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Abstract: In this paper, a parasitic-mutualistic model of mistletoes and birds defined in a heteroge-
neous and periodically evolving domain is comprehensively investigated to reveal some new dynamical
phenomena caused by the domain evolution. By establishing the core spatial-temporal risk index RB

0
and RM

0 for birds population and mistletoes-birds population, respectively, the fundamental extinction,
persistence and coexistence behaviors are studied, and distinguished by such indexes. Moreover, the
impact of domain evolution on the viability of mistletoes is examined as well, and it is concluded that
the average expansion of the domain can enhance mistletoes’ transmission capability, therefore, pro-
mote the viability of mistletoes, and vice versa. Finally, numerical simulations are also exhibited for
some specific cases to verify the theoretical conclusions.

Keywords: Parasitic-mutualistic model of mistletoes and birds; heterogeneous environment;
periodically evolving domain; nonlinear reaction-diffusion equation

1. Introduction and model formulation

As a unique vector-borne parasite, mistletoe is not only parasitic and commensal, but also mutulis-
tic with its vectors, that is, the avian seed-dispersers. In fact, Mistletoes always infect vascular plants
ranging from cacti to pines, and prevail in many areas [1]. Although mistletoes are always thought as
pests that kill trees and depreciate natural habitats, more and more recent investigators have gradually
recognized them as an indispensable ecological keystone species, which contribute greatly to biodiver-
sity by providing high quality food and habitat for a broad range of animals living in woodlands and
forests worldwide [2].

Due to so special nature of the interaction between mistletoes and their bird vectors, the model of
mistletoes and birds has received impressive attention from researchers in many disciplines. In par-
ticular, in the earlier study of Liu et al. [3], they first proposed a single species model to investigate
the dynamics of mistletoes, in which the population of the birds was assumed to be constant, and lived
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in a common isolated and fixed habitat with mistletoes. Different from [3], recently, Wang et al. [4]
built a more complex model to incorporate the spatial dispersal, the maturation delay of mistletoes and
homogeneous spatial-temporal interaction between mistletoes and birds in a fixed spatial domain. By
the different choices of the dispersal fashion of mistletoe fruits by birds, Wang et al. [4] obtained some
detailed information about the spatial patterns of mistletoes and birds, which are extremely beneficial
for people to understand the long time dynamics of mistletoes and birds world. Following this pioneer-
ing work, Wang et al. [5] still explored the spatial spreading behaviors of the same model with some
simpler assumptions, and derived the existences of asymptotic spreading speed and traveling waves by
monotone semiflow theory.

Although all aforementioned studies are developed on time-independent domains with homoge-
neous hypothesis on the spatial-temporal environment, one must note that in reality, either the habit
that the creature living in or the environment they undergo always keeps changing as time evolving. For
example, many birds periodically migrate between different latitudes, where both the food resource and
the mortality vary obviously. In fact, there were more and more literatures concerning the asymptotic
behaviors of the solutions to the reaction-diffusion systems on some changing domains, and we refer
to [6, 7] for the pattern formation on a growing domain, [8, 9] for the species model on finite or infinite
growing domains, respectively, [10] for the logistic equation on a periodically evolving domain, and
[11, 12] for the epidemic systems on a periodically evolving domain.

Motivated by aforementioned studies and the periodicity of birds’ territory, we will investigate a
heterogeneous parasitic-mutualistic model of mistletoes and birds in a periodically evolving domain,
and reveal some new phenomena caused by the domain evolution in the model.

For such aims, we start with some fundamental assumptions for our model. In accordance to [10],
let Ω(t) ⊂ Rn be a bounded and simply connected domain that periodically evolves over time t ≥ 0
with smooth boundary ∂Ω(t). Denote B(t, X(t)) and M(t, X(t)), respectively, be the population densities
of birds and mistletoes at time t and spatial position X(t) ∈ Ω(t). In the light of [4, 5] and Reynolds
transport theorem [13], we will focus on the following dimensionless reaction-diffusion equation

Mt − dM∆M + ~ν · ∇M + M(∇ · ~ν) = ᾱ(t, X)
MB

M + B
− δ̄(t, X)M, t > 0, X ∈ Ω(t),

Bt − dB∆B + ~ν · ∇B + B(∇ · ~ν) = B(r̄(t, X) − B) + β̄(t, X)
MB

M + B
, t > 0, X ∈ Ω(t),

M(t, X(t)) = B(t, X(t)) = 0, t > 0, X ∈ ∂Ω(t)

(1.1)

with the initial functions defined on the initial domain Ω0 := Ω(0). In the mistletoes and birds world,
ᾱ(t, X) is the rate of successfully attaching the mistletoe seeds to birds, which is equivalent to the rate
of parasites transmission, while δ̄(t, X) is the mortality rate of the mistletoes. Meanwhile, β̄(t, X) is the
conversion rate, at which energy is transformed from mistletoes fruits birds eaten into birds population,
and r̄(t, X) is the abundance of the food resources other than mistletoes fruits. Moreover, dM and dB

represent the random diffusivity of mistletoes and birds, respectively, which satisfy 0 < dM � dB

attributed to the tremendous scale difference between their territories. On the other hand, ~ν is the flow
velocity yielded by the domain evolving, the advection terms ~ν · ∇M and ~ν · ∇B represent the transport
of populations determined by ~ν, and M(∇ ·~ν) and B(∇ ·~ν) are the annihilation term due to local volume
changes [6, 7, 14].

To circumvent the complexities due to the terms of dilution and advection, we adopt the transfor-
mation between Eulerian coordinate and Lagrangian coordinate in fluid mechanics to modify problem
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(1.1) from the evolving domain into the fixed domain. Therefore, we first suppose that domain evolves
periodically and isotropically, that is,

X(t) = κ(t)x for all X(t) ∈ Ω(t) and (t, x) ∈ [0,∞) ×Ω0, (1.2)

where x and X are the spatial coordinates of the initial domain Ω0 and evolving domain Ω(t), respec-
tively; the evolving ratio κ(t) ∈ C1([0,T ], (0,∞)) is a T-periodic function, i.e., κ(t) = κ(t + T ), and
satisfies κ(0) = 1 and 0 < κ(t) ≤ κ∗ for all t ≥ 0, where κ∗ is a positive constant. Moreover, without
loss of generality, we also assume that the flow velocity is equivalent to the changing velocity of the
domain, i.e., ~ν = Ẋ(t). As a result, we have

~ν = Ẋ(t) = κ̇(t)x =
κ̇(t)
κ(t)

X(t).

