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Abstract: A mathematical model is proposed that incorporates the key routes of COVID-19
resurgence: human-to-human transmission and indirect transmission by inhaling infectious aerosols
or contacting public facilities with the virus. The threshold condition for the disease invasion is
established, and the relationships among the basic reproduction number, peak value and final size
are formulated. The model is validated by matching the model with the data on cases of COVID-19
resurgence in April of 2020 from Heilongjiang province in China, which indicates that the predictive
values from the mathematical model fit the real data very well. Based upon the computations from the
model and analytical formulae, we reveal how the indirect transmission from environmental pathogens
contribute to the disease outbreak and how the input of asymptomatic individuals affect the disease
spread. These findings highlight the importance of mass detection and environmental disinfection in
the control of COVID resurgence.
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1. Introduction

COVID-19 is an epidemic of novel coronavirus pneumonia, which is enveloped, single-stranded,
positive-sense RNA virus belonging to the family of Coronaviridae [1]. The epidemic, nowadays, has
spread all over the world. The clinical symptoms are fever, dry cough and fatigue, and patients may
develop into severe states [2]. The epidemiological investigations indicate that the epidemic disease
results from direct transmissions by contact between susceptible individual and infectious patient, or
from indirect transmission where susceptible individuals are exposed to pathogens in the
contaminated environment [3]. Close contact with infectious individuals is the main channel of direct
transmission. According to WHO’s guidance document for COVID-19 [4], infected individuals can
carry or produce virus. Susceptible population may inhale the respiratory droplets, shedding from
infected individuals, and then may become exposed or asymptomatic individuals, which depends on
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personal situation [3]. Asymptomatic individuals constitute a special group of infectious patients who
have no clinical symptoms [3, 5], and their transmissions are harder to be noticed. Both of exposed
individual and asymptomatic individuals have the ability to transmit COVID-19 by talking together,
dining together and living together [5, 6].

Though the direct transmission is the main route of COVID-19 transmission, many infection cases
caused by indirect transmission have already occurred in China. The main channels of indirect
transmission are inhaling contaminated aerosols and contacting public facilities with the virus. The
primary infection between the individuals living on adjacent floors in Haerbin of China in April was
probably infected by touching buttons with the virus or inhaling contaminated aerosols in the
elevator [7]. In addition, the infection of a laundrywoman occurring in Jilin of China in May had a
great probability of indirect transmission by touching the clothes with the virus [8]. Moreover, the
local prevalence of COVID-19 in Beijing of China in June originated from indirect transmission by
touching the contaminated frozen meat in the Xinfadi wholesale market. Since the coronavirus can
survive in the environment for several days [9], it is important to investigate how the indirect
transmission contributes to the outbreak of COVID-19.

A number of dynamical models for COVID-19 are proposed to depict the patterns of disease
progression. By comparing with SARS and MERS, Jin et al. investigate the critical parameters of the
epidemic in Hubei of China, estimate the efficacy of control measures and give helpful
suggestions [10]. Tang et al. propose a compartmental model, estimate the control reproduction
number, and assess the cost and efficacy of epidemic prevention to provide the control policy for
reopening time [11, 12]. From the early data in China, Zhao et al. estimate the basic reproduction
number of China [13], and Hu et al. estimate the basic reproduction numbers of COVID-19 in
different regions of China and emphasize the transmission risk of input infections [14].

Notice that most studies by compartmental modeling focus upon the direct transmissions from close
contacts. The objective of this paper is to propose a mathematical model of COVID-19 that includes not
only the direct transmission by close contacts, but also the indirect transmission from environmental
pathogens. Because patients with clinical symptoms are quickly quarantined to the hospital, we will
focus our attention on influences of exposed and asymptomatic infections on the disease dynamics. By
mathematical analysis, we find the relationships among the basic reproduction number, peak value and
final size. By numerical simulations, we find that the input of asymptomatic individuals is dangerous to
the epidemic spread. Furthermore, the detection intensity and environmental disinfection significantly
affect the basic reproduction number and total infection size. Hence, the epidemic peak, epidemic time
and final infection size can be effectively limited through these prevention measures.

The organization of remaining paper is set as follows. The model formulation and analysis are
given in Section 2. Numerical simulations are implemented in Section 3 to extrapolate how indirect
transmissions and covert infections contribute to the resurgence of COVID-19 in Heilongjiang of
China. In the end, we present discussions and draw some conclusions.

