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Abstract: Under the condition of known static environment and dynamic environment, an improved 

ant colony optimization is proposed to solve the problem of slow convergence, easily falling into 

local optimal solution, deadlock phenomenon and other issues when the ant colony optimization is 

constructed. Based on the traditional ant colony optimization, the ant colony search ability at the 

initial moment is strengthened and the range is expanded to avoid falling into the local optimal 

solution by adaptively changing the volatility coefficient. Secondly, the roulette operation is used in 

the state transition rule which improves the quality of the solution and the convergence speed of the 

algorithm effectively. Finally, through the elite selection and the node crossover operation of the 

better path, the global search efficiency and convergence speed of the algorithm are effectively 

improved. Several experimental results have also been obtained by applying the improved ant colony 

optimization to obstacle avoidance. The experimental results demonstrate the feasibility and 

effectiveness of the algorithm. 
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1. Introduction  

Mobile robot research includes navigation and positioning, motion control, path tracking and path 

planning. Path planning is one of the core contents of mobile robots. The so-called robot path planning 

technology refers to making feedback to the information collected by the environment through other 

sensors, and finding a collision-free motion path from the start point to the end point. Many scholars have 

proposed the path planning method of mobile robots, including path matching techniques such as module 
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matching path planning, artificial potential field method, map construction path planning and artificial 

intelligence path planning [1]. The grid method in map construction path planning is widely used in 

global path planning of mobile robots, but it also has defects: the storage space is small and the search 

efficiency is reduced.  

With the introduction of intelligent algorithms such as genetic algorithm, neural network, particle 

swarm optimization, immune algorithm, and ant colony optimization (ACO) [2–4], many scholars use 

artificial intelligence algorithms to perform path planning. Among them, ant colony optimization is 

widely used in path planning which is a heuristic search algorithm with strong robustness [5]. At the 

same time, the ant colony optimization also has many defects: the convergence speed is slow and it is 

easy to fall into the local optimal solution. Therefore, many scholars have made a lot of improvements to 

the ant colony optimization, including the improvement of the pheromone update method, the path 

selection strategy and combined with other algorithms as well as the multiple ant colony optimization [6]. 

For example, in [7], the generalized pheromone update rule is proposed to solve the deadlock 

phenomenon that ants face the concave obstacles to find the optimal solution. In [8], it is proposed to use 

different expected values. Adapting the volatilization coefficient to update the information hormone to 

find the optimal solution. In [9], a method to adjust the parameters of the ant colony optimization 

dynamically is proposed to achieve the pheromone update for finding the optimal solution. What was 

proposed in [10] is to discard the ants caught in the deadlock. When the number of iterations is greater 

than sixty generations, the pheromone intensity coefficient is reduced, so that the convergence speed of 

the algorithm is accelerated, and the optimization and obstacle avoidance capabilities are 

strengthened. In [11], a membrane evolutionary artificial potential field approach for solving the mobile 

robot path planning problem is proposed, which combines membrane computing with a genetic algorithm 

and the artificial potential field method to find the parameters to generate a feasible and safe path. In [12], 

the authors present a novel proposal to solve the path planning problem for mobile robots based on 

simple ant colony optimization meta-heuristic (SACO-MH). Based on the traditional ant colony 

optimization, node transition probability, node selection way and pheromone update method were 

respectively optimized and improved through introducing a new heuristic function factor, node random 

selection mechanism and update strategy of pheromone that includes the local updating and global 

updating of pheromone in [13]. An improved ant colony optimization is used in resolving this path 

planning problem, which can improve convergence rate by using this improved algorithm in [14]. A 

modified ant colony optimization for path planning of the mobile robot in a known static environment 

was proposed in [15]. A parallel elite ant colony optimization method is proposed to generate an initial 

collision-free path in a complex map in [16], and turning point optimization algorithm is used to optimize 

the initial path in terms of length, smoothness and safety. An efficient hybrid algorithm that takes profit of 

the advantages of both ACO and GA approaches for the sake of maximizing the chance to find the 

optimal path even under real-time constraints is designed in [17].  