Hence, redefine
M(t, X(t)) := m(t, x), B(t, X(t)) := b(t, x), (1.3)

then problem (1.2) and (1.3) yield that

Mt + ~ν · ∇M = mt, Bt + ~ν · ∇B = bt,

M(∇ · ~ν) = n
κ̇(t)
κ(t)

m, B(∇ · ~ν) = n
κ̇(t)
κ(t)

b,

∆M =
1

κ2(t)
∆m, ∆B =

1
κ2(t)

∆b.

Meanwhile, redefining
ᾱ(t, X(t)) = α(t, x), δ̄(t, X(t)) = δ(t, x),
r̄(t, X(t)) = r(t, x), β̄(t, X(t)) = β(t, x)

as well, problem (1.1) is thus transformed into
mt −

dM

κ2(t)
∆m = α(t, x)

mb
m + b

− δ(t, x)m − n
κ̇(t)
κ(t)

m, t > 0, x ∈ Ω0,

bt −
dB

κ2(t)
∆b = b(r(t, x) − b) + β(t, x)

mb
m + b

− n
κ̇(t)
κ(t)

b, t > 0, x ∈ Ω0,

m(t, x) = b(t, x) = 0, t > 0, x ∈ ∂Ω0

(1.4)

with the nontrivial, bounded and continuous initial conditions

m(0, x) := m0(x) ≥ 0, b(0, x) := b0(x) ≥ 0, x ∈ Ω0. (1.5)

Here, we still suppose that α(t, x), δ(t, x), r(t, x), and β(t, x) ∈ C
θ
2 ,θ([0,∞) × Ω0)(θ ∈ (0, 1)) are positive

and T-periodic with respect to t. Meanwhile, suppose that

0 < z∗ ≤ z(t, x) ≤ z∗,

on [0,∞) ×Ω0, where z = α, δ, r, β; z∗ and z∗ are constants.
Additionally, by extending the definition to be zero either m = 0 or b = 0, we can reconstruct the

reaction function MB
M+B as a locally Lipschitz continuous one in the entire first quadrant. Hence, in view
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of all the assumptions above and the uniform estimates in Lemma 3.4, the standard regularity theory
[15, 16] indicates that problem (1.4)–(1.5) have a unique global solution (m, b) ∈ [C1+ θ

2 ,2+θ([0,∞) ×
Ω0)]2. Hence, the primary objective of the current article is to investigate the persistence, extinction and
coexistence of the birds and mistletoes populations in problem (1.4)–(1.5), and to reveal the important
influence and new phenomena caused by the domain evolution. The key technique we adopt here is
the spatial-temporal risk index that is similar to the basic reproduction number in epidemiology, which
will be established by the principal eigenvalue theory of periodic reaction-diffusion equations.

The remainder of our article is arranged in the following way. In Section 2, we first limit our-
self to examine the diffusive dynamics in birds world without mistletoes, and present a fundamen-
tal extinction-persistence dichotomy distinguished by the associated spatial-temporal risk index RB

0 .
Section 3 is devoted to comprehensively investigating the dynamics behaviors in the mistletoes-birds
world, in which we establish the core spatial-temporal risk index RM

0 , then obtain the extinction-
coexistence dichotomy distinguished by RM

0 , and explore the impact of evolving domain on the viability
of mistletoes. Finally, numerical simulations are also exhibited for some specific cases in Section 4 to
illustrate our theoretical conclusions.

2. The diffusive dynamics in birds world

In this section, we first explore the diffusive dynamics in birds world without mistletoes, and present
a fundamental extinction-persistence dichotomy distinguished by the spatial-temporal risk index RB

0 ,
which plays a role being similar to the basic reproduction number in epidemiology.

In fact, provided m ≡ 0, problem (1.4)–(1.5) become
bt −

dB

κ2(t)
∆b = b(r(t, x) − b) − n

κ̇(t)
κ(t)

b, t > 0, x ∈ Ω0,

b(t, x) = 0, t > 0, x ∈ ∂Ω0,

b(0, x) := b0(x) ≥ 0, x ∈ Ω0.

(2.1)

To further analyze the asymptotic behavior of the solution of problem (2.1), we focus on the periodic
parabolic eigenvalue problem

φt −
dB

κ2(t)
∆φ =

r(t, x)
µ

φ − n
κ̇(t)
κ(t)

φ, t > 0, x ∈ Ω0,

φ(t, x) = 0, t > 0, x ∈ ∂Ω0,

φ(0, x) = φ(T, x), x ∈ Ω0.

(2.2)

Denote RB
0 (κ) := µ0, where µ0 is the principal eigenvalue of problem (2.2). We have the following

key results.

Lemma 2.1. sign(1−RB
0 (κ)) = signλ0, where λ0 is the principal eigenvalue of the following eigenvalue

problem 
φt −

dB

κ2(t)
∆φ = r(t, x)φ − n

κ̇(t)
κ(t)

φ + λφ, t > 0, x ∈ Ω0,

φ(t, x) = 0, t > 0, x ∈ ∂Ω0,

φ(0, x) = φ(T, x), x ∈ Ω0.

(2.3)
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Proof. For any fixed µ > 0, consider the eigenvalue problem
φt −

dB

κ2(t)
∆φ =

r(t, x)
µ

φ − n
κ̇(t)
κ(t)

φ + Λφ, t > 0, x ∈ Ω0,

φ(t, x) = 0, t > 0, x ∈ ∂Ω0,

φ(0, x) = φ(T, x), x ∈ Ω0,

and denote its principal eigenvalue as Λ0(µ). It is well-known [17] that Λ0(µ) is continuous and strictly
increasing with respect to µ. Moreover, the uniqueness of principal eigenvalue implies that λ0 = Λ0(1)
and Λ0(µ0) = 0.

