form of the model (1.2) is presented in Section 3. In Section 4,
we explored the local dynamics about boundary fixed points and unique positive fixed point of the
model. Existence of prime period and periodic points of the model (1.2) are explored in Section 5. In
Section 6, we explored the existence of bifurcations about boundary fixed points of the model (1.2)
whereas detailed bifurcation analysis about boundary fixed points and unique positive fixed point of
the model (1.2) are given in Section 7. Theoretical results are verified numerically in Section 8. In
Section 9, the hybrid control strategy is presented to control the N-S and P-D bifurcations about the
unique fixed point of the model while a brief summary of the paper is presented in Section 10.
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2. Existence of fixed points of the model (1.2)

The existence of fixed points in the interior of R3
+ is explored in this Section. The result regarding

the existence of fixed points for the 3 × 3 discrete-time model (1.2) can be summarized as a following
Lemma:

Lemma 2.1. In the interior of R3
+, model (1.2) has four boundary fixed points and a unique positive

fixed point. Precisely

(i) ∀ a, b, c, d, e, f , r, P000(0, 0, 0) is a boundary fixed point of model (1.2);
(ii) P0y0

(
0, r−1

r , 0
)

is a boundary fixed point of the model (1.2) if r > 1;

(iii) P0yz

(
0, d

f ,
r f− f−dr

c f

)
is a boundary fixed point of the model (1.2) if f > dr

r−1 where r > 1;

(iv) Px0z

(
d
e , 0,

a
b

)
is also boundary fixed point of the model (1.2), ∀ a, b, c, d > 0;

(v) P+
xyz

(
br(d− f )+ f (b+ac)

ber , br−b−ac
br , a

b

)
is the unique positive fixed point of (1.2) if d > b f (r−1)−a f c

br and b > ac
r−1

where r > 1.

Proof. If Pxyz(x, y, z) is a fixed point of model (1.2) then

x = (1 + a)x − bxz, y = ry(1 − y) − cyz, z = (1 − d)z + exz + f yz. (2.1)

Since for P000(0, 0, 0), P0y0

(
0, r−1

r , 0
)
, P0yz

(
0, d

f ,
r f− f−dr

c f

)
and Px0z

(
d
e , 0,

a
b

)
, Eq (2.1) satisfied

identically, and hence P000(0, 0, 0), P0y0

(
0, r−1

r , 0
)
, P0yz

(
0, d

f ,
r f− f−dr

c f

)
and Px0z

(
d
e , 0,

a
b

)
are boundary

fixed points of the model (1.2). In order for the existence of the unique positive fixed point one need
to solve the following equation simultaneously:

a − bz = 0, r(1 − y) − cz = 1, −d + ex + f y = 0. (2.2)

From first equation of system (2.2) one gets:

z =
a
b
. (2.3)

From second equation of system (2.2) and Eq (2.3), one gets:

y =
br − b − ac

br
. (2.4)

Finally, from third equation of system (2.2) and Eq (2.4), one gets:

x =
br(d − f ) + f (b + ac)

ber
. (2.5)

In view of Eqs (2.3)–(2.5) one can conclude that Pxyz

(
br(d− f )+ f (b+ac)

ber , br−b−ac
br , a

b

)
is the interior fixed

point of model (1.2). Additionally, P+
xyz

(
br(d− f )+ f (b+ac)

ber , br−b−ac
br , a

b

)
is the unique positive fixed point of

the model (1.2) if d > b f (r−1)−a f c
br and b > ac

r−1 where r > 1. �
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3. Linearized form of the model (1.2)

The linearized form of 3 × 3 model (1.2) about fixed point Pxyz(x, y, z) is explored in this Section.
So we have the following map to create the corresponding linearized form of model (1.2):

( f , g, h) 7→ (xn+1, yn+1, zn+1), (3.1)

where
f = (1 + a)x − bxz, g = ry(1 − y) − cyz, h = (1 − d)z + exz + f yz. (3.2)

Finally, J|Pxyz(x,y,z) about Pxyz(x, y, z) under the map, which is depicted in Eq (3.1), is

J|Pxyz(x,y,z) =


1 + a − bz 0 −bx

0 r − 2ry − cz −cy
ez f z 1 − d + ex + f y

 . (3.3)

4. Local dynamical properties about fixed points of the model (1.2)

Local dynamical properties along with topological classifications about fixed points: P000(0, 0, 0),
P0y0

(
0, r−1

r , 0
)
, P0yz

(
0, d

f ,
r f− f−dr

c f

)
, Px0z

(
d
e , 0,

a
b

)
and P+

xyz

(
br(d− f )+ f (b+ac)

ber , br−b−ac
br , a

b

)
of 3 × 3 model (1.2)

are explored in this section.

4.1. Local dynamical properties about P000(0, 0, 0)

The J|P000(0,0,0) about P000(0, 0, 0) is

J|P000(0,0,0) =


1 + a 0 0

0 r 0
0 0 1 − d

 . (4.1)

The eigenvalues of J|P000(0,0,0) about P000(0, 0, 0) are

λ1 = 1 + a, λ2 = r, λ3 = 1 − d. (4.2)

So by stability theory [11], the local dynamics of 3 × 3 model (1.2) about P000(0, 0, 0) can be conclude
as follows.

Lemma 4.1. For P000(0, 0, 0) following conditions hold:

(i) P000(0, 0, 0) is never sink;
(ii) P000(0, 0, 0) is a source if

a > 0, r > 1 and d > 2; (4.3)

(iii) P000(0, 0, 0) is a saddle if
a > 0, 0 < r < 1 and 0 < d < 2; (4.4)

(iv) P000(0, 0, 0) is non-hyperbolic if
r = 1, (4.5)

or
d = 2. (4.6)
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4.2. Local dynamical properties about P0y0

(
0, r−1

r , 0
)

The J|P0y0(0, r−1
r ,0) about P0y0

(
0, r−1

r , 0
)

is

J|P0y0(0, r−1
r ,0) =


1 + a 0 0

0 2 − r c(1−r)
r

0 0 1 − d +
f (r−1)

r

 . (4.7)

The eigenvalues of J|P0y0(0, r−1
r ,0) about P0y0

(
0, r−1

r , 0
)

are

λ1 = 1 + a, λ2 = 2 − r, λ3 = 1 − d +
f (r − 1)

r
. (4.8)

We also summarized the local dynamics of 3 × 3 model (1.2) about P0y0

(
0, r−1

r , 0
)

as follows:

Lemma 4.2. For P0y0

(
0, r−1

r , 0
)
, following statements hold:

(i) P0y0

(
0, r−1

r , 0
)

is never sink;

(ii) P0y0

(
0, r−1

r , 0
)

is a source if

a > 0, and 3 < r <
f

f − d + 2
; (4.9)

(iii) P0y0

(
0, r−1

r , 0
)

is a saddle if

a > 0, and
f

f − d + 2
< r < 3; (4.10)

(iv) P0y0

(
0, r−1

r , 0
)

is non-hyperbolic if
r = 3, (4.11)

or
r =

f
f − d + 2

. (4.12)

4.3. Local dynamical properties about P0yz

(
0, d

f ,
r f− f−dr

c f

)
The J|P0yz

(
0, d

f ,
r f− f−dr

c f

) about P0yz

(
0, d

f ,
r f− f−dr

c f

)
is

J|P0yz
(
0, d

f ,
r f− f−dr

c f

) =


1 + a + b

c

(
1 − r + dr

f

)
0 0

0 1 − dr
f −dc

f
e
c

(
r − 1 − dr

f

)
f
c

(
r − 1 − dr

f

)
1

 . (4.13)

The eigenvalues of J|P0yz
(
0, d

f ,
r f− f−dr

c f

) about P0yz

(
0, d

f ,
r f− f−dr

c f

)
are

λ1 = 1 + a +
b
c

(
1 − r +

dr
f

)
,

λ2,3 =

2 f−dr
f ±

√
∆

2
,

(4.14)
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where

∆ =

(
dr − 2 f

f

)2

− 4
(

f − dr + dr f − f d − d2r
f

)
,

=
4d f 2 + d2r2 − 4dr f 2 + 4d2 f r

f 2 .