In view of the above problems and the solutions proposed by scholars, the improved algorithm still 

needs further optimization for robot path planning, especially in solving the problems of convergence 

speed and local optimal solution. The improved algorithm used in this paper is based on the traditional 

ant colony optimization. Firstly, the ant colony search ability at the initial moment is strengthened, the 

range is expanded, the local optimal solution is avoided, and the robustness is improved by adaptively 

changing the volatility coefficient. Secondly, the roulette operation is used in the state transition rule to 

effectively improve the quality of the solution and the convergence speed of the algorithm. Finally, the 

global search efficiency and convergence speed of the algorithm is effectively improved by the elite 
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selection and the node crossover operation of the better path. The improved ant colony optimization has 

global control ability for pheromones at different moments, which provides a guarantee for improving the 

convergence speed and avoiding local optimal solutions. Finally, the improved ant colony optimization 

(IACO) is used to carry out the robot path planning. In the static obstacle environment, the optimal 

solution can be quickly obtained. In the complex static and dynamic obstacle environment, the 

corresponding strategies are proposed according to the motion state and motion law of static and dynamic 

obstacles to obtain the non-touch and sub-optimal paths to get relatively better results. 

2. Environmental modeling 

Modeling methods for mobile robot working environment are mainly divided into the following 

types: Feature maps, grid maps. Among them, the grid method is widely used in robot working 

environment, because the grid method has the advantages of easy implementation and analysis, this paper 

will use the grid method to model the environment of mobile robots. 

Firstly, a finite two-dimensional plane is defined as the moving area of the robot. Let's set the area to 

G. There are obstacles of the same size and position in the area. The white grid is the movable area of the 

robot which is recorded as 0. The black grid is a fixed obstacle which is marked as 1. The area marks the 

grid in order from left to right and top to bottom, and records it as 1, 2, 3, 4, ..., n, where each number 

represents a grid, as shown in Figure 1. In the lower left of the grid space, from left to right is defined as 

the positive X-axis direction, and from bottom to top is defined as the positive direction of the Y-axis. The 

length of the grid is defined as the unit length, thereby a two-dimensional coordinate plane XOY is 

established. The following is the correspondence between the grid number and coordinates: 

mod( , ) 0.5

0.5, 0.5

0.5 ( / )

x L N

if x x N

y N ceil L N

 


   
                              (1) 

In Eq (1), mod is the remainder operation; L is the serial number of the grid; N is the number of 

rows and columns of the grid; Ceil is the rounding function. 

In order to avoid collision between the robot and the obstacle, the boundary of the obstacle is puffed, 

so the robot can be equivalent to a particle. The principle is to determine the position of the grid by 

judging the position of the obstacle point coordinates, and set the grid containing the obstacle as the 

obstacle grid. 

 

Figure 1. Grid method environment modeling. 



6759 

Mathematical Biosciences and Engineering  Volume 17, Issue 6, 6756–6774. 

3. Obstacle problem analysis and its response strategy 

3.1. U-shaped obstacles in static environment and their solutions 

The ant colony optimization may fall into a local optimal solution when encountering a complex 

environment. In the running process of the algorithm, in order to prevent the ant from repeatedly 

accessing the same node, a taboo table is introduced, and the accessed node is stored as a node that 

the ant does not need to access in the next selection process. This causes the ants to fall into a 

deadlock when encountering a U-shaped obstacle. Figure 2 shows a U-shaped obstacle 1, it can be 

clearly seen that the ant can have the following route:1→2→3, 1→4→3, 1→2→4→3. The ants can 

pass smoothly when they encounter the U-shaped obstacle 1 without deadlock. Although there is no 

deadlock, it will affect the time it takes for the ant to find the path. Figure 3 shows the U-shaped 

obstacle 2 from which it can be clearly seen that the ant can have the following route: 1→2→3, 

1→4→3, 1→2→4→3, 1→2→4→5 →6,1→4→5→6. The ants will have a deadlock phenomenon 

when the route is 1→2→4→5→6, 1→4→5→6, which causes the loss of the overall energy of the 

ant group to reduce the convergence speed. 

When U-shaped obstacle 1 and U-shaped obstacle 2 are encountered, the ants that have fallen 

into a deadlock are discarded. When the U-shaped obstacles are encountered, the improved ant 

colony optimization can effectively improve the ant colony search efficiency and the optimal path. 

 

Figure 2. U-shaped obstacle 1. 

 

Figure 3. U-shaped obstacle 2. 
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3.2. Motion problems and solutions in dynamic environments 

3.2.1. Dynamic environment assumptions 

Hypothesis 1: Considering the size of the mobile robot and the dynamic obstacle, they are 

considered as two circulars with diameters of Dr and Do respectively. 