On the other hand, since Λ0(µ) satisfies limµ→0+ Λ0(µ) < 0 and limµ→∞Λ0(µ) > 0 [17], one can
deduce from the monotonicity of Λ0(µ) that RB

0 (κ) = µ0 is the unique positive solution for the equation
Λ0(µ) = 0. Due to

λ0 = Λ0(1) − Λ0(µ0) = Λ0(1) − Λ0(RB
0 (κ)),

the monotonicity also yields that sign(1 − RB
0 (κ)) = signλ0, and the proof is completed. �

Therefore, completely identical to [10], we obtain the following existence and attractivity results of
the periodic solutions of problem (2.1) in the evolving domain.

Theorem 2.2. Let b(t, x; b0) be the solution of problem (2.1) with nonnegative, bounded and continuous
initial conditions b0(x) ≥ 0 on Ω0.

(i) If RB
0 (κ) ≤ 1, then the trivial solution b(t, x) ≡ 0 is globally asymptotically stable in the sense that

lim
i→∞

b(t + iT, x; b0) = 0

holds uniformly on [0,T ] ×Ω0;

(ii) If RB
0 (κ) > 1, then problem (2.1) has a positive and T-periodic solution b∗(t, x), which is globally

asymptotically stable for all nontrivial b0 in the sense that

lim
i→∞

b(t + iT, x; b0) = b∗(t, x)

holds uniformly on [0,T ] ×Ω0.

3. The diffusive dynamics in the mistletoes-birds world

Since the case that RB
0 (κ) ≤ 1 could lead to some trivial extinction for small invasion populations,

throughout this section, we focus on discussing the diffusive dynamics of mistletoes under the influence
of birds for the case RB

0 (κ) > 1.

3.1. The spatial-temporal risk index RM
0

We will introduce the spatial-temporal risk index RM
0 (κ) associated with the problem (1.4)–(1.5),

which is a similar role as index RB
0 (κ), while it will be constructed by a more epidemic fashion. The

readers are also referred to the similar conception defined by Lin et al. [18, 19] for the free boundary
problems.
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For such aim, we first consider the linearized equation for problem (1.4)–(1.5) at point (m, b) =

(0, b∗) as follows 
mt −

dM

κ2(t)
∆m = α(t, x)m − δ(t, x)m − n

κ̇(t)
κ(t)

m, t > 0, x ∈ Ω0,

bt −
dB

κ2(t)
∆b = β(t, x)m + (r − 2b∗)b − n

κ̇(t)
κ(t)

b, t > 0, x ∈ Ω0,

m(t, x) = b(t, x) = 0, t > 0, x ∈ ∂Ω0.

(3.1)

Let d(t) = dM
κ2(t) and η(t, x) = δ(t, x) + n κ̇(t)

κ(t) , then the first equation of problem (3.1) yieldsmt − d(t)∆m = α(t, x)m − η(t, x)m, t > 0, x ∈ Ω0,

m(t, x) = 0, t > 0, x ∈ Ω0.
(3.2)

We first consider the case that η(t, x) ≥ 0 for any t ≥ 0 and x ∈ Ω0.
Let CT be all the continuous and T-periodic functions from R to C(Ω0,R), which is equipped with

the positive cone C+
T := {ζ ∈ CT : ζ(t)(x) ≥ 0,∀t ∈ R, x ∈ Ω0} and maximum norm || · ||. It is easy to see

that CT is an ordered Banach space. We denote ζ(t, x) := ζ(t)(x) for any ζ ∈ CT .
Besides, let A(t, τ) be the evolution operator of problemmt − d(t)∆m = −η(t, x)m, t > 0, x ∈ Ω0,

m(t, x) = 0, t > 0, x ∈ ∂Ω0.
(3.3)

Due to the standard semigroup theory, we know that there exist positive constants K and c0 such that

||A(t, τ)|| ≤ Ke−c0(t−τ), ∀t ≥ τ, t, τ ∈ R.

Now, assume that ζ ∈ CT , and let ζ(τ, x) be the density distribution of mistletoes individuals at
the time τ and spatial location x ∈ Ω0. Then the term α(τ, x)ζ(t, x) is just the density distribution
of the new individuals engendered by the old individuals introduced at time τ. Thus, for any t ≥ τ,
we let A(t, τ)α(τ, x)ζ(τ, x) be the density distribution at location x of the individuals, who are newly
introduced at time τ and still are survival at time t. Therefore, the following expression∫ t

−∞

A(t, τ)α(τ, ·)ζ(τ, ·)dτ =

∫ ∞

0
A(t, t − a)α(t − a, ·)ζ(t − a, ·)da

is called the accumulative density distribution of the new mistletoes individuals at time t and location
x, and they are engendered by those individuals ζ(τ, x) introduced at all the time before t .

According to the statements in [20] and [21], we are going to define the operator L : CT → CT as
the next generation operator, where

L(ζ, t) :=
∫ t

−∞

A(t, τ)α(τ, ·)ζ(τ, ·)dτ =

∫ ∞

0
A(t, t − a)α(t − a, ·)ζ(t − a, ·)da.

It is clear that L is continuous, positive and compact on CT . Hence, similar as in [21], we choose
the spectral radius r(L) to be defined as the basic reproduction number to problem (1.4)–(1.5), i.e.,
R0 := r(L).

Furthermore, we have the following significant conclusions.
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Lemma 3.1. (i) RM
0 = µM

0 and where µM
0 is the principal eigenvalue of the following periodic

parabolic eigenvalue problem
ψt −

dM

κ2(t)
∆ψ =

α(t, x)
µM

0

ψ − δ(t, x)ψ − n
κ̇(t)
κ(t)

ψ, t > 0, x ∈ Ω0,

ψ(t, x) = 0, t > 0, x ∈ ∂Ω0,

ψ(0, x) = ψ(T, x), x ∈ Ω0;

(3.4)

(ii) sign(1−RM
0 ) = signλM

0 , where λM
0 is the principal eigenvalue of the following eigenvalue problem

ψt −
dM

κ2(t)
∆ψ = α(t, x)ψ − δ(t, x)ψ − n

κ̇(t)
κ(t)

ψ + λM
0 ψ, t > 0, x ∈ Ω0,

ψ(t, x) = 0, t > 0, x ∈ ∂Ω0,

ψ(0, x) = ψ(T, x), x ∈ Ω0.

