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Abstract: There are many challenges to constitute the linkage from the macroscale to the microscale
and analyze the multiscale model. We proposed a bidirectional coupling model with standard incidence
which includes the interaction of between-host transmission dynamics and within-host viral dynamics,
and investigated the dynamic behaviors of the multiscale system on two time-scales. We found that
the multiscale system exhibits more complex dynamics including backward bifurcation, which means
that the usual thresholds for infection control or virus elimination obtained from the epidemiological
model or virus dynamic model may not act as threshold parameter under a certain condition. There
may be multiple epidemic equilibriums, one of which is stable, although the basic reproduction number
is less than 1. We numerically examine the synergistic impact between the macro and micro dynamics.
In particular, increasing the drug efficacy can decrease the prevalence of disease. The contact rate
may affect the number and size of equilibria of viral dynamics model by inducing the occurrence of
backward bifurcation. The finding suggests that the effective control measures may include both the
reduction in contact rate or transmission rate at the population level and the increase in drug efficacy at
the individual level, and using these control measures together can effectively control the diseases.
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1. Introduction

A number of mathematical models of infectious diseases (e.g., human immunodeficiency virus
(HIV)) have been studied at a single microscale or macroscale [1–5]. The single-scale models are
proposed to either explore the within-host viral dynamics at the individual level and give guides for
treatment strategies, or the between-host transmission dynamics at the population level to predict the
future prevalence and suggest effective control measures. However, more evidence indicated that viral
load at the individual level affects the progression of infection [6, 7]. Laith J et al. found that a higher
circulating viral load was positively related to a higher rate of host-to-host transmission [8]. This
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means that the dynamics at different scales are not independent, but interrelated. Obviously, this also
complicates disease control. For example, implementing measures to change behavior patterns may
not only affect the disease transmission at the population level, but even the probability of an individual
receiving treatment, and further the within-host virus dynamics. Therefore, formulating a multiscale
model that can combine the within-host and between-host scales and study the macro-micro interaction
mechanism is significant for determining more effective strategies at different levels.

In recent years, many multiscale systems have been proposed in the area of mathematical biology
[9–13]. Initially, some researchers built nested models to consider the evolution of the host and parasite
by evolutionary dynamics [14, 15]. Further, researchers applied coupled models to study infectious
diseases. They integrated the within-host model into the epidemiological model by introducing the
viral load-dependent transmission rate or disease-induced mortality rate to explore the potential effect
of micro dynamics on the macro dynamics, design the coupled optimal scheme and provide the cost-
effectiveness analysis [16–18]. Later, Feng et al. formulated a multiscale model with an environment
compartment to investigate the effects of between-host dynamics on the viral progression within the
hosts [19, 20]. Taking contaminated environment as a coupling link, Wang et al. coupled the age-
structured macro model and the micro within-host dynamics model through the bacteria-dependent
indirect transmission [21], Sun et al. proposed a multiscale model with threshold control strategy to
study the effect of threshold-dependent interventions on the spread of infectious disease [22], Xiao
et al. linked the macroscale to the microscale in a spatiotemporal context to examine effects of an
individual movement and spatial control measures on a disease outbreak [23].

It should be noted that most of the above-mentioned multiscale models were formulated by linking
viral dynamics to between-host transmission dynamics, which can not reflect the influence of transmis-
sion of disease on viral loads within the hosts. It is worth noting that for some environmentally-driven
infectious disease such as Toxoplasma gondii, there have been models successfully coupling the macro
level to the microscale [19–21]. However, for some infectious diseases such as HIV that the virus
can be spread by direct contact with infected individuals, how to construct a bridge which can couple
the epidemiological model to the virus dynamics model and study the interactions between macro and
micro level remain unclear and fall within the scope of our study.

The main purpose of this study is to propose a multiscale model which can bidirectionally couple
the within-host viral dynamics and between-host transmission dynamics, and then analyze the dynamic
behaviors of the full system. Note that most existing coupled models provided that between-host
transmission rate is bilinear incidence, which is inconsistent with the fact that one can only contact with
limited persons in a certain time. Hence, we include the standard incidence in our study. Specifically,
in this article, we first formulate a multiscale model with standard incidence in section 2. In section 3
and section 4, we analyze the dynamic behaviors of the fast subsystem and slow subsystem, which can
help us understand the dynamics of the full system. In section 5, we discuss the interactions of within-
host and between-host dynamics by a series of numerical simulations. Finally, the main conclusions
are highlighted.

2. Model formulation

Here, we take HIV viral dynamics and transmission dynamics as an example to illustrate how we
form the links on macro and micro levels. The micro system is embedded into the macro system by

Mathematical Biosciences and Engineering Volume 17, Issue 6, 6720–6736.