2. Model formulation and analysis

2.1. Model formulation

We start from the formulation of a mathematical model. The population is divided into five
compartments: susceptible, asymptomatic, exposed, hospitalized and recovery individuals, the
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numbers of which at time t are denoted by S (t), A(t), E(t),H(t) and R(t) respectively. The
compartment of infectious individuals with clinical symptoms is neglected since the detection
measures are implemented so that they are quickly quarantined to the hospital. We differentiate the
asymptomatic individuals from exposed individuals because there are differences between
asymptomatic individuals and exposed individuals. Indeed, an asymptomatic individual has a
probability of self-healing, and has a longer duration than an exposed individual [15].

Note that an exposed individual has the potential to infect others, and so does an asymptomatic
individual, which has been confirmed in epidemiological investigations [3, 6, 7, 9]. For example, the
infection cases caused by exposed individuals account for 6.30% in their close contacts, which is
slightly bigger than 4.11% for asymptomatic transmissions in Ningbo of China [6]. Let β1 and β2

denote the valid contact coefficients of exposed and asymptomatic individuals through direct
transmission respectively. Then the incidence from direct transmissions is described by

β1AS + β2ES .

We now consider the indirect transmissions which are from aerosols or the public facilities with the
virus. According to medical investigations, coronavirus can survive for several days in damp, dark and
cold environment [7–9]. For the people who stay in such a contaminated environment for a longer time
τ because of service duty or other reasons, the accumulated effect must be considered. Let V(t) be the
concentration of virus in environment at time t and β3 be the rate at which a susceptible individual takes
in virus from the contaminated environment. This could be the case by touching the pathogens through
hands or clothes while he or she stays in the contaminated environment. If η is the decay rate of virus
with a host, then the accumulated virus concentration at time t within the susceptible individual is

β3

∫ τ

0
e−ηrV(t − r)dr.

As a result, one can assume that the infection rate due to indirect transmission at time t is described by

β3

∫ τ

0
e−ηrV(t − r)drS (t).

For convenience in notation, we denote the total infection force of disease transmission by

ϕ(t) = β1A(t) + β2E(t) + β3

∫ τ

0
e−ηrV(t − r)dr.

The susceptible individuals after infected, go either into the asymptomatic compartment at
proportion p, or into the exposed compartment at proportion 1 − p, where p ∈ [0, 1]. Assume that the
exposed and asymptomatic individuals transit into the hospital at rates σ and α respectively.
Moreover, asymptomatic members and hospitalized individuals are recovered at rate γ1 and rate γ2

respectively. Furthermore, we let ξ1 and ξ2 denote the production rates of virus from asymptomatic
and exposed individuals, respectively. In addition, since the average death rate of COVID-19 patients
in China is 2.1% [16] and 1.37% in Heilongjiang province, China [7], which is quite low, we neglect
the impact of fatality. The schematic diagram of disease transmission and progression is shown in

Mathematical Biosciences and Engineering Volume 17, Issue 6, 6909–6927.



6912

Figure 1, and the dynamics of the state variables are described by the following differential equations:

S ′ = −ϕ(t)S ,
A′ = pϕ(t)S − (α + γ1)A,
E′ = (1 − p)ϕ(t)S − σE,

V ′ = ξ1A + ξ2E − δV,

H′ = αA + σE − γ2H,

R′ = γ1A + γ2H,

(2.1)

where a prime denotes the differentiation of a state variable with respect to time t. Since the first four
equations in system (2.1) are independent of H and R, it suffices to consider following system

S ′ = −ϕ(t)S ,
A′ = pϕ(t)S − (α + γ1)A,
E′ = (1 − p)ϕ(t)S − σE,

V ′ = ξ(A + E) − δV,

(2.2)

with initial values

(S (t), A(t), E(t),V(t)) = (S 0, A0, E0,V0) ∈ R4
+, t ∈ [−τ, 0].

Since there is no available data to show the distinction between β1 and β2 and the distinction between
ξ1 and ξ2 in current medical investigations, we confine ourselves to β1 = β2 = β and ξ1 = ξ2 = ξ in the
present paper.

S V

A

E H

R

(1 − p)ϕS

γ1A

ξ2E

ξ1A

δV

pϕS

αA

σE

γ2H

Figure 1. The transmission and progression flows for COVID-19.