(3.5)

On the other hand, for the case that η(t, x) < 0 for any t ≥ 0 and x ∈ Ω0, we can still adopt the
completely identical method used by Lemma 2.1 in Section 2 to obtain Lemma 3.1, and we omit the
details for simplicity.

Remark 3.2. To better explore the association between κ(t) and RM
0 , we denote RM

0 = RM
0 (κ) and let

κ−2 = 1
T

∫ T

0
1

κ2(t)dt hereafter.

By Lemma 3.1, we have the following results.

Theorem 3.3. (i) If α(t, x) ≡ α(t), and δ(t, x) ≡ δ(t) for all t ∈ [0,T ], then

RM
0 (κ) =

∫ T

0
α(t)dt∫ T

0
(δ(t) + dM

κ2(t)λ
M
0 )dt

;

(ii) If α(t, x) ≡ α > 0 and δ(t, x) ≡ δ > 0 are both constants, then

RM
0 (κ) =

α

δ + dMλ
M
0 κ
−2
,

where λM
0 is the principal eigenvalue of the following problem − ∆ϕ = λM

0 ϕ, x ∈ Ω0,

ϕ = 0, x ∈ ∂Ω0.

Proof. (i) Let ψ0(t, x) = p(t)ϕ(x) > 0 for (t, x) ∈ (0,∞) × Ω0 be the eigenfunction associating with
RM

0 (κ) . Consequently, problem (3.4) sees

ṗ(t)ϕ(x) +
dMλ

M
0

κ2(t)
p(t)ϕ(x) + δ(t)p(t)ϕ(x) + n

κ̇(t)
κ(t)

p(t)ϕ(x) =
α(t)

RM
0 (κ)

p(t)ϕ(x),

Mathematical Biosciences and Engineering Volume 17, Issue 6, 6678–6698.
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which deduces to
ṗ(t)
p(t)

+
dMλ

M
0

κ2(t)
+ δ(t) + n

κ̇(t)
κ(t)
−

α(t)
RM

0 (κ)
= 0. (3.6)

Integrating (3.6) from 0 to t gives∫ t

0

(
α(t)

RM
0 (κ)

− n
κ̇(t)
κ(t)
− δ(t) −

dMλ
M
0

κ2(t)

)
dt = 0.

It follows from ψ(t + T, x) = ψ(t, x) that one has p(T ) = p(0). Thus, we have

RM
0 (κ) =

∫ T

0
α(t)dt∫ T

0
(δ(t) + dM

κ2(t)λ
M
0 )dt

.

(ii)Due to κ−2 = 1
T

∫ T

0
1

κ2(t)dt, it is clear that we have

RM
0 (κ) =

α

δ + dMλ
M
0 κ
−2
.

The proof is completed. �

3.2. The extinction and coexistence dynamics of mistletoes-birds populations

We first make some preliminaries for the proof of the existence of periodic solution.

Lemma 3.4. There exist positive constants Cm and Cb such that the solution (m, b)(t, x) of problem
(1.4)–(1.5) satisfying

(0, 0) < (m, b)(t, x) ≤ (Cm,Cb) (3.7)

holds uniformly on [0,∞) ×Ω0, provided that (0, 0) .,≤ (m0, b0)(x) ≤ (Cm,Cb) on Ω0.

Proof. First, the maximum principle confirms the strict positivity, and we will prove the right side of
(3.7).

In fact, by the second equation of (1.4), we deduce that

bt −
dB

κ2(t)
∆b = b(r(t, x) − b) + β(t, x)

mb
m + b

− n
κ̇(t)
κ(t)

b

≤ b
[
r(t, x) + β(t, x) − n

κ̇(t)
κ(t)
− b

]
≤ b(r∗ + β∗ − cκ − b).

Consequently, we obtain
b(t, x) ≤ max{r∗ + β∗ − cκ, ||b0||∞}

uniformly on [0,∞) ×Ω0, where cκ := mint∈[0,T ]

{
n κ̇(t)
κ(t)

}
< 0. Denote Cb := r∗ + β∗ − cκ. Then we obtain

b(t, x) ≤ Cb

uniformly on [0,∞) ×Ω0 if ||b0||∞ ≤ Cb.

Mathematical Biosciences and Engineering Volume 17, Issue 6, 6678–6698.
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Similarly, after assuming that δ∗ + cκ > 0, we still have

m(t, x) ≤ Cm

uniformly on [0,∞) ×Ω0 if ||m0||∞ ≤ Cm where Cm := α∗Cb
δ∗+cκ

In brief, we have
(0, 0) < (m, b)(t, x) ≤ (Cm,Cb)

uniformly on [0,∞)×Ω0, provided that (0, 0) .,≤ (m0, b0)(x) ≤ (Cm,Cb) on Ω0. The proof is finished.
�

Theorem 3.5. Let (m, b)(t, x; m0, b0) be the solution of problem (1.4)–(1.5) with nonnegative, bounded
and continuous initial conditions m0(x) ≥ 0 and b0(x) ≥,. 0 on Ω0. If RM

0 (κ) ≤ 1, then the solution
(0, b∗) is globally asymptotically stable in the sense that

lim
i→∞

(m, b)(t + iT, x; m0, b0) = (0, b∗)(t, x)

holds uniformly on [0,T ] ×Ω0.

Proof. For (t, x) ∈ [0,T )×Ω0, selecting mu(t, x) = Ce−σtψ(t, x), where ψ(t, x) satisfying ‖ψ‖∞ = 1 is the
normalized eigenfunction associated with RM

0 (κ), 0 ≤ σ ≤ α(t, x)( 1
RM

0
− 1), and C > 0 is a sufficiently

large constant. It follows that

mu
t −

dM

κ2(t)
∆mu − α(t, x)

b
mu + b

mu + δ(t, x)mu + n
κ̇(t)
κ(t)

mu

≥mu
t −

dM

κ2(t)
∆mu − α(t, x)mu + δ(t, x)mu + n

κ̇(t)
κ(t)

mu

=Ce−σtψt − σCe−σtψ −Ce−σt dM

κ2(t)
∆ψ − α(t, x)Ce−σtψ

+ δ(t, x)Ce−σtψ + n
κ̇(t)
κ(t)

Ce−σtψ

=mu(−σ +
α(t, x)

RM
0

− α(t, x))

≥0.