6722

incorporating the viral load-dependent transmission and disease-induced mortality. The virus shed by
the contacted infections, depending on the contact rate and prevalence, enter into the within-host viral
system due to close contact and act as a bridge such that between-host system is coupled into the
within-host system, inspired by the ideas by Kostova [24], Bhattacharya and Maia Martcheva [25]. In
order to investigate the impact of macro epidemic dynamics on micro virus dynamics and vice verse,
we proposed a multiscale model, motivated by the sexual contact transmission of HIV [26]. The model
equations are as follows.

dS
dt = Π − c1β1(V) S

N I − c2β2(V) S
N A − µS ,

dI
dt = c1β1(V) S

N I + c2β2(V) S
N A − (µ + ξ + α1(V))I,

dA
dt = ξI − (µ + α2(V))A,
dT
dt = λ − k(1 − η)TV − dT,
dT ∗
dt = k(1 − η)TV − δT ∗,

dV
dt = c1 p1

I
N + c2 p2

A
N + N1δT ∗ − cV,

(2.1)

where S (t), I(t), A(t) are the number of susceptibles, HIV-positive individuals without clinical mani-
festation and AIDS patients who have developed one or more opportunistic infections regardless of
their CD4 count, N(t) = S (t) + I(t) + A(t). T (t),T ∗(t), V(t) denote the densities of healthy T cells,
infected T cells and viral load, respectively. λ, k, d represent the recruitment, per-capita infection rate,
per-capital mortality of healthy cells, δ is the per-capital mortality of infected cells. η is the drug ef-
ficacy (0 ≤ η ≤ 1). For HIV infection, it represents the effectiveness of reverse transcriptase (RT)
inhibitors. N1 is the virus production rate by an infected cell, c is the clearance rate of virus within
host. c1, c2 represent the average number of contacts with HIV-positive individuals and AIDS patients
who have developed clinical symptoms, p1, p2 denote the amount of virus released by HIV infections
and AIDS patients at each contact. Π, µ denote recruitment rate and natural death rate of hosts. ξ is the
transfer rate from HIV-positive stage to the onset of opportunistic infections. β1(V), β2(V) are the trans-
mission probability of HIV-positive individuals and AIDS patients, α1(V), α2(V) are the corresponding
disease-related mortality. They are dependent on the viral loads, such as β(V) = aV , or β(V) = aV

1+bV ,
or β(V) = aVq, q < 1 with

β(0) = 0, β(V) ≥ 0, β′(V) > 0, β
′′

(V) ≤ 0.

Since the system (2.1) contains the dynamics on different time-scales, i.e., within-host dynamics on
a fast time-scale and between-host dynamics on a slow time-scale, it is a challenge to directly study
the multiscale system. For this problem, some studies analyzed the full system on two time-scales, i.e.,
fast system and slow system [27, 28]. The fast system is obtained by assuming that the slow variables
are all constants and the slow system is defined by assuming that the fast system will tend to the stable
equilibrium very quickly. This methods allows us to derive the analytical results and reveal some
meaningful phenomena of the full system from the analyses of the fast and slow subsystems.

3. Dynamics of the fast subsystem

For the within-host system to have a meaningful couple with the between-host system, we focus on
the case I, A > 0 in the following analysis. We first introduce a slow time-scale τ = εt with 0 < ε � 1
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and let

Π = εΠ̄, µ = εµ̄, ξ = εξ̄, α1(V) = εᾱ1(V), α2(V) = εᾱ2(V), β1(V) = εβ̄1(V), β2(V) = εβ̄2(V).

Then the system (2.1) can be written as

dS
dt = ε[Π̄ − c1β̄1(V) S

N I − c2β̄2(V) S
N A − µ̄S ],

dI
dt = ε[c1β̄1(V) S

N I + c2β̄2(V) S
N A − (µ̄ + ξ̄ + ᾱ1(V))I],

dA
dt = ε[ξ̄I − (µ̄ + ᾱ2(V))A],
dT
dt = λ − k(1 − η)TV − dT,
dT ∗
dt = k(1 − η)TV − δT ∗,

dV
dt = c1 p1

I
N + c2 p2

A
N + N1δT ∗ − cV.

Setting ε = 0 and d
dt = ·, we get the fast subsystem

Ṫ = λ − k(1 − η)TV − dT,
Ṫ ∗ = k(1 − η)TV − δT ∗,
V̇ = c1 p1

Î
N̂

+ c2 p2
Â
N̂

+ N1δT ∗ − cV,
(3.1)

where Î, Â are considered as constants. Let E∗f = (T̃ ∗, Ṽ , T̃ ) denote a positive equilibrium of system
(3.1). It is obvious that for Î > 0, the fast subsystem (3.1) has no disease-free equilibrium. In addition,
we can get the following result.
Theorem 1 For Î > 0, the fast subsystem (3.1) has unique positive equilibrium E∗f , which is globally
asymptotically stable.
Proof. Let the right sides of system (3.1) be equal to 0 and then we get T̃ ∗ = λ−dT̃

δ
, Ṽ =

(c1 p1 Î/N̂+c2 p2Â/N̂)+N1(λ−dT̃ )
c and T̃ satisfying

a0T̃ 2 + a1T̃ + a2 = 0,

where a0 = k(1 − η)N1d, a1 = −[k(1 − η)(N1λ + c1 p1 Î/N̂ + c2 p2Â/N̂) + cd], a2 = cλ.
Solving the above equation, we get

T̃1 =
−a1 +

√
a2

1 − 4a0a2

2a0
, T̃2 =

−a1 −

√
a2

1 − 4a0a2

2a0

with a2
1 − 4a0a2 > 0. Obviously, T̃1 > T̃2 > 0. For a positive equilibrium, it should satisfy T̃ ∗, Ṽ > 0,

which corresponds to the condition T̃ < λ
d . It is easy to verify T̃2 <

λ
d < T̃1. Hence, the system (3.1)

has unique positive equilibrium E∗f = (T̃ ∗, Ṽ , T̃ ) with T̃ = T̃2. This completes the proof.
In the following, we verify that E∗f is globally asymptotically stable. Formulating the following