2.2. The basic reproduction number

The basic reproduction number is an average number of secondary infections produced by a single
infection in an entirely susceptible population during its infection period. By the next generation matrix
method [17–20], the last three equations of system (2.2) can be written as

x′ = F xt − Ux,
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where x = (A, E,V)T , and

F xt =


pβ(A + E)S + pβ3

∫ τ

0
e−ηrV(t − r)drS

(1 − p)β(A + E)S + (1 − p)β3

∫ τ

0
e−ηrV(t − r)drS

ξ(A + E)

,U =


α + γ1 0 0

0 σ 0
0 0 δ

.
Set

F =


pβS 0 pβS 0 pβ3(1 − e−ητ)S 0/η

(1 − p)βS 0 (1 − p)βS 0 (1 − p)β3(1 − e−ητ)S 0/η

ξ ξ 0

.
Through the method in Zhao [17], the basic reproduction number R0 of system (2.2) is given by
ρ(FU−1), the spectral radius of FU−1. Thus,

R0 =
1
2
βhS 0 +

1
2

√
(βhS 0)2 + 4β3Q

ξ

δ
hS 0,

where

h =
p

α + γ1
+

1 − p
σ

, Q =
1 − e−ητ

η
.

2.3. Analysis of peak value and final size

In order to qualitatively investigate the peak value of infections, following Feng [21], we introduce
a weighted sum of infectious individuals and pathogens:

Y = a1A + a2E + a3V,

a1 =
β

α + γ1
+

β3ξ

(α + γ1)δ
, a2 =

β

σ
+
β3ξQ
σδ

, a3 =
β3Q
δ
.

Clearly, Y(t) is an index of disease infection at time t because the infection risk becomes higher with
the increase of Y .

Define the control reproduction number by

Rc = βhS 0 + β3Q
ξ

δ
hS 0.

We have the following relation between Rc and R0.

Theorem 2.1. sign(R0 − 1) = sign(Rc − 1).

Proof. Note that R0 and Rc can be written as

R0 =
1
2

a +
1
2

√
a2 + 4b, Rc = a + b,

where

a = βhS 0, b = β3Q
ξ

δ
hS 0.
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Theorem 2.1 is evident if a ≥ 1. As a < 1, it is easy to see that

1
2

a +
1
2

√
a2 + 4b > 1

is equivalent to
a + b > 1.

Therefore,
sign(R0 − 1) = sign(Rc − 1).

�

The following theorem indicates that the existence of a peak for the infection index Y is determined
by the control reproduction number Rc.

Theorem 2.2. The infection index Y hits a peak Ymax = Y(t∗) for some t∗ > 0 if Rc > 1, and has no
peak if Rc < 1.

Proof. First, we claim Y(t)→ 0 as t → ∞. To this end, we let

U(t) = a[S (t) + A(t) + E(t)] + V(t),

where a > max{ξ/(α + γ1), ξ/σ}. Then we get U′(t) ≤ 0. In the set {(S , A, E,V) : U′ = 0}, it is easy to
see S axis is the largest invariant set. From the LaSalle’s invariance principle, we conclude

(A(t), E(t),V(t))→ (0, 0, 0), as t → +∞. (2.3)

This proves the claim.
Based on the second, third and fourth equations in system (2.2), we get

Y ′ = [a1 p + a2(1 − p)]ϕ(t)S/Rc − βA/Rc − β3QV/Rc,

= [(a1 p + a2(1 − p))S − 1]ϕ(t)/Rc − β3

[
QV(t) −

∫ τ

0
e−ηrV(t − r)dr

]
Rc,

= [(a1 p + a2(1 − p))S − 1]ϕ(t)/Rc − β3Q[V(t) − V(t − θ)]/Rc,

where θ ∈ (0, τ) and

a1 =
β

α + γ1
+

β3ξQ
(α + γ1)δ

, a2 =
β

σ
+
β3ξQ
σδ

.

If Rc > 1, we can easily get Y ′(0) > 0. Since lim
t→+∞

Y(t) = 0, there must be a t1 > 0 such that
Ymax = Y(t1). If Rc < 1, we have Y ′(0) < 0. Since the subsystem that consists of the last three equation
of system (2.2) with a decreasing function S (t) is a monotone system, we see that Y ′(t) < 0 for t > 0.
Therefore, Y(t) has no peak for t > 0. �

Final size z is a quantitative value which embodies the influence of epidemic [22–24], and is defined
as

z =
S 0 − S +∞

S 0
.
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We state that the final size z of system (2.2) satisfies

z = 1 − exp{−Rcz − ζ}, (2.4)

where
ζ = Y(0) + β3

(eητ − 1 − ητ)
eητη2 V0.