Then, mu is the upper solution of the following problem
mt −

dM

κ2(t)
∆m = α(t, x)

b
m + b

m − δ(t, x)m − n
κ̇(t)
κ(t)

m, t > 0, x ∈ Ω0,

m(t, x) = 0, t > 0, x ∈ ∂Ω0,

m(0, x) = m0(x) ≥ 0, x ∈ Ω0.

Hence, the uniform limit limt→∞m(t, x) = 0 is derived from the fact that limt→∞mu(t, x) = 0 uniformly
for x ∈ Ω0. Furthermore, by the almost parallel method adopted in [22], we also can show that
limi→∞ b(t + iT, x) = b∗(t, x) holds uniformly on [0,T ] ×Ω0. The proof is completed. �
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Next, we combine the related eigenvalue problem and ordered upper and lower solutions to explore
the periodic steady state coexistence solutions of problem (1.4)–(1.5) and their attractivity. Concretely
speaking, we will focus on the following problem

mt −
dM

κ2(t)
∆m = α(t, x)

b
m + b

m − δ(t, x)m − n
κ̇(t)
κ(t)

m, t > 0, x ∈ Ω0,

bt −
dB

κ2(t)
∆b = b(r(t, x) − b) + β(t, x)

m
m + b

b − n
κ̇(t)
κ(t)

b, t > 0, x ∈ Ω0,

m(t, x) = b(t, x) = 0, t > 0, x ∈ ∂Ω0,

m(0, x) = m(T, x), b(0, x) = b(T, x), x ∈ Ω0.

(3.8)

The following definition of upper and lower solutions is fundamental.

Definition 3.6. (m̃, b̃)(t, x) and (m̂, b̂)(t, x) are called upper and lower solutions to problem (3.8) if

m̃t −
dM

κ2(t)
∆m̃ ≥ α(t, x)

b̃

m̃ + b̃
m̃ − δ(t, x)m̃ − n

κ̇(t)
κ(t)

m̃, t > 0, x ∈ Ω0,

b̃t −
dB

κ2(t)
∆b̃ ≥ b̃(r(t, x) − b̃) + β(t, x)

m̃

m̃ + b̃
b̃ − n

κ̇(t)
κ(t)

b̃, t > 0, x ∈ Ω0,

m̂t −
dM

κ2(t)
∆m̂ ≤ α(t, x)

b̂

m̂ + b̂
m̂ − δ(t, x)m̂ − n

κ̇(t)
κ(t)

m̂, t > 0, x ∈ Ω0,

b̂t −
dB

κ2(t)
∆̂b ≤ b̂(r(t, x) − b̂) + β(t, x)

m̂

m̂ + b̂
b̂ − n

κ̇(t)
κ(t)

b̂, t > 0, x ∈ Ω0,

m̂(t, x) = 0 ≤ m̃(t, x), b̂(t, x) = 0 ≤ b̃(t, x), t > 0, x ∈ ∂Ω0,

m̂(0, x) ≤ m̂(T, x), b̂(0, x) ≤ b̂(T, x), x ∈ Ω0,

m̃(0, x) ≥ m̃(T, x), b̃(0, x) ≥ b̃(T, x), x ∈ Ω0.

(3.9)

Moreover, (m̃, b̃)(t, x) and (m̂, b̂)(t, x) are called a pair of ordered upper and lower solutions if they
satisfy (0, 0) ≤ (m̂, b̂) ≤ (m̃, b̃) ≤ (Cm,Cb).

The parallel definition to problem (1.4)–(1.5) could be obtained by similar fashion as well.
For further analysis, we also set 

K1 := max
[0,T ]×Ω0

(
δ(t, x) + n

κ̇(t)
κ(t)

)
,

K2 := max
[0,T ]

(
n
κ̇(t)
κ(t)

)
+ Cb

and 
F(m, b) := α(t, x)

b
m + b

m − δ(t, x)m − n
κ̇(t)
κ(t)

m + K1m, t > 0, x ∈ Ω0,

G(m, b) := b(r(t, x) − b) + β(t, x)
m

m + b
b − n

κ̇(t)
κ(t)

b + K2b, t > 0, x ∈ Ω0,
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where F and G are clearly nondecreasing about m and b. Then problem (3.8) can be rewritten as

mt −
dM

κ2(t)
∆m + K1m = F(m, b), t > 0, x ∈ Ω0,

bt −
dB

κ2(t)
∆b + K2b = G(m, b), t > 0, x ∈ Ω0,

m(t, x) = b(t, x) = 0, t > 0, x ∈ ∂Ω0,

m(0, x) = m(T, x), b(0, x) = b(T, x), x ∈ Ω0.

(3.10)

We now select (m(0), b
(0)

) = (m̃, b̃) and (m(0), b(0)) = (m̂, b̂) as initial functions and construct se-

quences {(m(i), b
(i)

)} and {(m(i), b(i))} (i = 1, 2, ..., ) by the following iteration procedure

m(i)
t −

dM

κ2(t)
∆m(i)

+ K1m(i)
= F(m(i−1), b

(i−1)
), t > 0, x ∈ Ω0,

b
(i)
t −

dB

κ2(t)
∆b

(i)
+ K2b

(i)
= G(m(i−1), b

(i−1)
), t > 0, x ∈ Ω0,

m(i)
t −

dM

κ2(t)
∆m(i) + K1m(i) = F(m(i−1), b(i−1)), t > 0, x ∈ Ω0,

b(i)
t −

dB

κ2(t)
∆b(i) + K2b(i) = G(m(i−1), b(i−1)), t > 0, x ∈ Ω0,

m(i)(t, x) = m(i)(t, x) = b
(i)

(t, x) = b(i)(t, x) = 0, t > 0, x ∈ ∂Ω0,

m(i)(0, x) = m(i−1)(T, x), b
(i)

(0, x) = b
(i−1)

(T, x), x ∈ Ω0,

m(i)(0, x) = m(i−1)(T, x), b(i)(0, x) = b(i−1)(T, x), x ∈ Ω0.