Lyapunov function

W(T,T ∗,V) = (T − T̃ − T̃ ln
T
T̃

) + (T ∗ − T̃ ∗ − T̃ ∗ln
T ∗

T̃ ∗
) +

1
N1

(V − Ṽ − Ṽln
V
Ṽ

),

then the derivative of W(t) is
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dW
dt

=(1 −
T̃
T

)[λ − k(1 − η)TV − dT ] + (1 −
T̃ ∗

T ∗
)[k(1 − η)TV − δT ∗] +

1
N1

(1 −
Ṽ
V

)(c1 p1
Î
N̂

+ c2 p2
Â
N̂

+

N1δT ∗ − cV)

=dT̃ (2 −
T
T̃
−

T̃
T

) + δT̃ ∗(3 −
T̃
T
−

ṼT ∗

T̃ ∗V
−

T̃ ∗TV
T̃ ṼT ∗

) +
c1 p1 Î/N̂ + c2 p2Â/N̂

N1
(2 −

V
Ṽ
−

Ṽ
V

)

≤0

and for all T,T ∗,V > 0, dW
dt = 0 holds only at E∗f . By LaSalle’s invariant principle, E∗f is globally

asymptotically stable.

4. Dynamics of the slow subsystem

Writing system (2.1) with respect to the slow time-scale τ, we have

dS
dτ = Π̄ − c1β̄1(V) S

N I − c2β̄2(V) S
N A − µ̄S ,

dI
dτ = c1β̄1(V) S

N I + c2β̄2(V) S
N A − (µ̄ + ξ̄ + ᾱ1(V))I,

dA
dτ = ξ̄I − (µ̄ + ᾱ2(V))A,
ε dT

dτ = λ − k(1 − η)TV − dT,
ε dT ∗

dτ = k(1 − η)TV − δT ∗,
ε dV

dτ = c1 p1
I
N + c2 p2

A
N + N1δT ∗ − cV.

Letting ε = 0, d
dτ =′, and dropping the bar for convenience, we obtain the slow subsystem

S ′ = Π − c1β1(Ṽ) I
N S − c2β2(Ṽ) A

N S − µS ,
I′ = c1β1(Ṽ)) I

N S + c2β2(Ṽ) A
N S − (µ + ξ + α1(Ṽ))I,

A′ = ξI − (µ + α2(Ṽ))A,
(4.1)

where Ṽ(S , I, A) is the steady state of the fast subsystem. The initial condition for system (4.1) is
S 0 > 0, I0 or A0 > 0.

By using the next generation method [29], we can calculate the basic reproduction number of the
slow system (4.1) as follows

Rs =
(µ + α2(Ṽ(0)))c1β1(Ṽ(0)) + ξc2β2(Ṽ(0))

(µ + ξ + α1(Ṽ(0)))(µ + α2(Ṽ(0)))
,

where

Ṽ(0) = lim
I,A→0

Ṽ(S , I, A) =
N1λ

c
(1 −

1
R f

),

with R f > 1. Here, R f =
λN1k(1−η)

cd represents the basic reproduction number of isolated within-host
system.
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4.1. Stability of disease-free equilibrium

In the following, we first analyze the stability of disease-free equilibrium for the slow subsystem
(4.1).
Theorem 2 The disease-free equilibrium E s

0 = (Π
µ
, 0, 0) of slow subsystem (4.1) is locally asymptomat-

ically stable (LAS) for Rs < 1 and unstable for Rs > 1.
Proof. The characteristic equation of Jacobian matrix at E s

0 is

(χ + µ){χ2 + [2µ + ξ + α1(Ṽ(0)) + α2(Ṽ(0)) − c1β1(Ṽ(0))]χ + [(µ + ξ + α1(Ṽ(0)))(µ + α2(Ṽ(0)))−
(µ + α2(Ṽ(0)))c1β1(Ṽ(0)) − ξc2β2(Ṽ(0))]} = 0.

It is easy obtained

χ1 = −µ,

χ2χ3 = (µ + ξ + α1(Ṽ(0))(µ + α2(Ṽ(0)))(1 − Rs),

χ2 + χ3 = (µ + ξ + α1(Ṽ(0)))(Rs − 1 −
µ + α2(Ṽ(0))

µ + ξ + α1(Ṽ(0))
−

ξc2β2(Ṽ(0))
(µ + ξ + α1(Ṽ(0)))(µ + α2(Ṽ(0)))

).

Obviously, for Rs < 1, χ2 + χ3 < 0 and χ2χ3 > 0, that is χ2 < 0, χ3 < 0. Thus, the disease-free
equilibrium is locally asymptomatically stable. For Rs > 1, χ2χ3 < 0, i.e., there is a positive solution
for above characteristic equation. This demonstrates the disease-free equilibrium is unstable. Hence,
we obtain the Theorem 2.