Theorem 2.3. The final size z of system (2.2) is the unique root of Eq (2.4).

Proof. By combining S with A and E, we get following two equations

(pS + A)′ = −(α + γ1)A,
[(1 − p)S + E]′ = −σE.

(2.5)

From the third equation of system (2.2) and Eq (2.5), we get the following three equations

p(S∞ − S 0) + A∞ − A0 = −(α + γ1)Aint,

(1 − p)(S∞ − S 0) + E∞ − E0 = −σEint,

V∞ − V0 = ξ(Aint + Eint) − δVint,

(2.6)

where

Aint =

∫ +∞

0
A(t)dt, Eint =

∫ +∞

0
E(t)dt,Vint =

∫ +∞

0
V(t)dt,

(S 0, A0, E0,V0) and (A∞, S∞, E∞,V∞) are initial and terminal values of (S , A, E,V), respectively.
Solving Eq (2.6) and using Eq (2.3), we obtain

Aint =
1

α + γ1
[A0 + p(S 0 − S∞)],

Eint =
1
σ

[E0 + (1 − p)(S 0 − S∞)],

Vint =
1
δ

[V0 + ξ(Aint + Eint)].

(2.7)

Next, through integral transformation t − r = s, we get the following integration∫ +∞

0

∫ τ

0
exp(−ηr)V(t − r)drdt

=

∫ τ

0
exp(−ηr)

∫ 0

−r
V(s)dsdr + QVint.

(2.8)

By dividing S in the first equation of system (2.1) and then integrating, we have

ln
S∞
S 0

= −β(Aint + Eint) − β3

∫ +∞

0

∫ τ

0
e−ηrV(t − r)drdt. (2.9)

Using Eqs (2.7), (2.8) and (2.9), we yield

ln
S∞
S 0

= −
β

α + γ1
[A0 + p(S 0 − S∞)] −

β

σ
[E0 + (1 − p)(S 0 − S +∞)

− β3

∫ τ

0
exp(−ηr)

∫ 0

−r
V(s)dsdr − β3Q

[
V0

δ
+

ξA0

δ(α + γ1)
+
ξE0

δσ
+
ξ

δ
h(S 0 − S∞)

]
.

Mathematical Biosciences and Engineering Volume 17, Issue 6, 6909–6927.



6916

Further, we have

S∞
S 0

= exp{−(βhS 0 + β3Q
ξ

δ
hS 0)z − (

β

α + γ1
+

β3ξQ
(α + γ1)δ

)A0 − (
β

σ
+
β3Qξ
σδ

)E0

−
β3Q
δ

V0 − β3

∫ τ

0

∫ 0

−r
e−ηrV(s)dsdr}.

Finally, we get
f (z) := z − [1 − exp{−Rcz − ζ}] = 0, (2.10)

where
ζ = Y(0) + β3

(eητ − 1 − ητ)
eητη2 V0.

Since f (0) ∗ f (1) < 0, it is easy to see that (2.10) admits a root z0. To examine the uniqueness, we
let

zmin = min{z : f (z) = 0}.

Then f ′(zmin) ≤ 0. If there exists another root z̄, it follows from Rolle’s theorem that there exists a
zξ ∈ (zmin, z̄) such that

f ′(zξ) = 0. (2.11)

But f ′(z) = −1 + Rc exp{−Rcz − ζ} is a strictly monotone decreasing function. Therefore, Eq (2.11)
cannot hold. Consequently, we conclude that Eq (2.10) admits a unique root. �

The final size z can only be numerically solved. However, it paves a way to estimate the influences
of parameters on the disease spread. In particular, one can infer how different transmission routes
contribute to the disease outbreak. For the latter purpose, we take p = 0 in Eq (2.4) to obtain the
formula for the infection size from exposed individuals, and p = 1 for the infection size from
asymptomatic individuals. We also set ξ = 0 to see how indirect transmissions contribute to the final
size of epidemic spread.

As p = 0, from Eq (2.4) we get the final size equation

z = 1 − exp{−Rcz − ζ1}, (2.12)

where
ζ1 = β3

(eητ − 1 − ητ)
eητη2 V0 + (

β

σ
+
β3ξQ
σδ

)E0 +
β3Q
δ

V0

and Rc is

Rc =
βS 0

σ
+
β3QξS 0

δσ
.