(3.11)

We first derive the following fundamental properties of the two sequences above.

Lemma 3.7. Assume that (m(i), b
(i)

) and (m(i′), b(i′)) are ordered upper and lower solutions of problem
(3.8) for any i and i′. If there exist

(m(i′), b(i′))(0, x) ≤ (m0(x), b0(x)) ≤ (m(i), b
(i)

)(0, x)

in Ω0, then (m(i), b
(i)

) and (m(i′), b(i′)) are also ordered upper and lower solutions of problem (1.4)–(1.5).

If we still denote the two sequences generated by (3.11) as {(m(i), b
(i)

)} and {(m(i), b(i))} with

(m(i), b
(i)

)(0, x) = (m(i), b(i))(0, x) = (m0(x), b0(x)), x ∈ Ω0, (3.12)

and (m̂, b̂) ≤ (m0(x), b0(x)) ≤ (m̃, b̃) in Ω0, then the following result holds.

Lemma 3.8. The two sequences {(m(i), b
(i)

)} and {(m(i), b(i))} converge monotonically to a unique solu-
tion (m, b)(t, x) of problem (1.4)–(1.5). Moreover,

(m̂, b̂) ≤ (m(i−1), b(i−1)) ≤ (m(i), b(i)) ≤ (m, b) ≤ (m(i), b
(i)

) ≤ (m(i−1), b
(i−1)

) ≤ (m̃, b̃)

holds on [0,∞) ×Ω0.
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All the proofs of the lemmas above are routine, so we omit them and refer the details to [23,
Theorem B, Lemmas 3.1-3.2].

To present our coexistence results, we need the following key lemma.

Lemma 3.9. The principal eigenvalue λM
0 of problem (3.5) is also an eigenvalue for the following

eigenvalue problem with some strict positive eigenfunctions (Ψ0,Φ0)

Ψt −
dM

κ2(t)
∆Ψ = α(t, x)Ψ − δ(t, x)Ψ − n

κ̇(t)
κ(t)

Ψ + ΛΨ, t > 0, x ∈ Ω0,

Φt −
dB

κ2(t)
∆Φ = β(t, x)Ψ + (r(t, x) − 2b∗)Φ − n

κ̇(t)
κ(t)

Φ + ΛΦ, t > 0, x ∈ Ω0,

Ψ(t, x) = Φ(t, x) = 0, t > 0, x ∈ ∂Ω0,

Ψ(0, x) = Ψ(T, x), Φ(0, x) = Φ(T, x), x ∈ Ω0,

(3.13)

provided that λM
0 < 0.

Proof. Let (λM
0 , ψ0) be the eigenpair of problem (3.5) with λM

0 < 0 and ψ0 > 0. Then, (λM
0 , ψ0) satisfies

Ψt −
dM

κ2(t)
∆Ψ = α(t, x)Ψ − δ(t, x)Ψ − n

κ̇(t)
κ(t)

Ψ + ΛΨ, t > 0, x ∈ Ω0,

Ψ(t, x) = 0, t > 0, x ∈ ∂Ω0,

Ψ(0, x) = Ψ(T, x), x ∈ Ω0.

(3.14)

We then consider the following inhomogeneous problem of Φ = Φ(t, x)
Φt −

dB

κ2(t)
∆Φ = (r(t, x) − 2b∗)Φ − n

κ̇(t)
κ(t)

Φ + λM
0 Φ + β(t, x)ψ0, t > 0, x ∈ Ω0,

Φ(t, x) = 0, t > 0, x ∈ ∂Ω0,

Φ(0, x) = Φ(T, x), x ∈ Ω0.

(3.15)

Since b∗(t, x) solves 
b∗t −

dB

κ2(t)
∆b∗ = (r(t, x) − b∗)b∗ − n

κ̇(t)
κ(t)

b∗, t > 0, x ∈ Ω0,

b∗(t, x) = 0, t > 0, x ∈ ∂Ω0,

b∗(0, x) = b∗(T, x), x ∈ Ω0,

the monotonicity of the principal eigenvalue implies that the following problem
Φt −

dB

κ2(t)
∆Φ = (r(t, x) − 2b∗)Φ − n

κ̇(t)
κ(t)

Φ + ΛΦ t > 0, x ∈ Ω0,

Φ(t, x) = 0, t > 0, x ∈ ∂Ω0,

Φ(0, x) = Φ(T, x), x ∈ Ω0

has a positive principal eigenvalue Λ0 > 0.
Thus, utilizing the positivity of β and ψ0 together with [16, Theorem 16.6], we derive that problem

(3.15) has a unique solution Φ0(t, x) satisfying Φ0(t, x) > 0 for all (t, x) ∈ [0,T ]×Ω0. To sum up, if the
principal eigenvalue λM

0 < 0, then it is still an eigenvalue of the eigenvalue problem (3.13) with strict
positive eigenfunctions (Ψ0,Φ0) = (ψ0,Φ0). The lemma is proved. �
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Now, it is the turn to present our main theorem as following.

Theorem 3.10. If RM
0 (κ) > 1, then the following conclusions hold:

(i) There are a pair of minimal and maximal positive T-periodic solutions (m, b) ≤ (m, b) of problem
(3.8) over (0, b∗), moreover, if (m, b)(0, x) = (m, b)(0, x), then (m, b) = (m, b) := (m�, b�) is the
unique positive T-periodic solution to problem (3.8);

(ii) Let (m, b)(t, x; m0, b0) be the solution of problem (1.4)–(1.5) with bounded and continuous initial
conditions (0, 0) .,≤ (m0, b0)(x) ≤ (Cm,Cb) on Ω0, then (m, b) ≤ (m, b) is attractive in the sense
that

(m, b)(t, x) ≤ lim inf
i→∞

(m, b)(t + iT, x; m0, b0)

≤ lim sup
i→∞

(m, b)(t + iT, x; m0, b0) ≤ (m, b)(t, x)
(3.16)

holds uniformly on [0,T ] ×Ω0.