4.2. Existence and number of positive equilibrium

If there exists the equilibrium for the slow subsystem, we let E∗s = (S̃ , Ĩ, Ã) denote a positive equi-
librium of system (4.1). For the existence and stability of the endemic equilibrium, it is always difficult
to be analyzed theoretically with viral load-dependent transmission rate, disease-induced mortality rate
and standard incidence, simultaneously. Hence, we provide partial analytic proofs for the case where
βi(V) satisfies the properties as mentioned in the Section 2 and αi(V) = αi (i = 1, 2). Then we extend
the results with numerical simulations.

Let x̃1 = c1 p1
Ĩ
Ñ + c2 p2

Ã
Ñ , then the equilibrium of the fast subsystem can be written as

T̃ ∗ = λ−dT̃
δ
,

Ṽ =
x̃1+N1(λ−dT̃ )

c ,

T̃ =
(k(1−η)x̃1+k(1−η)N1λ+cd)−

√
(k(1−η)x̃1+k(1−η)N1λ+cd)2−4N1dk(1−η)λc
2N1dk(1−η) .

Let x̃2 = c1β1(Ṽ) Ĩ
Ñ + c2β2(Ṽ) Ã

Ñ , then the equilibrium E∗s of the slow subsystem can be written as

Ĩ =
Πx̃2

(µ + ξ + α1)(µ + x̃2)
, Ã =

ξ Ĩ
µ + α2

, S̃ =
Π − (µ + ξ + α1)Ĩ

µ
,

Ñ = Ĩ + Ã + S̃ =
Π{(µ + α2)(µ + ξ + α1)(µ + x̃2) − [ξα2 + α1(µ + α2)]x̃2}

µ(µ + α2)(µ + ξ + α1)(µ + x̃2)
.

Further, x̃1 can be described by x̃2, that is

x̃1 =
[(µ + α2)c1 p1 + ξc2 p2]µx̃2

(µ + α2)(µ + ξ + α1)(µ + x̃2) − [ξα2 + α1(µ + α2)]x̃2
.
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Thus, T̃ = T̃ (x̃2), T̃ ∗ = T̃ ∗(x̃2), Ṽ = Ṽ(x̃2). Using the equation x̃2 = c1β1(Ṽ) Ĩ
Ñ + c2β2(Ṽ) Ã

Ñ , we obtain

x̃2 =
[(µ + α2)c1β1(Ṽ) + ξc2β2(Ṽ)]µx̃2

(µ + α2)(µ + ξ + α1)(µ + x̃2) − [ξα2 + α1(µ + α2)]x̃2
.

Let

H(x2) =
µ[(µ + α2)c1β1(Ṽ(x2)) + ξc2β2(Ṽ(x2))]

(µ + α2)(µ + ξ + α1)(µ + x2) − [ξα2 + α1(µ + α2)]x2
− 1, (4.2)

then x̃2 is the solution of equation H(x2) = 0. In the following, we only need to identify the number of
zeros of H(x2) for x2 ≥ 0 by examining the properties of the function H. It can be verified that

H(0) =
[(µ + α2)c1β1(Ṽ(0)) + ξc2β2(Ṽ(0))]

(µ + α2)(µ + ξ + α1)
− 1 = Rs − 1 =


< 0, for R f > 1,Rs < 1,
> 0, for R f > 1,Rs > 1,
−1, for R f < 1,

and H(∞) < 0.
The derivative of H(x2) is

H′(x2) =
µG(x2)

{(µ + α2)(µ + ξ + α1)(µ + x2) − [ξα2 + α1(µ + α2)]x2}
2 ,

where

G(x2) = [(µ + α2)c1β
′
1(Ṽ) + ξc2β

′
2(Ṽ)]{(µ + α2)(µ + ξ + α1)(µ + x2) − [ξα2 + α1(µ + α2)]x2}Ṽ ′(x2)

− [(µ + α2)c1β1(Ṽ) + ξc2β2(Ṽ)]µ(µ + ξ + α2). (4.3)

We find that the sign of H′(x2) can be determined by G(x2). So, we first analyze the properties of the
function G(x2).
G′(x2) = [(µ + α2)c1β

′′
1 (Ṽ) + ξc2β

′′
2 (Ṽ)]{(µ + α2)(µ + ξ + α1)(µ + x2) − [ξα2 + α1(µ + α2)]x2}Ṽ

′2(x2) +

[(µ + α2)c1β
′
1(Ṽ) + ξc2β

′
2(Ṽ)]{(µ + α2)(µ + ξ + α1)(µ + x2) − [ξα2 + α1(µ + α2)]x2}Ṽ ′′(x2) < 0,

with
Ṽ ′(x2) =

1
2c

x′1(x2)(1 +
k(1 − η)x1 + k(1 − η)N1λ + cd√

(k(1 − η)x1 + k(1 − η)N1λ + cd)2 − 4N1dk(1 − η)λc
) > 0,

Ṽ ′′(x2) = 1
2c {(1 +

k(1−η)x1+k(1−η)N1λ+cd√
(k(1−η)x1+k(1−η)N1λ+cd)2−4N1dk(1−η)λc

)x′′1 + [1 − (k(1−η)x1+k(1−η)N1λ+cd)2

(k(1−η)x1+k(1−η)N1λ+cd)2−4N1dk(1−η)λc ]

k(1−η)x
′2
1√

(k(1−η)x1+k(1−η)N1λ+cd)2−4N1dk(1−η)λc
} < 0,

x′1(x2) =
µ2(µ + α2)(µ + ξ + α1)[c1 p1(µ + α2) + c2 p2ξ]

{(µ + α2)(µ + ξ + α1)(µ + x2) − [ξα2 + α1(µ + α2)]x2}
2 > 0,

x′′1 (x2) =
−2µ3(µ + ξ + α2)(µ + α2)(µ + ξ + α1)[c1 p1(µ + α2) + c2 p2ξ]
{(µ + α2)(µ + ξ + α1)(µ + x2) − [ξα2 + α1(µ + α2)]x2}

3 < 0.