(4.15)

In the following Lemmas, we give the topological classifications about P0yz

(
0, d

f ,
r f− f−dr

c f

)
if

∆ ≥ 0 (resp. ∆ < 0) by existing literature [9, 12] .

Lemma 4.3. If ∆ =
4d2 f r+d2r2−4dr f 2+4d2 f r

f 2 ≥ 0 then for P0yz

(
0, d

f ,
r f− f−dr

c f

)
of model (1.2), following

statements hold:

(i) P0yz

(
0, d

f ,
r f− f−dr

c f

)
is a stable node if

f (ac + b)
b( f − d)

< r <
f (2c + ac + b)

b( f − d)
and

f
f − d

< r <
f (4 − d)

d(d + 2 − f )
; (4.16)

(ii) P0yz

(
0, d

f ,
r f− f−dr

c f

)
is an unstable node if

r > max
{

f (4 − d)
d(d + 2 − f )

,
f (2c + ac + b)

b( f − d)

}
; (4.17)

(iii) P0yz

(
0, d

f ,
r f− f−dr

c f

)
is saddle node if

f (ac + b)
b( f − d)

< r <
f (2c + ac + b)

b( f − d)
and r >

f (4 − d)
d(d + 2 − f )

, (4.18)

or

r >
f (2c + ac + b)

b( f − d)
and

f
f − d

< r <
f (4 − d)

d(d + 2 − f )
, (4.19)

(iv) P0yz

(
0, d

f ,
r f− f−dr

c f

)
is non-hyperbolic if

r =
f (4 − d)

d(d + 2 − f )
, (4.20)

or

r =
f (2c + ac + b)

b( f − d)
. (4.21)

Lemma 4.4. If ∆ =
4d2 f r+d2r2−4dr f 2+4d2 f r

f 2 < 0 then for P0yz

(
0, d

f ,
r f− f−dr

c f

)
of model (1.2), following

statements hold:

(i) P0yz

(
0, d

f ,
r f− f−dr

c f

)
is stable focus-node if

f (ac + b)
b( f − d)

< r <
f (2c + ac + b)

b( f − d)
and r <

f
f − 1 − d

; (4.22)
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(ii) P0yz

(
0, d

f ,
r f− f−dr

c f

)
is an unstable focus-node if

r > max
{

f (2c + ac + b)
b( f − d)

,
f

f − 1 − d

}
; (4.23)

(iii) P0yz

(
0, d

f ,
r f− f−dr

c f

)
is saddle focus-node if

f (ac + b)
b( f − d)

< r <
f (2c + ac + b)

b( f − d)
and r >

f
f − 1 − d

, (4.24)

or
r >

f (2c + ac + b)
b( f − d)

and r <
f

f − 1 − d
; (4.25)

(iv) P0yz

(
0, d

f ,
r f− f−dr

c f

)
is non-hyperbolic if

r =
f

f − 1 − d
, (4.26)

or
r =

f (2c + ac + b)
b( f − d)

. (4.27)

4.4. Local dynamical properties about Px0z

(
d
e , 0,

a
b

)
The J|Px0z( d

e ,0,
a
b ) about Px0z

(
d
e , 0,

a
b

)
is

J|Px0z( d
e ,0,

a
b ) =


1 0 −bd

e
0 r − ac

b 0
ac
b

a f
b 1

 . (4.28)

The eigenvalues of J|Px0z( d
e ,0,

a
b ) about Px0z

(
d
e , 0,

a
b

)
are

λ1 = r −
ac
b
,

λ2,3 = 1 ± ι
√

ab.
(4.29)

Lemma 4.5. For Px0z

(
d
e , 0,

a
b

)
, following statements hold:

(i) Px0z

(
d
e , 0,

a
b

)
is never stable focus-node;

(ii) Px0z

(
d
e , 0,

a
b

)
is an unstable focus-node if

r <
ac
b
− 1; (4.30)

(iii) Px0z

(
d
e , 0,

a
b

)
is a saddle focus-node if

r >
ac
b
− 1; (4.31)

(iv) Px0z

(
d
e , 0,

a
b

)
is non-hyperbolic if

r =
ac
b
− 1. (4.32)
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4.5. Local dynamical properties about P+
xyz

(
br(d− f )+ f (b+ac)

ber , br−b−ac
br , a

b

)
The J|P+

xyz

( br(d− f )+ f (b+ac)
ber , br−b−ac

br , a
b

) about P+
xyz

(
br(d− f )+ f (b+ac)

ber , br−b−ac
br , a

b

)
is

J|P+
xyz

( br(d− f )+ f (b+ac)
ber , br−b−ac

br , a
b

) =


1 0 −

br(d− f )+ f (b+ac)
re

0 2 − r + ac
b

c(b+ac)
br − c

ae
b

a f
b 1

 . (4.33)

The characteristic equation of J|P+
xyz

( br(d− f )+ f (b+ac)
ber , br−b−ac

br , a
b

) about P+
xyz

(
br(d− f )+ f (b+ac)

ber , br−b−ac
br , a

b

)
is

P(λ) = λ3 + δ1λ
2 + δ2λ + δ3, (4.34)

where

δ1 = r − 4 −
ac
b
,

δ2 = 5 − 2r + ad − a f +
2ac
b
−

ac f
br
−

a2c2 f
b2r

+
ac f

b
+

a f
r

+
a2c f
br

,

δ3 = r − 2 + adr − a f r − 2ad + 3a f +
ac
b

+
ac f
br

+
a2c2 f
b2r

−
ac f

b
−

3a2c f
br

+

2a2c f
b
−

a2cd
b
−

2a f
r
−

a3c2 f
b2r

.

(4.35)

Now in the following lemma, we explore the necessary and sufficient condition under which the roots
of (4.34) lies on open unit disk by utilizing Theorem 1.4 of [11].

Lemma 4.6. P+
xyz

(
br(d− f )+ f (b+ac)

ber , br−b−ac
br , a

b

)
of 3 × 3 model (1.2) is a sink iff the following conditions

hold:
|δ1 + δ3| < 1 + δ2, |δ1 − 3δ3| < 3 − δ2, δ

2
3 + δ2 − δ3δ1 < 1, (4.36)

where δ1, δ2 and δ3 are depicted in (4.35).

5. Existence of prime period and periodic points of the model (1.2)

We explore that the fixed points: P000(0, 0, 0), P0y0

(
0, r−1

r , 0
)
, P0yz

(
0, d

f ,
r f− f−dr

c f

)
, Px0z

(
d
e , 0,

a
b

)
and

P+
xyz

(
br(d− f )+ f (b+ac)

ber , br−b−ac
br , a

b

)
of the model (1.2) are periodic points of prime period- 1. Additionally,

we also explore that P000(0, 0, 0), P0y0

(
0, r−1

r , 0
)
, P0yz

(
0, d

f ,
r f− f−dr

c f

)
, Px0z

(
d
e , 0,

a
b

)
and

P+
xyz

(
br(d− f )+ f (b+ac)

ber , br−b−ac
br , a

b

)
of the model (1.2) are periodic points having period- 2, 3, · · · , n, by

existing Literature [13–15].