As p = 1, Eq (2.4) implies that the final size equation is given by

z = 1 − exp{−Rcz − ζ2}, (2.13)

where

ζ2 =

(
β

α + γ1
+

β3ξQ
(α + γ1)δ

)
A0 +

β3Q
δ

V0 + β3
(eητ − 1 − ητ)

eητη2 V0
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and Rc satisfies

Rc =
βS 0

α + γ1
+

β3ξQS 0

(α + γ1)δ
.

As ξ = 0, from Eq (2.4), we obtain the final size equation

z = 1 − exp{−Rcz − ζ3} (2.14)

where
ζ3 =

β

α + γ1
A0 +

β

σ
E0

and Rc is described by

Rc =
pβS 0

α + γ1
+

(1 − p)βS 0

σ
.

In summary, through the mathematical analysis in this subsection, we have obtained the
computation formulae for the basic reproduction number and control reproduction number, and
established the equations to determine the final sizes of COVID-19 spread in several important
scenarios. These provide the basis to calculate the characteristics of COVID-19 resurgence from real
data in the next section.

3. Numerical simulation

3.1. Raw data

In April of 2020, COVID-19 epidemic resurged in Heilongjiang province of China. Health
Commission of Heilongjiang Province provided the number of asymptomatic infections per day,
where asymptomatic individuals are those whose nucleic acid tests are positive but do not show any
symptoms of infection [16]. We acquire the real data from Heilongjiang Provincial Health
Committee [7]. Table 1 shows the number of daily asymptomatic individuals and Table 2 gives the
number of cumulative confirmed cases. The histograms of asymptomatic individuals and cumulative
confirmed individuals of Heilongjiang are shown in Figure 2. The number of asymptomatic
individuals in Heilongjiang kept increasing in the first week in April and hit a peak on April 7th. It
began to decline slowly from April 8th and got extinct at the end of April with the final size of 460
confirmed cases.

Table 1. Number of daily asymptomatic infections in Heilongjiang [7].

Date (April) Number of infections
1st–10th 15 16 29 39 36 36 55 54 49 48

11th–20th 47 41 22 21 21 21 19 18 18 16
21th–30th 13 13 11 9 8 6 5 5 4 4

Table 2. Number of cumulative confirmed cases in Heilongjiang [7].

Date (April) Number of infections
1st–10th 4 5 7 20 40 60 85 125 154 177

11th–20th 200 256 335 357 377 388 408 414 421 429
21th–30th 437 441 444 446 451 452 455 455 455 460
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Figure 2. Panel (a) shows the number of daily asymptomatic infections in Heilongjiang.
Panel (b) presents the number of cumulative confirmed cases in Heilongjiang over April and
the total number of confirmed cases is 460 persons.

3.2. Parameter estimation

Previous studies in the transmission of COVID-19 have given the information for most of parameter
values in system (2.2). Specifically, the natural latent period of asymptomatic individuals is estimated
between 3− 14 days [15,25], and the natural latent period of exposed individuals is estimated between
1− 6 days [11,15]. The recovery rates of asymptomatic individuals is estimated at 1/12 day−1, and the
recovery rate of hospitalized individuals is estimated at 1/10 day−1 [16,26]. Environmental coronavirus
has its survival duration that ranges from 3 hours to 3 days [9]. The probability of being asymptomatic
is estimated between 10% − 30% or even higher in some clustering infection cases [5, 27]. Moreover,
we get from Heilongjiang province people’s government [28] that its total population is around 3.7∗107

individuals, which is fixed as the initial size of susceptible. Further, we obtain from [7] that the initial
size of exposed individuals is 22, and the initial size of asymptomatic individuals ranges from 15 to 39.

What we need to estimate are the valid transmission coefficients β, β3, the virus production rate ξ,
the virus decay rate η, and the initial concentration V0 of environmental virus. Through the least
square method for the data from Table 1 and Table 2, we obtain β = 7.8 ∗ 10−9 person−1day−1, β3 =

9.56 ∗ 10−14 person−1day−1, η = 0.63 day−1, ξ = 1.12 ∗ 102 person−1day−1 L−1 and V0 = 9.65 ∗ 106/L.
Consequently, we can present Table 3 for the estimated values or ranges of the parameters and initial
values in system (2.2). Next, we choose

τ = 3 days, δ = 0.667 day−1, α = 0.164 day−1, σ = 0.714 day−1, p = 0.3, (3.1)

which fall in their ranges as indicated in Table 3. We show in Figure 3 that the predicated values by
model (2.2) fit the real data very well. Further calculations show that the peak values (Apeak, Epeak) =

(54.88, 51.85) and the basic reproduction number R0 = 0.636 < 1, which means that the epidemic
spread was effectively controlled by Heilongjiang authorities.
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Figure 3. The fit of predictive values with real data, where the solution curve of model (2.2)
is in good agreement with real data during the early rising stage and late decline stage and
the peak values are approximately identical.