The result indicates that the function G(x2) is a monotone decreasing function and G(∞) < 0. Thus, if
G(0) > 0, then with x2 increasing, the function H′(x2) > 0 firstly and then H′(x2) < 0, which means
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that the function H(x2) increases firstly and then decreases. In this case, if H(0) < 0 and Hmax > 0, we
can obtain function H(x2) has two positive equilibriums; if H(0) < 0 and Hmax = 0 or only H(0) > 0,
there is unique positive equilibrium. If G(0) < 0, then the function H(x2) always decreases. In this
case, if H(0) < 0, then there is no positive equilibrium; if H(0) > 0, then there is only one positive
equilibrium. In summary, we give the following results.
Theorem 3 Let H = H(x2),G = G(x2) be the function defined in (4.2) and (4.3), Hmax = max

x2
H(x2),

(1) For Rs < 1,R f > 1;
(a) If G(0) > 0 and Hmax > 0, there exists two positive equilibriums E1∗

s , E
2∗
s ;

(b) If G(0) > 0 and Hmax = 0, there is only one positive equilibrium E∗s ;
(c) If G(0) ≤ 0 or Hmax < 0, there is no positive equilibrium;

(2) For Rs > 1,R f > 1, there is only one positive equilibrium E∗s ;
(3) For R f < 1;

(a) If G(0) > 0 and Hmax > 0, there exists two positive equilibriums E1∗
s , E

2∗
s ;

(b) If G(0) > 0 and Hmax = 0, there is only one positive equilibrium E∗s ;
(c) If G(0) ≤ 0 or Hmax < 0, there is no positive equilibrium.
To demonstrate that there are corresponding parameter values which can satisfy all conditions de-

scribed in Theorem 3, we plot the curve H(x2) for different parameter sets to show the three cases in
which H has 0, 1 or 2 zeros, that is the slow subsystem may have 0, 1 or 2 interior equilibriums. In
Figure 1(A), we fix most parameters and change Rs by parameter c2. It shows for 0.5492 < Rs < 1,
the function H(x2) has two zeros meaning there are two interior equilibriums for slow subsystem, but
for Rs < 0.5492, there is no positive equilibrium. This result demonstrates Rs = 0.5492 is a threshold
which determines the number of positive equilibrium. In Figure 1(B), we discuss the case of R f < 1.
Most parameters have the same values as those in Figure 1(A) except N1. We change R f by parameter
N1. It shows R f = 0.7995 is the lower bound such that the slow subsystem has two interior equilibri-
ums.

4.3. Local stability of the positive equilibrium

In the following analysis, we choose βi(V) = aiV, αi(V) = αi, i = 1, 2. Then, the Jacobian matrix of
the slow subsystem (4.1) at E∗s = (S̃ , Ĩ, Ã) is

J(E∗s) =


−(u1 + u2) − µ −(u3 + u4) −(u5 + u6)
u1 + u2 u3 + u4 − (µ + ξ + α1) u5 + u6

0 ξ −(µ + α2)

 ,
where

u1 + u2 = (µ + ξ + α1)Ĩ( Ṽ′S
Ṽ + 1

S̃ −
1
Ñ ),

u3 + u4 = (µ + ξ + α1)Ĩ( Ṽ′I
Ṽ −

1
Ñ ) + c1a1ṼS̃

Ñ ,

u5 + u6 = (µ + ξ + α1)Ĩ( Ṽ′A
Ṽ −

1
Ñ ) + c2a2ṼS̃

Ñ .

Let ỹ = 1 +
k(1−η)x̃1+k(1−η)N1λ+cd√

(k(1−η)x̃1+k(1−η)N1λ+cd)2−4N1dk(1−η)
, then

Ṽ ′S = −
1

2cÑ
x̃1ỹ, Ṽ ′I =

1
2cÑ

(c1 p1 − x̃1)ỹ, Ṽ ′A =
1

2cÑ
(c2 p2 − x̃1)ỹ.
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Figure 1. (A) The plot shows the H(x2) curves for different values of Rs when all other
parameter values are fixed except for c2 with R f > 1. It shows that H(x2) has two intersections
with horizontal axis for 0.5492 < Rs < 1. (B) The plot shows the H(x2) curves for different
values of R f when all other parameter values are fixed except for N1 with R f < 1. It shows
R f = 0.7995 is a lower bond such that the slow system has two positive equilibriums. The
other parameters in this figure are Π = 4, a1 = 2 · 10−10, a2 = 10−9, µ = 4 · 10−4, ξ =

2 · 10−4, α1 = 10−4, α2 = 10−6, d = 0.3, c = 0.02101, λ = 60.1, k = 1.5 · 10−6, η = 0.5, c1 =

30, p1 = 40, p2 = 60.