Theorem 5.1. Fixed points: P000(0, 0, 0), P0y0

(
0, r−1

r , 0
)
, P0yz

(
0, d

f ,
r f− f−dr

c f

)
, Px0z

(
d
e , 0,

a
b

)
and

P+
xyz

(
br(d− f )+ f (b+ac)

ber , br−b−ac
br , a

b

)
of model (1.2) are periodic points of prime period- 1.

Proof. From model (1.2), one has

F (x, y, z) := ( f (x, y, z), g(x, y, z), h(x, y, z)) , (5.1)
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where f , g and h are represented in system (3.2). After straightforward computation, from Eq (5.1) one
gets:

F|P000(0,0,0) = P000(0, 0, 0),

F|P0y0(0, r−1
r ,0) = P0y0

(
0,

r − 1
r

, 0
)
,

F|P0yz
(
0, d

f ,
r f− f−dr

c f

) = P0yz

(
0,

d
f
,

r f − f − dr
c f

)
,

F|Px0z( d
e ,0,

a
b ) = Px0z

(
d
e
, 0,

a
b

)
,

F|P+
xyz

( br(d− f )+ f (b+ac)
ber , br−b−ac

br , a
b

) = P+
xyz

(
br(d − f ) + f (b + ac)

ber
,

br − b − ac
br

,
a
b

)
.

(5.2)

From Eq (5.2), one can conclude that P000(0, 0, 0), P0y0

(
0, r−1

r , 0
)
, P0yz

(
0, d

f ,
r f− f−dr

c f

)
, Px0z

(
d
e , 0,

a
b

)
and

P+
xyz

(
br(d− f )+ f (b+ac)

ber , br−b−ac
br , a

b

)
of model (1.2) is a periodic point of prime period- 1. �

Hereafter we proved that fixed points: P000(0, 0, 0), P0y0

(
0, r−1

r , 0
)
, P0yz

(
0, d

f ,
r f− f−dr

c f

)
, Px0z

(
d
e , 0,

a
b

)
and P+

xyz

(
br(d− f )+ f (b+ac)

ber , br−b−ac
br , a

b

)
of 3 × 3 model (1.2) are periodic points having period- 2, 3, · · · , n.

Theorem 5.2. The fixed point: P000(0, 0, 0) of 3×3 model (1.2) is a periodic point of period- 2, 3, · · · , n.

Proof. From Eq (5.1), one has

F2(x, y, z) = ((1 + a) f (x, y, z) − b f (x, y, z)h(x, y, z),
rg(x, y, z) (1 − g(z, y, z)) − cg(x, y, z)h(x, y, z),
(1 − d) h(x, y, z) + e f (x, y, z)h(x, y, z)+
f g(x, y, z)h(x, y, z)) ⇒F2|P000(0,0,0) = P000(0, 0, 0),

F3(x, y, z) =
(
(1 + a) f 2(x, y, z) − b f 2(x, y, z)h2(x, y, z),

rg2(x, y, z)
(
1 − g2(z, y, z)

)
− cg2(x, y, z)h2(x, y, z),

(1 − d) h2(x, y, z) + e f 2(x, y, z)h2(x, y, z)+

f g2(x, y, z)h2(x, y, z)
)

⇒F2|P000(0,0,0) = P000(0, 0, 0),
...

...

F i(x, y, z) =
(
(1 + a) f i−1(x, y, z) − b f i−1(x, y, z)hi−1(x, y, z),

rgi−1(x, y, z)
(
1 − gi−1(z, y, z)

)
− cgi−1(x, y, z)hi−1(x, y, z),
(1 − d) hi−1(x, y, z) + e f i−1(x, y, z)hi−1(x, y, z)+

f gi−1(x, y, z)hi−1(x, y, z)
)

⇒F i|P000(0,0,0) = P000(0, 0, 0).

(5.3)

Thus Eq (5.3) indicates that P000(0, 0, 0) of model (1.2) is a periodic point of period-2, 3, · · · , n. �

Mathematical Biosciences and Engineering Volume 17, Issue 6, 6963–6992.



6973

Theorem 5.3. The fixed points: P0y0

(
0, r−1

r , 0
)
, P0yz

(
0, d

f ,
r f− f−dr

c f

)
, Px0z

(
d
e , 0,

a
b

)
and

P+
xyz

(
br(d− f )+ f (b+ac)

ber , br−b−ac
br , a

b

)
of 3 × 3 model (1.2) are periodic points of period- 2, 3, · · · , n.

Proof. Same as the proof of Theorem 5.2. �

6. Existence of bifurcations about fixed points of the 3 × 3 model (1.2)

Existence of bifurcations about boundary fixed points: P000(0, 0, 0), P0y0

(
0, r−1

r , 0
)
,

P0yz

(
0, d

f ,
r f− f−dr

c f

)
and Px0z

(
d
e , 0,

a
b

)
are explored in this Section. Moreover occurrence of bifurcations

about boundary fixed points can be summarized as follows:

(i) About P000(0, 0, 0), one of the eigenvalues λ2|(4.5) = 1 but λ1,3 = 1 + a, 1 − d , 1 or − 1. So 3 × 3
model (1.2) may undergoes a fold bifurcation if parameters Λ = (a, b, c, d, e, f , r) goes through
the following curve:

FB|P000(0,0,0) = {Λ : r = 1} . (6.1)

For the interested readers, it is important here to mention that we have introduced new notation
like λ2|(4.5) which stands that we have evaluated the eigenvalue λ2 at non-hyperbolic condition,
which is depicted in Eq (4.5). Similarly we use such notation for same purpose in the rest of the
paper.
Moreover, about P000(0, 0, 0), one of the eigenvalues λ3|(4.6) = −1 but λ1,2 = 1 + a, r , 1 or − 1.
So 3×3 model (1.2) may undergoes a P-D bifurcation if parameters Λ goes through the following
curve:

PDB|P000(0,0,0) = {Λ : d = 2} . (6.2)

It is noted that for d = 2 the predator leaves a negative number of offspring, i.e., in the absence of
prey and therefore its no make sense biology. Thus we will exclude this case from further study.

(ii) About P0y0

(
0, r−1

r , 0
)
, one of the eigenvalues λ2|(4.11) = −1 but λ1,3 = 1+a, 1−d+

f (r−1)
r , 1 or −1.

So 3 × 3 model (1.2) undergoes a P-D bifurcation if parameters Λ goes through the following
curve:

PDB|P0y0(0, r−1
r ,0) = {Λ : r = 3} . (6.3)

Also P0y0

(
0, r−1

r , 0
)
, one of the eigenvalues λ3|(4.12) = −1 but λ1,2 = 1 + a, 2 − r , 1 or − 1. So

3 × 3 model (1.2) undergoes a P-D bifurcation if Λ goes through the following curve:

PDB|P0y0(0, r−1
r ,0) =

{
Λ : r =

f
f − d + 2

}
. (6.4)

(iii) About P0yz

(
0, d

f ,
r f− f−dr

c f

)
, pair of complex conjugate eigenvalues |λ2,3|(4.26) = 1 but λ1 = 1 + a +

b
c

(
1 − r + dr

f

)
, 1 or − 1. So 3 × 3 model (1.2) undergoes a N-S bifurcation if parameters Λ goes

through the following curve:

NS B|P0yz
(
0, d

f ,
r f− f−dr

c f

) =

{
4d2 f r + d2r2 − 4dr f 2 + 4d2 f r

f 2 < 0, r =
f

f − 1 − d

}
. (6.5)

(iv) About Px0z

(
d
e , 0,

a
b

)
, λ1|(4.32) = −1 but |λ2,3| = 1 + ad > 1. So 3 × 3 model (1.2) may undergoes

P-D bifurcation if Λ goes through the following curve:

PDB|Px0z( d
e ,0,

a
b ) =

{
Λ : r =

ac
b
− 1

}
. (6.6)
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7. Detailed bifurcation analysis about fixed points of the model (1.2)

For the completeness of this Section, the detailed bifurcation analysis about fixed points of the
model (1.2) is presented as follows:

7.1. Fold bifurcation about P000(0, 0, 0)

About P000(0, 0, 0), 3 × 3 model (1.2) undergoes a fold bifurcation when parameters Λ goes
through the curve, which is depicted in Eq (6.1). But by computation, fold bifurcation do not occur
and therefore P000(0, 0, 0) is degenerate with high co-dimension for the original parameters Λ of 3 × 3
model (1.2).