Proof. (i) It is clear that (Cm,Cb) and (0, b∗) are ordered upper and lower solutions of problem (3.8).
We select the (m(0), b

(0)
) = (m̃, b̃) = (Cm,Cb) and (m(0), b(0)) = (m̂, b̂) = (γΨ, b∗+γΦ) as initial iteration,

where (Ψ,Φ) is the positive eigenfunction of eigenvalue problem (3.13) associated with λM
0 < 0 given

by Lemma 3.9, and γ is sufficiently small positive number.
[23, Lemma 3.1] ensures that the sequences {(m(i), b

(i)
)} and {(m(i), b(i))} defined by (3.11) have the

monotonicity
(m(0), b(0)) ≤ (m(i−1), b(i−1)) ≤ (m(i), b(i))

≤ (m(i), b
(i)

) ≤ (m(i−1), b
(i−1)

) ≤ (m(0), b
(0)

).
(3.17)

Therefore, the the monotone convergence theorem [23, Theorem A] implies that there exist a pair of
(m, b) and (m, b) satisfying

lim
i→∞

(m(i), b
(i)

) = (m, b), lim
i→∞

(m(i), b(i)) = (m, b),

(m(0), b(0)) ≤ (m(i−1), b(i−1)) ≤ (m(i), b(i)) ≤ (m, b)

≤ (m, b) ≤ (m(i), b
(i)

) ≤ (m(i−1), b
(i−1)

) ≤ (m(0), b
(0)

),
(3.18)

and 

mt −
dM

κ2(t)
∆m = α(t, x)

b

m + b
m − δ(t, x)m − n

κ̇(t)
κ(t)

m, t > 0, x ∈ Ω0,

bt −
dB

κ2(t)
∆b = b(r(t, x) − b) + β(t, x)

m

m + b
b − n

κ̇(t)
κ(t)

b, t > 0, x ∈ Ω0,

mt −
dM

κ2(t)
∆m = α(t, x)

b
m + b

m − δ(t, x)m − n
κ̇(t)
κ(t)

m, t > 0, x ∈ Ω0,

bt −
dB

κ2(t)
∆b = b(r(t, x) − b) + β(t, x)

m
m + b

b − n
κ̇(t)
κ(t)

b, t > 0, x ∈ Ω0,

m(t, x) = m(t, x) = b(t, x) = b(t, x) = 0, t > 0, x ∈ ∂Ω0,

m(0, x) = m(T, x), b(0, x) = b(T, x), x ∈ Ω0,

m(0, x) = m(T, x), b(0, x) = b(T, x), x ∈ Ω0.

(3.19)
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Clearly, (m, b) and (m, b) are T-periodic solutions of problem (3.8) satisfying (0, b∗) ≤ (m, b) ≤ (m, b).
Next, we claim that (m, b) and (m, b) are minimal and maximal, respectively.
In fact, any T-periodic solution (m∗∗, b∗∗) over (0, b∗) satisfies (m̂, b̂) ≤ (m∗∗, b∗∗) ≤ (m̃, b̃) on [0,T ]×

Ω0 if γ > 0 is sufficiently small. Hence, after choosing (m̃, b̃) and (m∗∗, b∗∗) as the initial data for
iteration, and operate iteration like problem (3.11), it follows that

(m∗∗, b∗∗) ≤ (m, b) on [0,T ] ×Ω0,

that is, (m, b) is the maximal T-periodic solution of problem (3.8). Similarly, we also have

(m, b) ≤ (m∗∗, b∗∗) on [0,T ] ×Ω0,

which indicates that (m, b) is the minimal T-periodic solution of problem (3.8) over (0, b∗).
Lastly, the conclusion (m, b) = (m, b) = (m�, b�) can be derived by the standard existence-

uniqueness theorem on the initial-boundary parabolic equations, provided that (m, b)(0, x) =

(m, b)(0, x).
(ii) Due to the comparison principle, we first have b(t, x) ≥ b̃(t, x) on [0,∞) × Ω0 for the same

initial data, where b̃(t, x) is the solution of problem (2.1). Since RB
0 (κ) > 1, Theorem 2.2 yields that

limi→∞ b̃(t + iT, x) = b∗(t, x) holds uniformly on [0,T ] × Ω0. Thus, lim infi→∞ b(t + iT, x) ≥ b∗(t, x)
holds uniformly on [0,T ] × Ω0. it follows that for any sufficiently small ε > 0, there is a i∗ε > 0 such
that b(t + iT, x) > b∗(t, x) − ε on [0,T ] ×Ω0 for any i ≥ i∗ε.

Set
(mi, bi)(t, x) := (m, b)(t + iT, x; m0, b0)

for any positive integer i ≥ 1. Since

(0, 0) < (m̂, b̂ −
ε

2
)(0, x) ≤ (mi∗ε , bi∗ε)(0, x) ≤ (m̃, b̃)(0, x)

uniformly in Ω0 for sufficiently small ε, γ > 0, Lemma 3.8 implies

(m̂, b̂ −
ε

2
)(t + iT, x) ≤ (mi∗ε+i, bi∗ε+i)(t, x) ≤ (m̃, b̃)(t + iT, x)

on [0,∞) ×Ω0. In particular,

(m̂, b̂ −
ε

2
)(t + T, x) ≤ (mi∗+1, bi∗+1)(t, x) ≤ (m̃, b̃)(t + T, x)

on [0,∞) ×Ω0.
Therefore, by choosing (m̂, b̂ − ε

2 ) as new initial data (m(0)
ε , b

(0)
ε ), we still obtain a similar monotone

sequences (m(i)
ε , b

(i)
ε )(i = 1, 2, · · · ) from (3.11). Moreover, the monotone convergence theorem [23,

Theorem A] still yields that (m(i)
ε , b

(i)
ε ) converge uniformly to a T-periodic solution (mε, bε) of problem

(3.8) as i→ ∞, and the later converge uniformly to (m, b) as ε→ 0.
By the periodic condition in problem (3.11), we derive(m̃, b̃)(t + T, x) = (m(0), b