Being similar to above description, Ĩ, S̃ , Ñ, x̃1 can be written as the functions of x̃2. The characteristic
equation of Jacobian matrix at E∗s is

z3 + j2z2 + j1z + j0 = 0,

where
j0 = (µ + ξ + α1)(µ + α2)(µ + u1 + u2) − µ(µ + α2)(u3 + u4) − µξ(u5 + u6),
j1 = (2µ + ξ + α1 + α2)(µ + u1 + u2) − (2µ + α2)(u3 + u4) − ξ(u5 + u6) + (µ + ξ + α1)(µ + α2),
j2 = 3µ + ξ + α1 + α2 + u1 + u2 − u3 − u4.

According to Routh-Hurwitz criterion, we need to identify the sign of j0, j1 and j1 j2 − j0. Specifi-
cally, if j0 < 0, E∗s is unstable, whereas if j0 > 0 and j1 > 0, j1 j2 − j0 > 0, E∗s is locally stability. It is
very difficult to theoretically judge the sign of ji (i = 1, 2, 3), due to the complexity of these functions,
so we conduct a large number of numerical simulations. We discover that the Routh-Hurwitz criterion
is only satisfied at the larger equilibrium for Rs < 1,R f > 1 and is always satisfied at the unique equi-
librium for Rs > 1,R f > 1 . We plot the equilibria and the corresponding stability for different cases in
Figure 2: blue dashed line represents unstable equilibriums and black solid line denotes stable equilib-
riums and give the following conjectures: (1) for Rs < 1,R f > 1, if G(0) > 0 and Hmax > 0, the larger
positive equilibrium is locally asymptotically stable, the other is unstable; (2) for Rs > 1,R f > 1, the
unique positive equilibrium is locally asymptotically stable; (3) for R f < 1, if G(0) > 0 and Hmax > 0,
the larger positive equilibrium is locally asymptotically stable, the other is unstable.
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Figure 2. The plots show the fraction of infected individuals at the equilibrium Ĩ/Ñ as a
function of Rs and R f . The solid line and dashed line correspond to stable and unstable
equilibrium. (A) Changing Rs for the case R f > 1, the backward bifurcation occurs at Rs =

Rsc = 0.5492. If 0.5492 < Rs < 1, there are two positive equilibriums, one stable, the other
unstable. (B) Changing R f , the backward bifurcation occurs at R f = R f c = 0.7995. There are
a stable positive equilibrium and an unstable equilibrium for R f ∈ (0.7995, 1).

4.4. Backward bifurcation

We note that the existence of multiple endemic states and their stability may indicate the possibility
of a backward bifurcation for our coupled system. In this section, we provide the detailed numerical
studies about the parameter regions in which the bifurcation may occur and simulations illustrating
the bistability of the disease-free equilibrium and endemic state. We plot the fraction of infected
individuals at the positive steady state Ĩ/Ñ as a function of Rs and R f , where the solid and dashed line
correspond to the stable and unstable equilibrium, separately. Figure 2(A) shows when Rs < 1, there is
a lower bound Rsc for Rs, above which the system has two positive equilibriums: one is stable, another
is unstable and below which the system has no positive equilibria. This denotes the threshold, which
governs the eradication of disease, is Rs = Rsc = 0.5492. In other words, the infectious disease can
only be controlled until Rs < Rsc. This highlights the challenges in the control of disease. Similar
to Figure 2(A), Figure 2(B) shows there exists a stable equilibria and an unstable equilibria for R f ∈

(R f c, 1), which demonstrates a backward bifurcation can occur for R f < 1. This result suggests that
contact with infected individuals may cause the virus to persist in the population, although the virus
can be cleared in the isolated individuals.

In Section 3 and 4, we analyze the dynamics of fast and slow subsystems, which are useful to
obtain the theoretical results and reveal some meaningful phenomena of the full system. To confirm
the analytical results, particularly the threshold condition for various dynamic behaviors of the full
system, we plot the solution curve of the full system. Figure 3(A)–(B) show the time series of fraction
of infected individuals for the case Rs < 1,R f > 1 and R f < 1, separately. We observe there exists
bistable attractors for these two cases. The solutions converge to the disease-free equilibrium with
lower initial values of I(0), whereas the solutions converge to the interior equilibrium with higher
initial values of I(0). Figure 3(C)–(D) plot the time series of fraction of infected individuals and viral
load for the case Rs > 1,R f > 1, in which the system has a unique interior equilibrium. The result
shows the two time scales for the fast variable V and slow variable I/N. Specifically, the fast variable V
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quickly approaches the value around its equilibrium, followed by the convergence of the slow variable
I/N at a slow rate. What’s more, it should be noted that for the case α1(V) = α1V, α2(V) = α2V
with bilinear incidence, the system may appear richer dynamics except for the backward bifurcation.
Specifically, given suitable parameter values for the case Rs > 1,R f > 1, we plot the phase trajectories
of the between-host system and the within-host system as shown in Figure 4, in which we can observe
the appearance of a stable limit cycle for the full system.
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Figure 3. Solution curves of the full system. The time series of fraction of infected indi-
viduals I(t)/N(t) for the case (A) Rs < 1,R f > 1; (B) R f < 1. It demonstrates that the
solutions converge to disease-free or positive equilibria depending on the initial value. (C)-
(D) The time series of fraction of infected individuals I(t)/N(t) and viral load V for the case
Rs > 1,R f > 1. The solutions converge to the unique interior equilibrium.