7.2. P-D bifurcation about P0y0

(
0, r−1

r , 0
)

About P0y0

(
0, r−1

r , 0
)
, 3 × 3 model (1.2) undergoes P-D bifurcation when Λ goes through the curve,

which is depicted in Eq (6.3). Since model (1.2) is invariant w.r.t x = z = 0 then we can restrict the
model (1.2) on x = z = 0, to determine the bifurcation, where model (1.2) takes the form:

yn+1 = ryn(1 − yn). (7.1)

Also the map corresponds to Eq (7.1) takes the form:

f (y) := ry − ry2. (7.2)

Denote r = r∗ = 3, y = y∗ = r−1
r . By computation one gets: fy|r=r∗=3, y=y∗= r−1

r
= −1 which is

non-hyperbolic condition for P-D bifurcation. Moreover, the non-degenerate conditions:
fyy|r=r∗=3, y=y∗= r−1

r
= −6 , 0 and fr|r=r∗=3, y=y∗= r−1

r
= 2

9 , 0 hold, which implies that 3 × 3 model (1.2)
undergoes the P-D bifurcation when Λ goes through the curve, which is depicted in Eq (6.3).
Additionally,

(
fyy fr + 2 fyr

) (
2 fyyy + 3 f 2

yy

)
|r=r∗=3, y=y∗= r−1

r
= −81 < 0, and hence by existing

literature [15–17] model (1.2) undergoes the supercritical P-D bifurcation.

7.3. N-S bifurcation about P0yz

(
0, d

f ,
r f− f−dr

c f

)
In this Subsection, N-S bifurcation of the 3 × 3 model (1.2) is explored about P0yz

(
0, d

f ,
r f− f−dr

c f

)
, if

Λ goes through the curve, which is depicted in Eq (6.5) by assuming that r , f (2c+ac+b)
b( f−d) . Let

un = xn, vn = yn −
d
f
, wn = zn −

r f − f − dr
c f

, (7.3)

then 3 × 3 model (1.2) takes the form:
un+1

vn+1

vn+1

 =


1 + a + b

c

(
1 − r + dr

f

)
0 0

0 1 − dr
f −dc

f
e
c

(
r − 1 − dr

f

)
f
c

(
r − 1 − dr

f

)
1




un

vn

vn

 +


−bunun

−rv2
n − cvnwn

eunwn + f vnwn

 , (7.4)

whose linear part is same as J|P0yz
(
0, d

f ,
r f− f−dr

c f

), which is depicted in Eq (4.13). Moreover at Eq (4.26),
following non-degenerate conditions hold:

|λ2,3|(4.26) = 1 and
d|λ2,3|

dr
|(4.26) =

f d − d − d2

2 f
, 0, (7.5)
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and additionally it is require that λm
2,3 , 1 where m = 1, 2, 3, 4 which also true by computation. Now

using the transformation:


un

vn

wn

 = T


xt

yt

zt

 , (7.6)

Equation (7.4) takes the following form:


xt+1

yt+1

zt+1

 =


2 f−dr

2 f

√
4dr f 2−4d f 2−4d2 f r−r2d2

2 f 0

−

√
4dr f 2−4d f 2−4d2 f r−r2d2

2 f
2 f−dr

2 f 0
0 0 1 + a + b

c

(
1 − r + dr

f

)
×

xt

yt

zt

 +


Γ (xt, yt, zt)
Φ (xt, yt, zt)
Ψ (xt, yt, zt)


, (7.7)

where

T =


0 0 c2d f

e(cdr+ac f−b f r+b f +bdr) −
b f +ac f +bdr−b f r

e( f +dr− f r)

−cdr
2 f ( f r− f−dr)

c
√

4dr f 2−4d f 2−4d2 f r−d2r2

2 f ( f r− f−dr)
−c2d

b f +ac f +bdr+cdr−b f r

1 0 1

 , (7.8)
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and

Γ (xt, yt, zt) = bxtzt + bz2
t +

(
xtzt + z2

t

) ( c2d f
b f + ac f + bdr + cdr − b f r

−
b f + ac f + bdr − b f r

f + dr − f r

)
−

cdr
2 ( f r − f − dr)

x2
t +

c
√

4dr f 2 − 4d f 2 − 4d2 f r − r2d2

2 ( f r − f − dr)
xtyt−

c2 f d
b f + ac f + bdr + cdr − b f r

zt xt −
cdr

2 ( f r − f − dr)
xtzt+

c
√

4dr f 2 − 4d f 2 − 4d2 f r − r2d2

2 ( f r − f − dr)
ytzt −

c2 f d
b f + ac f + bdr + cdr − b f r

z2
t ,

Φ (xt, yt, zt) =
bcdr − 2bc2d f ( f r− f−dr)

b f +ac f +bdr+cdr−b f r

c
√

4dr f 2 − 4d f 2 − 4d2 f r − r2d2

(
xtzt + z2

t

)
+

2 f ( f r − f − dr)

c
√

4dr f 2 − 4d f 2 − 4d2 f r − r2d2
×

[
−r

( −cdr
2 f ( f r − f − dr)

xt +
c
√

4dr f 2 − 4d f 2 − 4d2 f r − r2d2

2 f ( f r − f − dr)
yt

−
c2d

b f + ac f + bdr + cdr − b f r
zt
)2

+

(
xt + zt)(

c2dr
2 f ( f r − f − dr)

xt −
c2

√
4dr f 2 − 4d f 2 − 4d2 f r − r2d2

2 f ( f r − f − dr)
yt

+
c3d

b f + ac f + bdr + cdr − b f r
zt
)]

+

dr√
4dr f 2 − 4d f 2 − 4d2 f r − r2d2

×

[
zt(xt + zt)

( c2d f
b f + ac f + bdr + cdr − b f r

−
b f + ac f + bdr − b f r

( f + dr − f r)
)

+(xt + zt)
( −cdr
2 ( f r − f − dr)

xt +
c
√

4dr f 2 − 4d f 2 − 4d2 f r − r2d2

2 ( f r − f − dr)
yt−

c2d f
b f + ac f + bdr + cdr − b f r

zt
)]
,

Ψ (xt, yt, zt) = −bxtzt − bz2
t .