Hypothesis 2: Set the robot step length ijd (the distance between two adjacent grids), the 

robot is a uniform motion with a speed of RV , and the motion of the dynamic obstacle is a uniform 

motion with a speed of DOV . 

Hypothesis 3: The set of points for global path planning of mobile robot is sR ; the set of points 

for dynamic obstacle path planning is SDO . 

Hypothesis 4: The motion state of the mobile robot includes the following two types: A uniform 

motion state; a tentative state. The dynamic obstacle motion state is a uniform reciprocating motion 

state. 

3.2.2. Dynamic environment collision problem and its strategy 

The following collisions may occur with dynamic obstacles during the global path planning of 

mobile robots: (a) no collision; (b) side collision; (c) frontal collision. 

In order to judge the motion state between the mobile robot and the dynamic obstacle, this paper 

firstly judges how the two will appear by not intersecting the motion trajectory, and then judges 

whether there is a collision between the two by the following methods aiming at different cases. 

Case 1: The point set sR  of the global path planning of the mobile robot and the point set SDO

of the dynamic obstacle for path planning have no intersection point, and then there will be no 

collision between the two. The blue line in Figure 4 shows the global path planning of the mobile 

robot, and the red line indicates the trajectory of the dynamic obstacle. 

 

Figure 4. Case 1. 
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Case 2: The point set SR  of the global path planning of the mobile robot has a point of 

intersection with the point set SDO  of the dynamic obstacle for path planning, and there is only one 

intersection point, and there may be a side collision. It is estimated by the following case whether 

there is a side collision. It can be seen from Figure 5 that the mobile robot and the dynamic obstacle 

have an intersection point C, and the coordinates of this point are the intersection points of the point 

sets SR and SDO . Since the C point coordinates are known, the distance RCL  from the starting point 

to the point C of the mobile robot can be obtained by the distance formula between the two points. 

Equations (2)–(4) are substituted according to the known conditions to solve the positional 

relationship between the mobile robot and the dynamic obstacle: 

RC

R

RC T
V

L


                              (2) 

DOCRCDO LTV 
                          (3) 
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              (4) 

where, DOCL  is the trajectory length of the moving obstacle and the dynamic obstacle moving at the 

same time. If DOCL  is less than or equal to DOL  ( DOL is the dynamic obstacle one-way path length), 

the point where the dynamic obstacle is located and the intersection point C are directly obtained. 

The relative position of the relative position point coordinates to the intersection point C is set to 

DOCC , and if DOCL is greater than DOL , Eq (4) is used to determine the position of the dynamic 

obstacle when the RCT  time is elapsed. Determine the size relationship between DOCC  and 

(Dr+Do)/2: 

When (Dr+Do)/2 is greater than or equal to DOCC , a side collision occurs. 

When (Dr+Do)/2 is less than DOCC , no side collision occurs. 

 

Figure 5. Case 2. 
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If the mobile robot and the dynamic obstacle have a side collision during the movement, the 

robot is in the standby mode, the waiting time is RWT
.
 Then the robot continues to move according 

to the previous global planning path after the waiting time. 


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D

V

D
T

or
max ，

                           (5) 

Case 3: The point set SR of the global path planning of the mobile robot has a point of 

intersection with the point set SDO of the dynamic obstacle path planning, and there are multiple 

intersection points, and there is a possibility of a frontal collision. It is estimated by the following 

case whether there is a frontal collision. As can be seen from Figure 6, the mobile robot and the 

dynamic obstacle have two intersection points 1C  and 2C , and the two-point coordinates are the 

intersection points of the point sets SR  and SDO . The following method is used to determine 

whether a mobile robot and a moving obstacle has a frontal collision. 

 

Figure 6. Case 3. 

(a) When the mobile robot has passed the intersection point 2C , the dynamic obstacle has not 

reached 2C  points, and the distance between the two is greater than (Dr+Do)/2, and no collision 

occurs between the two. 

(b) When the dynamic obstacle has returned to 2C  points, the mobile robot has not reached 

2C  points, and the distance between the mobile robot and the dynamic obstacle is greater than 

(Dr+Do)/2, and no difference will occur between the two collision. 