5. The interactions of within-host and between-host systems

In the following, we will discuss the interactions of within-host and between-host dynamics. To
explore the influence of macro transmission dynamics on the micro virus dynamics, we plot the viral
load at the equilibrium Ṽ versus the fraction of infected individuals at equilibrium Ĩ/Ñ, contact rate c2

and viral releasing rate per contact p2. Figure 5(A) shows that Ṽ is an increasing function of Ĩ/Ñ, which
demonstrates the more infected individuals in the population, the higher the viral loads. In addition, as
R f increases, Ṽ also increases. Figure 5(B) gives the variation in the number and the size of equilibrium
Ṽ with contact rate c2 increasing. For the case R f = 0.8582 < 1, there exists a critical level c̄2 = 13.6
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Figure 4. The phase trajectory of the (A) between-host system and (B) the within-host
system for the case α1(V) = α1V, α2 = α2V with bilinear incidence. Setting parameters
Π = 4.545 ∗ 106/365, µ = 0.0149/365, ξ = 0.116/365, α1 = 0.318/365, α2 = 0.172/365, λ =

15, d = 0.01, c = 3, k = 2.4 ∗ 10−6, δ = 0.5,N1 = 3500, c1 = 10, c2 = 5.3, p1 = 0.00004, p2 =

0.00004, a1 = 1.07∗10−11, a2 = 1.07∗10−11, η = 0.756, which corresponds to R f = 1.0248 >
1,Rs > 1.

for contact rate c2, above which there are two positive equilibriums: one is stable, the other is unstable
and below which there is no positive equilibria. Further, for c2 > c̄2, the larger the contact rate is, the
higher the stable equilibrium level of viral loads is. The results suggest that for the coupled within-host
dynamic model, R f = 1 is not a threshold to govern the eradication of virus in the hosts. Contact
with infected individuals may cause the virus to persist in the population, even if the virus can not
be persistent in the isolated individuals. Note that for the case R f = 1.1013 > 1, there is no positive
equilibrium Ṽ for c2 < 5.3. This result implies that having fewer contacts with infected individuals,
the virus will eventually be eliminated at the population level even if there are some individuals who
carry virus for long time. Figure 5(C) shows that as viral releasing rate p2 increases, the value of stable
equilibrium Ṽ also increases in the case R f > 1. This demonstrates that the final viral loads may tend to
high level if contacts occur with infected individuals whose virus replication is in the active period. The
results suggest that limiting contact with infected individuals by some protective measures, especially
with those whose virus replication is active, is effective to control virus at a low level.

To investigate the influence of micro parameters on the macro disease transmission, we plot the
prevalence at equilibrium Ĩ/Ñ against drug efficacy η under two cases: case 1): p1 = 40, p2 = 50
and case 2): p1 = p2 = 0. In particular, the case 2) with p1 = p2 = 0 means decoupling the macro
dynamics from micro model. With assumption αi(V) = αi, Figure 5(D) shows that increasing treatment
efficacy η leads to the decline of the prevalence Ĩ/Ñ. Specifically, Ĩ/Ñ declines relatively slow when
increasing the drug effectiveness initially until a critical level above which the prevalence begins to
decline quickly. This indicates that relatively low treatment efficacy is not enough to effectively control
the infectious disease. Compared with case 1) p1 = 40, p2 = 50, the same drug efficacy leads to a lower
disease prevalence for the case 2). Furthermore, the threshold of disease elimination for drug efficacy
also reduces from η = 0.55 to η = 0.47 in the absence of macro to micro coupling. This demonstrates
that ignoring the impact of macro transmission dynamics on micro virus dynamics may underestimate
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Figure 5. The interactions between macro dynamics and micro dynamics. The plot shows
the variation of equilibrium Ṽ against (A) the macro equilibrium Ĩ/Ñ; (B) the contacts rate
c2 under two cases: R f > 1 and R f < 1; (C) the viral releasing rate per contact p2 under two
cases: R f > 1,Rs < 1 and R f > 1,Rs > 1; (D) the variation of prevalence at equilibrium Ĩ/Ñ
versus effectiveness of treatment η under two cases: p1 = 40, p2 = 50 (macro dynamics is
coupled to micro model) and p1 = p2 = 0 (macro dynamics is decoupled from micro model)
with fixed parameter values and initial values.

the transmission of diseases in the population and consequently the requirement of drug effectiveness.
Generally, for controlling infectious disease, we should implement measures to reduce the basic

reproduction number and consequently the new infections. In this model, we can easily observe that
Rs decreases with the value of macro parameters ai, ci (i = 1, 2) decreasing and the value of micro
parameter η increasing . However, the existence of backward bifurcation makes the control and elim-
ination of infectious diseases more complicated. To explore the interactions between microscale and
macroscale with Rs ≤ Rsc, we plot the trends of contact rate c2, transmission coefficient a1 and drug
effectiveness η at surface Rs = Rsc in Figure 6. If the values of these three parameters are below this
surface (i.e., Rs < Rsc), then there is no positive equilibrium and the disease can die out. Otherwise,
the disease may be persistent. Furthermore, Figure 6 shows that as η increases, the parameter region
of (a1, c2) in which disease doesn’t outbreak enlarges. This demonstrates with high drug efficacy, the
control measures with relatively low intensity can still eliminate the disease. However, for small drug
effectiveness η, in order to eliminate the disease, we should not only reduce the infection rate, but also
keep the contact rate at a low level.
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Figure 6. The 3-D plot shows the surface Rs = Rsc against the contact rate c2, transmission
coefficient a1 and drug effectiveness η. If these three parameters are below this surface, then
Rs < Rsc, which means there is no positive equilibrium and the disease can be eradicated;
Otherwise Rs > Rsc, the disease may be persistent.