(7.9)

Hereafter, we have the system (7.7) on the center manifold, i.e.,

Wc(0) = {(xt, yt, zt) | zt = h(xt, yt), h(0, 0) = 0,Dh(0, 0) = 0} , (7.10)

where

h(xt, yt) = α1x2
t + α2xtyt + α3y2

t + O
(
(|xt| + |yt|)3

)
. (7.11)

In view of Eqs (7.10) and (7.7) becomes:

h

2 f − dr
2 f

xt +

√
4dr f 2 − 4d f 2 − 4d2 f r − r2d2

2 f
yt + Γ (xt, yt, h) ,−

√
4dr f 2 − 4d f 2 − 4d2 f r − r2d2

2 f
xt

+
2 f − dr

2 f
yt + Φ (xt, yt, h)

)
=

(
1 + a

b
c

(
r − 1 −

dr
f

))
h (xt, yt) + Ψ (xt, yt, h) .

(7.12)
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After some manipulation, from Eq (7.12) one gets: α1 = α2 = α3 = 0. So, the system (7.7) restricted
to Wc(0) becomes

(
xt+1

yt+1

)
=

 2 f−dr
2 f

√
4dr f 2−4d f 2−4d2 f r−r2d2

2 f

−

√
4dr f 2−4d f 2−4d2 f r−r2d2

2 f
2 f−dr

2 f


(

xt

yt

)
+

(
ζ1 (xt, yt)
ζ2 (xt, yt)

)
, (7.13)

where

ζ1 (xt, yt) =
−cdr

2 ( f r − f − dr)
x2

t +
c
√

4dr f 2 − 4d f 2 − 4d2 f r − r2d2

2 ( f r − f − dr)
xtyt,

ζ2 (xt, yt) =
2 f ( f r − f − dr)

c
√

4dr f 2 − 4d f 2 − 4d2 f r − r2d2

[
−r

( −cdr
2 f ( f r − f − dr)

xt+

c
√

4dr f 2 − 4d f 2 − 4d2 f r − r2d2

2 f ( f r − f − dr)
yt
)2

+

(
c2dr

2 f ( f r − f − dr)

)
x2

t −
c2

√
4dr f 2 − 4d f 2 − 4d2 f r − r2d2

2 f ( f r − f − dr)
xtyt

]
+

dr√
4dr f 2 − 4d f 2 − 4d2 f r − r2d2

( −cdr
2 ( f r − f − dr)

x2
t

+
c
√

4dr f 2 − 4d f 2 − 4d2 f r − r2d2

2 ( f r − f − dr)
xtyt

)
.

(7.14)

In order for Eq (7.13) to undergoes a N-S bifurcation, one require that the following discriminatory
quantity σ should be non-zero [12, 18, 19]:

σ = −Re
(
(1 − 2λ) λ̄2

1 − λ
L11L12

)
−

1
2
|L11|

2 − |L21|
2 + Re

(
λ̄L22

)
, (7.15)

where

L11 =
1
4

[
ζ̄1xt xt + ζ̄1ytyt + ι

(
ζ̄2xt xt + ζ̄2ytyt

)]
,

L12 =
1
8

[
ζ̄1xt xt − ζ̄1ytyt + 2ζ̄2xtyt + ι

(
ζ̄2xt xt − ζ̄2ytyt − 2ζ̄1xtyt

)]
,

L21 =
1
8

[
ζ̄1xt xt − ζ̄1ytyt − 2ζ̄2xtyt + ι

(
ζ̄2xt xt − ζ̄2ytyt + 2ζ̄1xtyt

)]
,

L22 =
1

16

[
ζ̄1xt xt xt + ζ̄1xtytyt + ζ̄2xt xtyt + ζ̄2ytytyt+

ι
(
ζ̄2xt xt xt + ζ̄2xtytyt − ζ̄1xt xtyt − ζ̄1ytytyt

)]
.

(7.16)
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After straightforward calculation, one gets:

L11 =
1
4
[ −cdr

f r − f − dr
+ ι

( 1√
4dr f 2 − 4d f 2 − 4d2 f r − r2d2

(
2c2dr −

c2d2r3

f ( f r − f − dr)

)
−

cd2r2

( f r − f − dr)
√

4dr f 2 − 4d f 2 − 4d2 f r − r2d2

−
rc

√
4dr f 2 − 4d f 2 − 4d2 f r − r2d2

f ( f r − f − dr)
)]
,

L12 =
1
8
[cdr f + 2cdr2 − 2c f 2r + 2c f 2 + cdr

f ( f r − f − dr)
+ ι

( 1

c
√

4dr f 2 − 4d f 2 − 4d2 f r − r2d2
×(

2c2dr −
c2d2r3

f ( f r − f − dr)

)
−

cd2r2

( f r − f − dr)
√

4dr f 2 − 4d f 2 − 4d2 f r − r2d2

+
c
√

4dr f 2 − 4d f 2 − 4d2 f r − r2d2

f ( f r − f − dr)
(r − f )

)]
,

L21 =
1
8
[2c f 2r − 3cdr f − 2cdr2 − 2c f 2 − cdr

f ( f r − f − dr)
+ ι

( 1

c
√

4dr f 2 − 4d f 2 − 4d2 f r − r2d2(
2c2dr −

c2d2r3

f ( f r − f − dr)
)
−

cd2r2

( f r − f − dr)
√

4dr f 2 − 4d f 2 − 4d2 f r − r2d2

+
c
√

4dr f 2 − 4d f 2 − 4d2 f r − r2d2

f ( f r − f − dr)
(r + f )

)]
,

L22 = 0.

(7.17)

Based on N-S bifurcation analysis about P0yz

(
0, d

f ,
r f− f−dr

c f

)
, one has

Theorem 7.1. 3×3 model (1.2) undergoes a N-S bifurcation at P0yz

(
0, d

f ,
r f− f−dr

c f

)
if σ , 0. Moreover, if

σ < 0 (resp. σ > 0), then an attracting (resp. repelling) closed curve bifurcates from P0yz

(
0, d

f ,
r f− f−dr

c f

)
.

Finally Supercritical (resp. subcritical) N-S bifurcation take place if σ < 0 (resp. σ > 0).

Remark 1: Recall that about Px0z

(
d
e , 0,

a
b

)
, 3 × 3 model (1.2) may undergoes P-D bifurcation if Λ

goes through the curve, which is depicted in Eq (6.6). But by computation, P-D bifurcation do not
occur and therefore Px0z

(
d
e , 0,

a
b

)
is degenerate with high co-dimension.

Hereafter, we explore the N-S as well as P-D bifurcations of the 3 × 3 model (1.2) without
calculating the eigenvalues of J|P+

xyz

( br(d− f )+ f (b+ac)
ber , br−b−ac

br , a
b

) about P+
xyz

(
br(d− f )+ f (b+ac)

ber , br−b−ac
br , a

b

)
. Precisely, in

the following two theorems, we explore N-S and P-D bifurcations by utilizing explicit criteria, i.e., the
criteria which is formulated by using a set of inequalities or equalities that contain the coefficients of
the characteristic equation derived from J|P+

xyz

( br(d− f )+ f (b+ac)
ber , br−b−ac

br , a
b

) about the unique positive fixed
point [20–22].
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7.4. N-S and P-D bifurcations about P+
xyz

(
br(d− f )+ f (b+ac)

ber , br−b−ac
br , a

b

)
Theorem 7.2. If

1 − δ2 + δ3(δ1 − δ3) = 0,
1 + δ2 − δ3(δ1 + δ3) > 0,

1 + δ1 + δ2 + δ3 > 0,
1 − δ1 + δ2 − δ3 > 0,

d
dr

(1 − δ2 + δ3(δ1 − δ3)) |r=r0 , 0,

cos
2π
l
, 1 −

1 + δ1 + δ2 + δ3

2(1 + δ2)
, l = 3, 4, · · · ,

(7.18)

then 3 × 3 model (1.2) undergoes a N-S bifurcation about P+
xyz

(
br(d− f )+ f (b+ac)

ber , br−b−ac
br , a

b

)
, where δ1, δ2

and δ3 are depicted in Eq (4.35).