(c) When the mobile robot and the dynamic obstacle meet at the same from intersection points 

1C  to 2C , the two directions of motion are opposite, and the distance between the two is less than or 

equal to (Dr+Do)/2 which will cause a frontal collision. 

If the mobile robot and the dynamic obstacle have a frontal collision during the movement, the 

robot path is used to plan the local sub-goal mode. In the front collision intersection area, a new path 

is newly planned to replace the original path. When avoiding the front collision area, the initial 

global path planning scheme is still used to complete the task to the end point. 
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4. Improved ant colony optimization 

4.1. Adaptive adjustment of the volatilization coefficient 

The ant colony optimization is affected by many factors in the running process. The dynamic 

adjustment parameter ρ mentioned in this paper solves the problem of the slow convergence and 

easily falling into the local optimal solution during the running process. When the volatilization 

coefficient ρ is large, the chance that the path that the ant has traveled before is re-selected will be 

increased. When it is too small, the global search ability will be improved and the convergence speed 

will be decreased. Thus, the parameter ρ is set to a maximum value in the initial time. Although the 

previous search path is more likely to be selected again, positive feedback of information plays a 

leading role.  

In this paper, parameter  ρmin is set to 0.1 and c is set to a random constant. The adaptive 

adjustment equation of ρ is as: 

 
   
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4.2. Fusion of multi-type state transition probabilities 

The roulette algorithm is often used in genetic algorithms, so the roulette operation is applied to 

the urban transfer state rule. The greater the fitness, the greater the probability that the individual is 

selected, and the quality of the solution is greatly improved as well as the convergence speed of the 

algorithm. 
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where, q is the number of connecting lines between the i-th vertex and the i+1th vertex of the kth ant, 

called the number of ij sub-intervals; ijf  is called the i-th and j-th sub-interval solutions fitness; 




q

1i

ijf  is the sum of all solutions for all q subintervals of ij. 

4.3. Pheromone update 

After all the ants have completed a path search, the ants are sorted according to the length of 

each ant's walking path (L1 ≤ L2 ≤ L3 ≤ ... ≤ Lm), and the contribution of each ant to the pheromone 

update is weighted according to the ant's order. The value is recorded as φ. Updating Eqs (8)–(10) 

are as follows: 

τij(t + 1) = (1 − ρ)τij(t) +△ τij(t)                     (8) 
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△ τij(t) = ∑ △ τij
k(t)m

k=1                            (9) 

△ τij
k(t) = {

φ ∗ (
Q

Lφ
)  if k select path from i to j

0             else          
             (10) 

In Eq (8), △ τij(t)is the pheromone increment from node i to node j; in Eq (9), △ τij
k(t) is the 

pheromone left by the k
th

 ant on path i to j. In Eq (10), Q is a constant, which refers to the total 

amount of pheromone released by the ant after a complete path search. φ=
Lav−Lφ

Lav−Lk
,Lav is the average 

length of the cycle. Lφ is the path length of the φth
 better ant, and Lk is the path length of the k

th
 

ant searched in this cycle. 

4.4. Better path node crossover operation 

If the ant colony cannot obtain the optimal solution after each iteration, it is considered that the 

ant colony optimization may be in a stagnant state and fall into the local optimal solution. At this 

time, it is necessary to perform node crossover operation on some of the better paths. By 

correspondingly crossing the different sequence numbers of the better path, this operation is to 

compare the distance between the different sequence numbers by solving the distance between two 

points, and finally take the minimum value to perform the crossover operation to obtain the optimal 

solution. For example, serial group number A: 1→2→3→4→5→6→7→8 and serial group number 

B: 1→2→3→4→5→6→9→8 are two moving paths from starting point 1 to the end point 8, and the 

distance between the two points can also be obtained through the coordinate points. The distance 

between point 6 to point 7 and point 7 to point 8 in the sequence group number A can be obtained 

between the two points. As can be seen from the above, the distance between point 6 to point 9 and 

point 9 to point 8 in the sequence group number B can be obtained between the two points. Finally, 

the minimum distance can be obtained by comparing the values of 67AL  and 69BL . The minimum 

values of 78AL  and 98BL can also be obtained by using this method, as a result, the shortest path can 

be obtained by using the node crossover operation. As shown in Figure 7, the global search 

efficiency of the improved algorithm has been significantly enhanced. 