6. Discussion

Multiscale systems can simultaneously describe the virus dynamics at the individual level and the
transmission dynamics at the population level and have become a research focus in recent years. How-
ever, there are many challenges to constitute the linkage from the macroscale to the microscale. In
this study, we formulate a multiscale model which can link the slow dynamics for disease transmis-
sion to the fast dynamics for viral progression, in order to examine the interactions of between-host
dynamics and within-host viral dynamics. In fact, coupling the macro dynamics to micro models has
been successfully proposed in environmentally driven infections. But, for some infectious disease such
as HIV, the virus can be transmitted by direct contact with infected individuals, which may affect the
generation rate of virus in microscopic level. Hence, in our model, the influx of viruses from infected
individuals to the within-host system, depending on the contact rate and prevalence, becomes a bridge
such that between-host dynamics is coupled to the within-host viral dynamics. What’s more, the micro
system is embedded into the macro system by introducing the viral load-dependent transmission rate
and disease-induced mortality rate.

It is worth noting that the factors such as drug efficacy, individual differences and person-to-person
contact influence the within-host dynamics, thereby affecting the value of viral load at the equilibrium,
which in turn affects the spread of the disease at the population level. Therefore, it is extremely
necessary to formulate a coupled model to reflect this feedback mechanism. Moreover, due to the
fact that one can only contact a limited number of individuals per unit time, we choose the standard
incidence instead of mass action in the model, which is a advantage compared with most existing
coupled models. Of course, this also increases the difficulty of theoretical analysis.

We analyze the formulated model by studying the dynamics of the system on different time-scales,
i.e., fast subsystem and slow subsystem. We prove that if I > 0, the within-host system globally
converges to the unique positive equilibrium, which is independent on the threshold R f obtained from
the isolated microscopic model. For the slow subsystem, we find that the system can have zero, one or
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two interior equilibria, which depends on the magnitudes of Rs and R f . Specifically, for Rs < 1,R f > 1
or R f < 1, there exists a locally stable positive equilibrium and an unstable positive equilibrium. For
Rs > 1,R f > 1, there is only one locally stable interior equilibria. This demonstrates that the backward
bifurcation may occur for the coupled system and Rs = 1 can not act as the threshold for infection
control. Numerical simulations suggest that the full system exhibits the similar dynamic behaviors to
the slow subsystem. For Rs < 1,R f > 1 or R f < 1, whether the disease dies out or persists depends on
the initial condition.

We numerically examine the synergistic impact between the viral dynamics at the individual level
and transmission dynamics at the population level. On the one hand, we observe increasing the drug
effectiveness can decrease the prevalence of disease. Previous multiscale models that did not con-
sider the impact of macroscale on microscale may overestimate the control effect of drug treatment on
disease transmission. On the other hand, the contact rate may induce the occurrence of backward bifur-
cation and then affect the number and size of equilibria of viral dynamic model. Contact with infected
individuals may cause the virus to persist in the population, even if the virus can not be persistent
in the isolated individuals. This emphasizes limiting contact with infected individuals is effective in
eliminating virus or controlling virus at a low level at the population level. The existence of backward
bifurcation also illustrates the coupled system has more complicated dynamics, and consequently re-
sults in the elimination of disease more complex. The suggested control measures may include both the
reduction in contact rates or transmission rate at the population level and the increase in drug efficacy
at the individual level, and using these control measures together can effectively control the diseases.

In summary, we developed a novel bidirectional coupled model with standard incidence and inves-
tigated the synergistic impact between the macro transmission dynamics and micro virus dynamics,
which is a advantage compared to most existing multiscale models. We derived some interesting re-
sults from this model. The coupled system may appear the backward bifurcation and Hopf bifurcation
under certain conditions. Especially, contact rate or drug efficacy is essential to induce these complex
dynamic behaviors. The conclusions improve our understanding for prevention and control of infec-
tious disease, which can not be obtained from the pure between-host transmission or within-host viral
dynamic models. However, due to the complexity of coupled system, it is challenging to include all
progression and transmission routes of infection in the model while providing a complete theoretical
analysis.

Although this article is mainly discussed in the context of HIV, the approaches we used are able to
be applied more generally in other infectious diseases. Moreover, it should be noted we study the rich
dynamics that may occur in our proposed model by theoretical analysis and numerical simulations.
However, due to the lack of reliable information on parameter values such as p1, p2, our simulations
remain more qualitative. For example, the critical level of contact rate c2 with two positive equilibria
may be larger than the real situation. Hence, it is necessary to further discuss the possible dynamic phe-
nomena and the corresponding parameter region in practical application. We leave it for future work.
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