Proof. By utilizing explicit criterion, which is depicted in [20, 21], for n = 3 one gets:

∆−2 (r) = 1 − δ2 + δ3(δ1 − δ3) = 0,
∆+

2 (r) = 1 + δ2 − δ3(δ1 + δ3) > 0,
Pr(1) = 1 + δ1 + δ2 + δ3 > 0,

(−1)3Pr(−1) = 1 − δ1 + δ2 − δ3 > 0,
d
dr

(
∆−2 (r)

)
|r=r0 =

d
dr

(1 − δ2 + δ3(δ1 − δ3)) |r=r0 , 0.

(7.19)

Finally

1 − 0.5Pr(1)
∆−0 (r)
∆+

1 (r)
= 1 −

1 + δ1 + δ2 + δ3

2(1 + δ2)
.

�

Theorem 7.3. If

1 − δ2 + δ3(δ1 − δ3) > 0,
1 + δ2 − δ3(δ1 + δ3) > 0,

1 ± δ2 > 0,
1 + δ1 + δ2 + δ3 > 0,
−1 + δ1 − δ2 + δ3 = 0,

δ
′

1 − δ
′

2 + δ
′

3

3 − 2δ1 + δ2
, 0,

(7.20)

then 3 × 3 model (1.2) undergoes a P-D bifurcation about P+
xyz

(
br(d− f )+ f (b+ac)

ber , br−b−ac
br , a

b

)
.
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Proof. By utilizing explicit criterion, which is depicted in [21, 22], for n = 3 one gets:

∆−2 (r) = 1 − δ2 + δ3(δ1 − δ3) > 0,
∆+

2 (r) = 1 + δ2 − δ3(δ1 + δ3) > 0,
∆±1 (r) = 1 ± δ2 > 0,
Pr(1) = 1 + δ1 + δ2 + δ3 > 0,

Pr(−1) = −1 + δ1 − δ2 + δ3 = 0.

(7.21)

Finally ∑n
i=1(−1)n−iδ

′

i∑n
i=1(−1)n−i(n − i + 1)δi−1

=
δ
′

1 − δ
′

2 + δ
′

3

3 − 2δ1 + δ2
, 0.

�

8. Numerical simulations

Theoretical results are illustrated numerically in this Section. In this regard, following cases are
presented to discuss the correctness of obtained theoretical results about fixed points for the 3 × 3
model (1.2):

(a) (b)

(c)

Figure 1. P-D bifurcation diagram about P0y0

(
0, r−1

r , 0
)

of model (1.2) by varying r ∈
[1.2, 10.4].
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Case I: If a = 0.007, b = 0.001, c = 0.1, d = 0.39, e = 0.5, f = 2.7 and varying r ∈ [1.2, 10.4] then
Figure 1a clearly indicates that about P0y0 (0, 0.6884735202492211, 0), model (1.2) undergoes P-D
bifurcation, which correctness the theoretical discussion in Subsection 7.2. More 3D bifurcation
diagrams are plotted and depicted in Figure 1b,1c.

Case II: If a = 0.45, b = 0.9, c = 0.99, d = 0.29, e = 0.3, f = 2.3 then from Eq (4.26) one gets:
r = 2.2772277227722775. By Lemma 4.4, P0yz

(
0, d

f ,
r f− f−dr

c f

)
is locally asymptotically focus if

r < 2.2772277227722775, exchange of stability if r = 2.2772277227722775, and unstable focus if
r > 2.2772277227722775. For instance, if r = 1.4 < 2.2772277227722775 then it is clear from
Figure 2a that P0yz (0, 0.12608695652173912, 0.2257356170399649) of model (1.2) is locally
asymptotically focus. Similarly others values of r, if r < 2.2772277227722775 then P0yz

(
0, d

f ,
r f− f−dr

c f

)
of model (1.2) is also locally asymptotically focus (Figure 2b,2c). But if r > 2.2772277227722775
then discrete-time model (1.2) loss its stability and meanwhile stable closed curve appears
(Figure 3a,3c). The appearance of these closed curve implies that model (1.2) undergoes supercritical
N-S bifurcation when parameters goes through the curve, which is depicted in Eq (6.5). This
correctness of theoretical results obtain in Subsection 7.3. Finally, the bifurcation diagrams along
with Maximum Lyapunov Exponent in this case, are plotted and drawn in Figure 4.

(a) r = 1.67 with (0.0, 0.17, 0.54) (b) r = 1.98 with (0.0, 0.17, 0.54)

(c) r = 1.9875 with (0.0, 0.17, 0.54)

Figure 2. Topological classification of model (1.2) about P0yz

(
0, d

f ,
r f− f−dr

c f

)
if r <

2.2772277227722775.

Case III: If a = 0.45, b = 0.93, c = 0.8, d = 0.95, e = 0.15, f = 0.45 and parameter r vary from
1.23 to 10.4, i.e., r ∈ [1.23, 10.4] then at r = 2.86317 the P+

xyz

(
br(d− f )+ f (b+ac)

ber , br−b−ac
br , a

b

)
loss its
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stability. That means that P+
xyz

(
br(d− f )+ f (b+ac)

ber , br−b−ac
br , a

b

)
is locally stable if r < 2.86317. For instance, if

r = 1.75 < 2.86317 then it is clear from Figure 5a that unique positive fixed point
P+

xyz (19.044546850998465, 0.2737327188940094, 0.48387096774193544) of model (1.2) is locally
stable. Similarly others values of r, if r < 2.86317 then P+

xyz

(
br(d− f )+ f (b+ac)

ber , br−b−ac
br , a

b

)
of model (1.2) is

also locally stable (Figure 5b,5c). Also if
a = 0.45, b = 0.93, c = 0.8, d = 0.95, e = 0.15, f = 0.45, r = 2.86317 then Eq (4.34) along with
Eq (4.35) takes the following form:

P(λ) = λ3 − 1.5239267741935483λ2 + 0.15468797005336343λ + 0.4321468661912955 = 0. (8.1)

(a) r = 2.3 with (0.0, 0.17, 0.54) (b) r = 2.32 with (0.0, 0.17, 0.54) (c) r = 2.35 with (0.0, 0.17, 0.54)

Figure 3. Supercritical N-S bifurcation of model (1.2) about P0yz

(
0, d

f ,
r f− f−dr

c f

)
if r >

2.2772277227722775.

By computer computation, from Eq (8.1) one gets:

λ1 = −0.43214706529074226, λ2,3 = 0.9780369197421452 ± 0.208430618911403ι

with
|λ2,3| = |0.9780369197421452 ± 0.208430618911403ι| = 1.