 

Figure 7. Node crossover operation. 
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5. Steps and flow chart of IACO 

The steps of IACO for applying to the mobile robot path planning can be expressed as follows: 

Step 1: Build an environment model for mobile robot path planning, set the total number of ants 

to M = 50, initial value c = 0.9, parameters α = 1, 𝛽 = 5, total pheromone Q = 1, maximum iteration 

number Nmax = 100. The initial tabuK is set to an empty set and the starting point is set to S. The 

target point is set to E. 

Step 2: Set the initial value c and adjust the volatilization coefficient of ρ adaptively by using 

Eq (6). 

Step 3: select the next node to join the taboo table according to the new state transition 

probability by using Eq (7) . 

Step 4: Determine whether the ant is trapped in a U-shaped obstacle. If yes, discard the 

deadlock ant and return to Step 3, otherwise proceeding to Step 5. 

Step 5: Determine whether the ant reaches the end point. If it reaches the end point, the ant k = 

k+1, otherwise returning to Step 3. 

Step 6: Determine whether the ant k is equal to M. If yes, proceed to the next step, otherwise 

returning to Step 2. 

Step 7: Calculate the path lengthLφand sort it, then use Eqs (8)–(10) to update the pheromone. 

Step 8: Determine whether the end condition (maximum number of iterations) is satisfied. If yes, 

end the output result. Otherwise, the optimal path node crossover operation is performed, and then it 

is judged whether the end condition is satisfied. If yes, the result is output. Otherwise, the process 

returns to Step 1 until the end of the loop.  

The flow chart of IACO is shown in Figure 8. 

6. Mobile robot path planning in dynamic environment 

The robot dynamic path planning steps are as follows: 

Step 1: Initialize algorithm related parameters and workspace. 

Step 2: Solve a collision-free path by improving the ant colony algorithm without considering 

dynamic obstacles, so that the robot walks along the path to the end point. 

Step 3: The mobile robot starts to go from the starting point S to the target point E. When the 

robot reaches the target point E, it outputs a global collision-free path and ends the task. 

Step 4: First, determine whether there is an intersection point between the mobile robot and the 

set of dynamic obstacle points, and then determine whether there is a collision with the robot. 

Step 5: If there is no intersection between the two, there will be no collision, and the robot will 

continue to go to the target point according to the global path plan. 

Step 6: If there is an intersection between the two, collision may occur and the relevant collision 

strategy is executed. 

Step 7: Determine whether the robot reaches the target point. If the target point is reached, the 

global collision-free path is output. Otherwise, return to step 3 until the end of the loop, and the result 

is output. 

Figure 9 shows the flow chart for robot dynamic planning. 



6766 

Mathematical Biosciences and Engineering  Volume 17, Issue 6, 6756–6774. 

Start

Build environment model and ant colony 

algorithm parameter settings

Number of iterations: Nc=Nc+1

Ant: k=1

Update parameters according 

to equation (6)

Start to select the next node to join 

the taboo table according to the new 

state transition probability

Is the ant trapped in 

a U-shaped obstacle?

Discard deadlock 

ants

Determine if the ant 

has reached the end?

 k=k+1

 k>= Total number of 

ants?

Pheromone update 

according to equations  

(8), (9), and (10)

Calculate each path 

length Lψ and sort it

  Meet the end 

condition?

  Meet the end 

condition?

Output program 

calculation result

Better path 

crossover operation

End

N

Y

N

Y

N

Y

N

N

N

 

Figure 8. Flow chart of IACO. 
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Figure 9. Flow chart of robot dynamic planning. 

7. Simulation experimental results and analysis 

7.1. IACO experiment results and analysis 

In order to verify the feasibility of the IACO in this paper, IACO is applied to the static mobile 

robot path planning. Table 1 shows the detail comparisons of the experimental results between the 

improved ant colony algorithm in literature [10] and our IACO. The improved algorithm in [10] can 

obtain the optimal path in the three environmental maps G1, G2 and G3. However, it takes a long 

time to reach the steady state after 46, 48 and 52 iterations respectively, and the experimental results 

(from Figures 10–15) of our IACO reach the steady state after 24, 30 and 32 iterations respectively 

under the premise for obtaining the optimal path.  
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Figure 10. Improved ant colony optimization for robot obstacle avoidance in map G1. 

 

Figure 11. Convergence curve of the IACO for map G1. 

 

Figure 12. Improved ant colony optimization for robot obstacle avoidance in map G2. 
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Figure 13. Convergence curve of the IACO for map G2. 