Table 3. Parameter values

Parameters Values Definitions Reference

β 7.8 ∗ 10−9/person/day
Probability of infection

by contacting A
fitting

β3 12.9 ∗ 10−14/person/day
Probability of infection

by contacting V
fitting

ξ 112/person/day/L Effective output rate of V fitting
1/η 1.59 days Average duration of V in vivo fitting
1/δ 1/8–3 days Environmental duration of V [9]

p 10%–30%
Probability of being

asymptomatic
[5, 27]

τ 1/8–3 days Exposed time of S [9]
1/σ 1–6 days Latent period of E [11]
1/α 3–14 days Latent period of A [15, 25]
γ1 1/12 day−1 Recovery rate of A [16, 26]
γ2 1/10 day−1 Recovery rate of H [16, 26]
S 0 3.7*107 persons Population of Heilongjiang [28]
A0 15–39 persons Initial number of A [7]
E0 22 persons Initial number of E [7]
V0 9.65 ∗ 106/L Initial number of V fitting

3.3. Contributions of different transmission routes

In this subsection, we deduce how different transmission channels from asymptomatic infection and
symptomatic infection affect the epidemic spread. We also analyze the epidemic contributions of direct
transmission and indirect transmission.

First, in order to separate the contribution of compartment A from that of compartment E, we
need to figure out the numbers of recovered individuals coming from asymptomatic and symptomatic
individuals, respectively. Thus, we expand model (2.1) in the aim to mark the recovered individuals
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from different infection sources to obtain

S ′ = −ϕ(t)S ,
A′ = pϕ(t)S − (α + γ1)A,
E′ = (1 − p)ϕ(t)S − σE,

V ′ = ξ(A + E) − δV,
H′a = αA − γ2Ha,

H′e = σE − γ2He,

R′a = γ1A + γ2Ha,

R′e = γ2He,

(3.2)

where Ha, He are the hospitalized individuals from asymptomatic compartment and exposed
compartment, respectively; Ra and Re are the recovered individuals from asymptomatic individuals
and exposed individuals, respectively.

As above, we set parameters (τ, δ, α, σ, p) by (3.1) and fix the other parameters by Table 3.
Numerical simulations on model (3.2), as shown in Figure 4, indicate that the infections caused by
exposed individuals account for 66% and the infections caused by asymptomatic individuals cover
34%. The result suggests that the infected individuals caused by individuals from compartment E are
much more than those caused by individuals from compartment A. Hence, it is important to adopt the
contact tracing of infections from symptomatic individuals to reduce the disease spread.
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Figure 4. Contributions from symptomatic individuals A and exposed individuals E. The
red curve denotes the contribution of asymptomatic infections, and the blue one gives the
contribution from exposed individuals, where the infections from A account for 34% and the
infections from the exposed compartment cover 66%.

Next, we infer the indirect transmission by splitting the model (2.1) to the following submodels

S ′ = −β(A + E)S ,
A′ = pβ(A + E)S − (α + γ1)A,
E′ = (1 − p)β(A + E)S − σE,

H′ = αA + σE − γ2H,

R′ = γ1A + γ2E,

(3.3)
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and

S ′ = −β3

∫ τ

0
e−ηrV(t − r)drS ,

A′ = pβ3

∫ τ

0
e−ηrV(t − r)drS − (α + γ1)A,

E′ = (1 − p)β3

∫ τ

0
e−ηrV(t − r)drS − σE,

V ′ = ξ(A + E) − δV,
H′ = αA + σE − γ2H,

R′ = γ1A + γ2E.

(3.4)

Model (3.3) consider only the transmissions from direct contacts, whereas model (3.4) includes only
the indirect transmissions from environmental virus. Using the parameters set by (3.1) and Table 3,
we find that the proportion of direct transmission accounts for 54% and the other infections through
indirect transmission covers 46%, which is shown in Figure 5. Thus, the indirect transmissions alone
could contribute almost the half of total infections.
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Figure 5. Contributions of direct and indirect transmissions, where the direct transmissions
account for 54%, and the indirect transmissions cover 46%.