This grantee that for above parametric values, discrete-time model (1.2) undergoes N-S bifurcation
when parameter r goes through the bifurcation values, i.e., r = 2.86317. Moreover the parametric
conditions, which are depicted in Eq (7.18), under which the model (1.2) undergoes a N-S bifurcation
hold, i.e.,

1 − δ2 + δ3(δ1 − δ3) = 0,
1 + δ2 − δ3(δ1 + δ3) = 1.6264972358671579 > 0,

1 + δ1 + δ2 + δ3 = 0.06290806205111066 > 0,
1 − δ1 + δ2 − δ3 = 2.246467878055616 > 0,

d
dr

(1 − δ2 + δ3(δ1 − δ3)) |r=2.86317 = 1.9429918439959177 , 0,

cos
2π
l
, 1 −

1 + δ1 + δ2 + δ3

2(1 + δ2)
= 0.9727597135838336, l = 3, 4, 5, · · · ,
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which again grantee that model (1.2) undergoes a N-S bifurcation if parameters goes through the
bifurcation value. Hence if r > 2.86317 then discrete-time model (1.2) loss its stability and
meanwhile stable closed curve appears (Figure 6a–6c). The appearance of these closed curve implies
that model (1.2) undergoes supercritical N-S bifurcation when parameters goes through r > 2.86317.
This correctness of theoretical results obtain in Subsection 7.4. Finally, the bifurcation diagrams
along with Maximum Lyapunov Exponent in this case, are plotted and drawn in Figure 7.
Case IV: If a = 0.3, b = 1.99, c = 3.75, d = 0.75, e = 0.235, f = 1.0305 and parameter r vary from
1.6 to 5.2, i.e., r ∈ [1.6, 5.2] then at r = 3.9603484492658967 the P+

xyz

(
br(d− f )+ f (b+ac)

ber , br−b−ac
br , a

b

)
loss its

stability. That means that P+
xyz

(
br(d− f )+ f (b+ac)

ber , br−b−ac
br , a

b

)
is stable if r < 3.9603484492658967, unstable

if r = 3.9603484492658967 and P-D bifurcation appears if r > 3.9603484492658967. For instance, if
a = 0.3, b = 1.99, c = 3.75, d = 0.75, e = 0.235, f = 1.0305, r = 3.97 then Eq (4.34) along with
Eq (4.35) takes the following form:

P(λ) = λ3 − 0.6049781838999324λ2 − 0.8791823027251384λ + 0.7257958811747927 = 0. (8.2)

From Eq (8.2) one gets:

λ1 = −1, λ2,3 = 0.802489091949966 ± 0.28601947219745705ι,

with

|λ2,3| = |0.802489091949966 ± 0.28601947219745705ι| = 0.8519365476224112 , 1.

This grantee that for above parametric values, discrete-time model (1.2) undergoes P-D bifurcation
when parameter r goes through the bifurcation values, i.e., r = 3.9603484492658967. Moreover the
parametric conditions, which are depicted in Eq (7.20), under which the model (1.2) undergoes a P-D
bifurcation hold, i.e.,

1 − δ2 + δ3(δ1 − δ3) = 0.9133119675196675 > 0,
1 + δ2 − δ3(δ1 + δ3) = 0.03312871021974505 > 0,

1 + δ2 = 0.12081769727486158 > 0,
1 − δ2 = 1.8791823027251384 > 0,

1 + δ1 + δ2 + δ3 = 0.24163539454972183 > 0,
−1 + δ1 − δ2 + δ3 = 0,

δ
′

1 − δ
′

2 + δ
′

3

3 − 2δ1 + δ2
= 0.07824004099574383 , 0,

which again grantee that model (1.2) undergoes a P-D bifurcation. The bifurcation diagrams along
with Maximum Lyapunov Exponent in this case, are plotted and drawn in Figure 8. More figure are
plotted and drawn in Figure 9 that indicates that model (1.2) complex dynamics of period-2,10,11,12
respectively. For the qualitative behavior of the continuous-time model, we refer the reader [23–25]
and references cited therein.
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(a) (b)

(c)

Figure 4. Bifurcation diagram and their corresponding Maximum Lyapunov Exponent
of the model (1.2) about P0yz

(
0, d

f ,
r f− f−dr

c f

)
. (4a,4b) Bifurcation diagram of the model if

r ∈ [1.2, 10.4] and initial condition (0, 0.17, 0.54). (4c) Maximum Lyapunov Exponent
corresponding to Figure 4a,4b

(a) r = 1.75 with (0.2, 0.2, 0.2) (b) r = 1.79 with (0.2, 0.2, 0.2) (c) r = 1.798 with (0.2, 0.2, 0.2)

Figure 5. Topological classification of model (1.2) about P+
xyz

(
br(d− f )+ f (b+ac)

ber , br−b−ac
br , a

b

)
if

r < 2.86317.
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(a) r = 2.87 with (0.2, 0.2, 0.2) (b) r = 2.89 with (0.2, 0.2, 0.2) (c) r = 2.9 with (0.2, 0.2, 0.2)

Figure 6. Supercritical N-S bifurcation of model (1.2) about P+
xyz

(
br(d− f )+ f (b+ac)

ber , br−b−ac
br , a

b

)
if

r > 2.86317.

(a) (b)

(c)

Figure 7. Bifurcation diagram and their corresponding Maximum Lyapunov Exponent of the
model (1.2) about P+

xyz

(
br(d− f )+ f (b+ac)

ber , br−b−ac
br , a

b

)
. (7a,7b) Bifurcation diagram of the model

if r ∈ [1.1, 10.4] and initial condition (0.2, 0.2, 0.2). (7c) Maximum Lyapunov Exponent
corresponding to Figure 7a,7b
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(a) (b) (c)

Figure 8. Bifurcation diagram and their corresponding Maximum Lyapunov Exponent of the
model (1.2) about P+

xyz

(
br(d− f )+ f (b+ac)

ber , br−b−ac
br , a

b

)
. (8a,8b) Bifurcation diagram of the model

if r ∈ [1.5, 5.2] and initial condition (0.5, 0.15, 0.15). (8c) Maximum Lyapunov Exponent
corresponding to Figure 8a,8b

(a) r = 4.0 (b) r = 4.56

(c) r = 4.7 (d) r = 4.9

Figure 9. Complex dynamics of model (1.2) in the Case IV.

9. Hybrid control of bifurcations

In discrete-time models, chaos control can be obtained using various methods, some of them are
the state feedback method, pole-placement technique and hybrid control method. Among all these
methods, hybrid control technique is the simplest to implement. Moreover this method can be
implemented for controlling chaos under the influence of both N-S and P-D bifurcations. To control
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the chaos in model (1.2), we will utilize Hybrid control strategy to control the N-S and P-D
bifurcations about the positive fixed point: P+

xyz

(
br(d− f )+ f (b+ac)

ber , br−b−ac
br , a

b

)
. For more detailed study

about the Hybrid control strategy, we refer the reader to [26–28] and reference cited therein.

9.1. Control of N-S bifurcation

The Hybrid control strategy is applied for control of N-S bifurcation in this Subsection. Recall that
if the uncontrolled discrete-time model (1.2) undergoes a N-S bifurcation about
P+

xyz

(
br(d− f )+ f (b+ac)

ber , br−b−ac
br , a

b

)
then the controlled discrete-time model correspond to model (1.2)

becomes:

xn+1 = α ((1 + a)xn − bxnzn) + (1 − α)xn,

yn+1 = α (ryn(1 − yn) − cynzn) + (1 − α)yn,

zn+1 = α ((1 − d)zn + exnzn + f ynzn) + (1 − α)zn,

(9.1)

where 0 < α < 1. Here it is noted that control model (9.1) reduces to model (1.2) if α = 1, and chaos
for model (9.1) can be delayed, advance or even completely eliminate by choosing the suitable choice
of the parametric value of α. Now if one reconsider the Case III of Section 8 then
J|P+

xyz(19.044546850998465,0.20737327188940094,0.48387096774193544) about
P+

xyz (19.044546850998465, 0.20737327188940094, 0.48387096774193544) for the controlled
system (9.1) becomes

J|P+
xyz(19.044546850998465,0.20737327188940094,0.48387096774193544)

=


1 0 6.63919α
0 1 − 1.47607α −0.41243α

0.0725806α 1.42742α 1

 .
(9.2)

The characteristic polynomial of Eq (9.2) becomes

F(λ) = λ3+(1.47607α−3)λ2+(0.106834α2−2.95215α+3)λ−0.711285α3−0.106834α2+1.47607α−1 = 0,
(9.3)

whose roots lies in an open disk |λ| < 1 iff α ∈ (0, 0.66675). For instance, if α = 0.56 the phase
portraits for controlled system (9.1) are plotted and drawn in Figure 10.