 

Figure 14. Improved ant colony optimization for robot obstacle avoidance in map G3. 

 

Figure 15. Convergence curve of the IACO for map G3. 
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Table 1. Comparisons of the experimental results between the improved ant colony 

algorithm in literature [10] and our IACO. 

Map Best value Number of iterations in [10] Number of iterations in 

this paper 

G1 28.6274 46 24 

G2 28.6274 48 30 

G3 30.9706 52 32 

Through the comparative analysis of the above three groups of experiments, IACO can 

effectively solve the slow convergence and local optimization existing in traditional ant colony 

optimization. 

7.2. Experimental simulation and analysis in dynamic environment 

The relevant parameters of the robot in dynamic path planning are as follows: the diameter of 

mobile robot Dr is 1, the diameter of dynamic obstacle Do is1, robot uniform motion speed RV is 1, 

dynamic obstacle uniform motion speed DOV  is 1. The motion trajectory of the dynamic obstacle 

1SDO  is a uniform reciprocating motion, and the motion path is P1 = [229 230 231 232 233 234 235 

236 237...]. Firstly, the improved path algorithm is used for global path planning without considering 

dynamic obstacles, as shown in Figure 16.

      

 

Figure 16. IACO for robot global path obstacle avoidance diagram. 

After the global path is generated, the dynamic obstacle 1SDO
 
is introduced into the 

environment, and the method of Case 2 is used to infer whether the two have a side collision. The 

point set SR
 
of the mobile robot global path and the point set SDO

 
of the dynamic obstacle path 

have an intersection. And there is only one intersection, the collision type is side collision. As shown 

in Figure 16, when the dynamic obstacle 1SDO
 
is not detected, the mobile robot S1R

 
still avoids 

the obstacle according to the global path. When the mobile robot S1R
 
arrives at the serial number 

212, and the mobile robot S1R
 
detects that the distance between the mobile robot S1R

 
and the 
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dynamic obstacle 1SDO
 
is equal to (Dr + Do)/2, the corresponding collision strategy is adopted at 

this time. As shown in Figure 17(a), when the mobile robot S1R
 
arrives at the position of the serial 

number 212, the mobile robot S1R  adopts a stand-alone waiting mode, and the waiting time is RWT . 

As shown in Figure 17(c), when the dynamic obstacle 1SDO
 
arrives at the position point 232 from 

the intersection point 233, the mobile robot S1R
 
has arrives at the position point with the serial 

number 233 at this time. As shown in Figure 17(c), the mobile robot S1R
 
continues to complete the 

designated target according to the global path planning scheme and moves to the target point. 

  

(a) Initial time (b) Obstacle avoidance process 

 

 

(c) Obstacle avoidance result 
 

Figure 17. Obstacle avoidance process in Case 2. 

The dynamic obstacle 2SDO
 
is introduced into the environment, and the motion path is P2 = 

[170 191 212 233 212 191...]. As shown in Figure 18, the mobile robot point set SR
 
and the 

dynamic obstacle point set SDO
 
have intersection points, and the number of intersection points are 

more than or equal to two. The mobile robot determines whether the two have a frontal collision 

according to the method for Case 3. The corresponding strategy for the frontal collision at the 

intersection point is to use the robot path planning local sub-goal method for avoiding the dynamic 
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obstacle 2SDO , and then the robot continues to complete the following tasks according to the 

original global path planning scheme. 

 
(a) Initial time 

 
(b) Obstacle avoidance process 

 
(c) Obstacle avoidance result 

Figure 18. Obstacle avoidance process in Case 3. 
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8. Conclusions 

In order to solve the problem that the traditional ant colony algorithm is slow in convergence 

and easy to fall into the local optimal solution, this paper proposes an improved ant colony 

optimization (IACO), which firstly enhances the ant colony search ability at the initial moment by 

adaptively changing the volatilization coefficient. The scope is expanded to avoid falling into the 

local optimal solution. Secondly, the roulette operation is used in the state transition rule to improve 

the quality of the solution and the convergence speed of the algorithm effectively. Finally, through 

the elite selection and the node crossover operation of the better path, the global search efficiency 

and convergence speed of the algorithm are effectively improved. Simulation results indicate that our 

algorithm is superior and effective in static and dynamic path planning of mobile robots. 
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