3.4. Peak value estimation

It is important to study the peak value of epidemic since it provides an estimation for hospitalizing.
Though R0 < 1, which means that the disease index Y does not have a peak for t > 0, the numerical
simulations in subsection 3.2 demonstrate that some infection compartment exhibits a peak in the
early stage of epidemic, which depends on initial value. We investigate below how the peak values of
epidemic disease are affected by the intensities of detection and environmental disinfection.

Let k denote the coefficient of detection intensity such that the hospitalizing coefficients are
described by kα and kσ. By setting k = 80%, 120%, 150% respectively and keeping the other
parameter values by (3.1) and Table 3, we get the basic reproduction numbers R0 = 0.75, 0.55, 0.45
and peak values Apeak = 61.32, 50.44, 45.73, Epeak = 63.51, 44.07, 36.20 respectively. Comparing
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with the original peak value, we get the relative ratios of peak values for A are
11.73%, −8.09%, −16.67% and for E are 22.50%, −15.00%, −30.17%, which imply that the
intensity of detection has the more impact on exposed individuals than on asymptomatic individuals.
In Figure 6, we demonstrate the progression of asymptomatic and exposed individuals, which
indicates that the peak values of A and E get smaller and the arriving times become earlier as k
increases. Consequently, enhancing detection intensity is very effective on epidemic prevention and
control.
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Figure 6. Influence on peak values of A and E by detection, where the detection ratio is set
as k = 0.8, 1.2, 1.5 respectively so that R0 = 0.76, 0.55, 0.45 respectively. Panel (a) shows
the curves of asymptomatic individuals and panel (b) demonstrates the curves of exposed
individuals.

To see effects of disinfection, we set δ = 0.45, 0.8, 1.2 day−1(67.5%, 120%, 180% of original
value δ = 0.667) respectively and keep the other parameters by (3.1) and Table 3, we obtain the basic
reproduction number R0 = 0.637, 0.635, 0.634 and peak values Apeak = 58.21, 53.58, 51.16, Epeak =

55.29, 50.38, 47.42 respectively. Comparing with the original peak value, the peak values for A
are increased or decreased by 6.06%, −2.37%, −6.78% and for E are increased or decreased by
6.64%, −2.91%, −8.53% respectively. The progressions of A and E are shown in Figure 7. It is clear
that the environmental disinfection is effective on decreasing the peak values of A and E.

Let us now consider the case where the control measures are so loose that R0 > 1 or Rc > 1.
Then Theorem 2.2 means that there exists a peak for the disease index Y(t). To illustrate this, we set
the transition rates α = 1/14 days−1, σ = 1/6 days−1 and disinfection rate δ = 1/3 days−1 and keep
other parameters invariant, which imply that there is no detection and disinfection. Then the control
reproduction number Rc = 1.78 > 1. The curves of asymptomatic and exposed individuals and the
infection index Y(t) are shown in Figure 8. We see that three curves admit peaks at around time 92 days
and peak values Apeak = 1.32∗106, Epeak = 2.90∗106, which increase by 2.55∗104, and 5.28∗104 times
than original values respectively. The result implies that the weighted sum Y(t) is a good estimation
for predicting the emerging time of infection peak and the measures of detection and disinfection are
critical in the elimination of the disease.
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Figure 7. Influence on peak values A and E by environmental disinfection, where δ =

0.45, 0.8, 1.2 day−1. Panel (a) demonstrates the curves of asymptomatic individuals and
panel (b) shows the curves of exposed individuals.
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Figure 8. Display of prediction for peak values. The initial value is set as
(S (t), A(t), E(t),V(t)) = (3.7 ∗ 107, 15, 22, 9.65 ∗ 106), t ∈ [−τ, 0] and the detection rate is
set as σ = 1/6 days−1, α = 1/14 days−1, δ = 1/3 days−1, where Rc = 1.78 > 1. The
weighted sum Y , the numbers of A and E hit the peaks at around time 92 days, which means
that Y is a good disease index.
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3.5. Final size estimation

Based on parameters in Table 3 and (3.1), from Eq (2.4) we get the final size z = 1.27 ∗ 10−5. Then
the total infection number Nz can be computed by

Nz = S 0 − S +∞ = z ∗ S 0 = 471.