9.2. Control of P-D bifurcation

Recall that if Case IV of Section 8 hold then J|P+
xyz(13.30555251494148,0.604750275583457,0.1507537688442211)

about P+
xyz (13.30555251494148, 0.604750275583457, 0.1507537688442211) for the controlled

system, which is depiction in system (9.1), becomes

J|P+
xyz(13.30555251494148,0.604750275583457,0.1507537688442211)

=


1 0 10.4777α
0 1 − 2.39502α −2.26781α

0.0354271α 0.565327α 1

 .
(9.4)
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(a) (b)

(c)
(d)

Figure 10. Phase portraits for controlled system (9.1).

(a) (b)

(c)
(d)

Figure 11. Phase portraits for controlled system (9.1).
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The characteristic polynomial of Eq (9.4) becomes

F(λ) = λ3 + (2.39502α − 3)λ2 + (0.910861α2 − 4.79004α + 3)λ − 0.889018α3 −

0.9108661α2 + 2.39502α − 1 = 0, (9.5)

whose roots lies in an open disk |λ| < 1 iff α ∈ (0, 0.543543). For instance, if α = 0.50 the phase
portraits for controlled system (9.1) are plotted and drawn in Figure 11.

10. Conclusions and future work

This work deals with the study of local dynamics along with different topological classifications,
bifurcations and Hybrid control of the model (1.2) in R3

+. In the interior of R3
+, it is explored that the

model has boundary fixed points: P000(0, 0, 0), P0y0

(
0, r−1

r , 0
)
, P0yz

(
0, d

f ,
r f− f−dr

c f

)
,Px0z

(
d
e , 0,

a
b

)
and a

unique positive fixed point: P+
xyz

(
br(d− f )+ f (b+ac)

ber , br−b−ac
br , a

b

)
under certain parametric conditions. We

have explored the local dynamics along with different topological classifications about fixed points:
P000(0, 0, 0), P0y0

(
0, r−1

r , 0
)
, P0yz

(
0, d

f ,
r f− f−dr

c f

)
and Px0z

(
d
e , 0,

a
b

)
by applying the method of

Linearization and stability theory, and conclusions are presented in Table 2. We have also investigated
the local dynamics about positive fixed point: P+

xyz

(
br(d− f )+ f (b+ac)

ber , br−b−ac
br , a

b

)
, and proved that it is a

sink if and only if Eq (4.36) along with Eq (4.35) hold. We have also investigated the existence of
prime period and periodic points for the model (1.2). Further, about each fixed point of the under
consideration model, we have discussed the possible bifurcation scenarios. In general, bifurcation
theory is the mathematical study of changes in the qualitative or topological structure of a given
family, such as the integral curves of a family of vector fields and the solutions of family of
differential equations. It is most commonly applied to the mathematical study of dynamical systems, a
bifurcation occurs when a small smooth change made to the parameter values namely the bifurcation
parameters of the system causes a sudden qualitative or topological change in its behavior. So, in the
current study, we proved that about P000(0, 0, 0) there exist a fold bifurcation as well as P-D
bifurcation if Λ respectively goes through the curves: FB|P000(0,0,0) = {Λ : r = 1} and
PDB|P000(0,0,0) = {Λ : d = 2}. But by computation it goes to degenerate to high dimension and hence
there does not such bifurcations about P000(0, 0, 0). About P0y0

(
0, r−1

r , 0
)
, it is proved that there exist a

P-D bifurcation when Λ goes through the curve: PDB|P0y0(0, r−1
r ,0) = {Λ : r = 3}. We have also proved

that about P0yz

(
0, d

f ,
r f− f−dr

c f

)
the model (1.2) undergoes a N-S bifurcation when Λ goes through the

curve: NS B|P0yz
(
0, d

f ,
r f− f−dr

c f

) =
{

4d2 f r+d2r2−4dr f 2+4d2 f r
f 2 < 0, r =

f
f−1−d

}
. By explicit criterion(without finding

eigenvalues) it is proved that about P+
xyz

(
br(d− f )+ f (b+ac)

ber , br−b−ac
br , a

b

)
the model (1.2) undergoes N-S as

well as P-D bifurcations. Numerical simulations are presented to verify theoretical results. Further,
we have computed maximum Lyapunov exponents numerically. At the end, hybrid control strategy is
applied to stabilize chaos existing in the model (1.2). Global dynamics about fixed points:
P000(0, 0, 0), P0y0

(
0, r−1

r , 0
)
, P0yz

(
0, d

f ,
r f− f−dr

c f

)
, Px0z

(
d
e , 0,

a
b

)
and P+

xyz

(
br(d− f )+ f (b+ac)

ber , br−b−ac
br , a

b

)
,

existence of global bifurcations and construction of forbidden set for the model (1.2) are our next aim
to study.
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Table 2. Fixed points with corresponding behavior of the 3 × 3 model (1.2).

Fixed points Corresponding behavior

P000 never sink; source if r > 1 and d > 2; saddle if 0 < r < 1 and 0 < d < 2;

non-hyperbolic if r = 1 or d = 2.

P0y0 never sink; source if 3 < r < f
f−d+2 ; saddle if f

f−d+2 < r < 3;

non-hyperbolic if r = 3 or r =
f

f−d+2 .

P0yz stable node if
f (ac+b)
b( f−d) < r < f (2c+ac+b)

b( f−d) and f
f−d < r < f (4−d)

d(d+2− f ) ;

unstable node if

r > max
{

f (4−d)
d(d+2− f ) ,

f (2c+ac+b)
b( f−d)

}
;

saddle node if
f (ac+b)
b( f−d) < r < f (2c+ac+b)

b( f−d) and r > f (4−d)
d(d+2− f ) ;

or

r > f (2c+ac+b)
b( f−d) and f

f−d < r < f (4−d)
d(d+2− f ) ;

non-hyperbolic if

r =
f (4−d)

d(d+2− f ) or r =
f (2c+ac+b)

b( f−d) ;

stable focus-node if
f (ac+b)
b( f−d) < r < f (2c+ac+b)

b( f−d) and r < f
f−1−d ;

unstable focus-node if

r > max
{

f (2c+ac+b)
b( f−d) , f

f−1−d

}
;

saddle focus-node if
f (ac+b)
b( f−d) < r < f (2c+ac+b)

b( f−d) and r > f
f−1−d ;

or

r > f (2c+ac+b)
b( f−d) and r < f

f−1−d ;

non-hyperbolic if

r =
f

f−1−d or r =
f (2c+ac+b)

b( f−d) .

Px0z never stable focus-node; unstable focus-node if r < ac
b − 1;

saddle focus-node if r > ac
b − 1; non-hyperbolic if r = ac

b − 1.

Pxyz sink if Eq (4.36) along with Eq (4.35) hold.

Mathematical Biosciences and Engineering Volume 17, Issue 6, 6963–6992.



6991

Acknowledgments

This research is partially supported by the Higher Education Commission of Pakistan.

Conflict of interest

The authors declare that they have no conflicts of interest regarding the publication of this paper.

References

1. M. Braun, Differential Equations and Their Applications: An Introduction to Applied
Mathematics, Springer-Verlage, New York, 1983.

2. F. Brauer, C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology,
Springer, New York, 2001.
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