Note that Nz doesn’t include A0, E0 and contains the self-healing infections Nh, which are omitted in
statistics. By tracing infections, we get the final infection number of self-healing Nh = 60. As a
consequence, the total infection number N is

N = Nz + A0 + E0 − Nh = 470.

From the real statistic data in Table 2, we know that the real infection size is Nr = 460. Hence, the
relative error is

|Nr − N |/Nr = 2.17%.

Let us know how the final size is affected the detection rate (kα, kσ) and disinfection rate δ vary.
As in the last subsection, we set k = k1 = 80%, k = k2 = 120%, k = k3 = 150% and keep the rest
parameters invariant. Then the corresponding final sizes become

zk1 = 2.03 ∗ 10−5, zk2 = 9.84 ∗ 10−6, zk3 = 7.79 ∗ 10−6.

The total infection numbers from susceptible individuals are

Nk1 = 753, Nk2 = 364, Nk3 = 288,

and the ratios are
(Nk1 , Nk2 , Nk3)/Nr = (163.7%, 79.1%, 62.6%).

If we set (δ1, δ2, δ3) = (0.45, 0.8, 1.2) day−1 (67.5%, 120%, 180% of original value δ = 0.667) and
keep other parameters invariant, then the corresponding final sizes become

zδ1 = 1.52 ∗ 10−5, zδ2 = 1.19 ∗ 10−5, zδ3 = 1.04 ∗ 10−5.

The total infection numbers from susceptible individuals are

Nδ1 = 563, Nδ2 = 439, Nδ3 = 386,

and the ratios are
(Nδ1 , Nδ2 , Nδ3)/Nr = (122.4%, 95.4%, 83.9%).

Finally, we consider three special cases where p = p0 = 0 (absent of asymptomatic infection),
p = p1 = 1 (absent of the infection from exposed individuals) and ξ = 0 (absent of indirect infection).
From Eqs (2.12) and (2.13), we get the corresponding final sizes

zp0 = 5.746 ∗ 10−6, zp1 = 0.276.

The total infection numbers are

Np0 = 212 , Np1 = 1.02 ∗ 107,
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and the ratios are

(Np0 , Np1)/Nr = (46.1%, 2.217 ∗ 104).

From Eq (2.14) for ξ = 0, we obtain the final size zξ = 4.01 ∗ 10−6 and total infection number Nξ =

148 = 32.2%Nr. This implies that the direct transmission is the main route for epidemic transmissions.
In summary, by the numerical analysis for model (2.1), we have found how different transmission

routes contribute to the infection size and how prevention measures affect the peak value and the final
size of disease infection. In addition, we have demonstrated that the infection index Y is a good
indicator for predicting the emerging time of infection peak.

4. Conclusions

In this paper, we have proposed the epidemic model that incorporates the disease transmission
between asymptomatic infectors and susceptible individuals, and the indirect transmission from the
environmental virus. These are the main transmission channels of COVID-19 resurgences in China.
The disease prevalence index Y is defined, which is a good indicator to predict the peak time of
epidemic spread, as illustrated by Figure 8. By mathematical analysis, we have obtained the threshold
condition in terms of the control reproduction number, under which the disease index admits a peak.
Furthermore, the equation to compute the final size of epidemic spread is established, where the
control reproduction number plays the key role. With this equation, one can calculate the
contributions of different transmission routes.

We have used the data of COVID-19 resurgence in April of 2020 from Heilongjiang in China to
fit the parameters of model (2.2). Figure 3 indicates that the predictive values by the mathematical
model fit the real data very well. The calculations in Subsection 3.5 show that the relative error of
the predictive final size of infections to the real infection size is 2.17%. Furthermore, our estimations
from the numerical calculations to the model reveal that asymptomatic transmissions contribute 1/3 of
total infections and the symptomatic transmissions offer 2/3 infections. We have also inferred that the
indirect infection route from environmental virus is almost as dangerous as the direct transmission route
of human direct contacts. By numerical calculations, we find that the peak values of the epidemic could
be increased by the order 104 if the prevention measures of detection and disinfection were absent. This
highlights the importance of control measures during the resurgence.

In conclusion, we have proposed the mathematical model that fits the real date of COVID-19
resurgence very well, where the human-to-human transmission and indirect transmission from the
environmental coronavirus play the key roles. On the basis of this model, we have derived the
threshold conditions for the prevalence of the infectious disease, and obtained the mathematical
equations to determine the final size of the epidemic. These provide valuable tools to design the
intervention strategies to contain the epidemic according to our treatment capacity.
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