(0)
)(t + T, x) = (m(1), b

(1)
)(t, x), in Ω0,

(m̂, b̂ −
ε

2
)(t + T, x) = (m(0)

ε , b
(0)
ε )(t + T, x) = (m(1)

ε , b
(1)
ε )(t, x), in Ω0,
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which implies that
(m(1)

ε , b
(1)
ε )(0, x) ≤ (mi∗+1, bi∗+1)(0, x) ≤ (m(1), b

(1)
)(0, x)

in Ω0. Therefore, we know (m(1), b
(1)

) and (m(1)
ε , b

(1)
ε ) are a pair of order upper and lower solutions to

problem (3.8) with initial data (mi∗+1, bi∗+1)(0, x) due to Lemma 3.7. By Lemma 3.8 again, the unique
solution (mi∗+1, bi∗+1)(t, x) of problem (3.8) satisfies

(m(1)
ε , b

(1)
ε )(t, x) ≤ (mi∗+1, bi∗+1)(t, x) ≤ (m(1), b

(1)
)(t, x)

on [0,∞) ×Ω0. We obtain from the induction principle that for i ≥ 1,

(m(i)
ε , b

(i)
ε )(t, x) ≤ (mi∗+i, bi∗+i)(t, x) ≤ (m(i), b

(i)
)(t, x)

holds on [0,∞) ×Ω0. Consequently, we have

(mε, bε)(t, x) ≤ lim inf
i→∞

(m, b)(t + iT, x; m0, b0)

≤ lim sup
i→∞

(m, b)(t + iT, x; m0, b0) ≤ (m, b)(t, x)

holds uniformly on [0,T ]×Ω0, and the desired result follows from passing to the limits as ε→ 0. The
proof is finished. �

3.3. The impact of domain evolution on the viability of mistletoes

The discussion in section 3.2 is fulfilled on the evolving domain, and we will explore the asymptotic
behaviors of the related solution on the fixed domain in the sequel. In fact, if κ(t) ≡ 1 and Ω(t) = Ω(0),
then the underlying domain is constant, and problem (1.4) is transformed to

ut − dM∆u = α(t, x)
v

u + v
u − δ(t, x)u, t > 0, x ∈ Ω(0),

vt − dB∆v = v(r(t, x) − v) + β(t, x)
u

u + v
v, t > 0, x ∈ Ω(0),

u(t, x) = v(t, x) = 0, t > 0, x ∈ ∂Ω(0)

(3.20)

with the similar nontrivial, nonnegative and continuous initial conditions

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ Ω(0). (3.21)

The associated periodic steady state coexistence problem is defined by

ut − dM∆u = α(t, x)
v

u + v
u − δ(t, x)u, t > 0, x ∈ Ω(0),

vt − dB∆v = v(r(t, x) − v) + β(t, x)
u

u + v
v, t > 0, x ∈ Ω(0),

u(t, x) = v(t, x) = 0, t > 0, x ∈ ∂Ω(0),
u(0, x) = u(T, x), v(0, x) = v(T, x), x ∈ Ω(0).

(3.22)

We still denote the spatia-temporal risk index of problem (3.20)–(3.21) as

<M
0 = RM

0 (1)

by the identical arguments with Lemma 3.1, and we have the following threshold results completely
similar to Theorems 3.5 and 3.10.
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Theorem 3.11. Let (u, v)(t, x; m0, b0) be the solution of problem (3.20)–(3.21) with nonnegative,
bounded and continuous initial conditions u0(x) ≥ 0 and v0(x) ≥,. 0 on Ω(0), then the following
conclusions hold:

(i) If<M
0 ≤ 1, then the solution (0, v∗) of problem (3.22) is globally asymptotically stable in the sense

that
lim
i→∞

(u, v)(t + iT, x; u0, v0) = (0, v∗)(t, x) (3.23)

holds uniformly on [0,T ] × Ω(0), where v∗(t, x) is the unique solution of the periodic parabolic
problem 

vt −
dB

κ2(t)
∆v = v(r(t, x) − v), t > 0, x ∈ Ω(0),

v(t, x) = 0, t > 0, x ∈ ∂Ω(0),
v(0, y) = b0(x), x ∈ Ω(0);

(ii) If <M
0 > 1, then problem (3.22) has a pair of maximal and minimal positive positive T-periodic

solution (u, v) ≤ (u, v) over than (0, b?); moreover, if (u, v)(0, x) = (u, v)(0, x), then (u, v) =

(u, v) := (u�, v�) is the unique positive T-periodic solution to problem (3.22). Lastly, (u, v) and
(u, v) are also attractive in the sense that

(u, v)(t, x) ≤ lim inf
i→∞

(u, v)(t + iT, x; u0, v0)

≤ lim sup
i→∞

(u, v)(t + iT, x; u0, v0) ≤ (u, v)(t, x)
(3.24)

holds uniformly on [0,T ] ×Ω(0) for any initial conditions (u0(x), v0(x)) ≥,. (0, 0) on Ω(0).

At the last, in order to evaluate the effect of the periodically evolving domain on the viability of
mistletoes, we present the following investigation, which results directly from Theorem 3.3 (i).

Theorem 3.12. If α(t, x) ≡ α(t), δ(t, x) ≡ δ(t) for all t ∈ [0,T ], then the following statements hold:

(i) if κ−2 = 1, then we have RM
0 = <M

0 ;

(ii) if κ−2 > 1, then we have RM
0 < <M

0 ;

(iii) if κ−2 < 1, then we have RM
0 > <M

0 ,

where κ−2 = 1
T

∫ T

0
1

κ2(t)dt.

In fact, Theorem 3.12 reveals that κ−2 can be deemed to an index to forecast the impact of the
periodic evolution of domain on the viability of mistletoes. If κ−2 = 1, then the periodical domain
evolution has no effect on the viability of mistletoes. However, if κ−2 > 1, we guess that the domain
evolution caused by the diffusion of mistletoes is not conducive to their survival and transmission.
Lastly, if κ−2 < 1, we find that mistletoes can survive well on the fixed and evolving domains, what is
more, the domain evolution can promote diffusion of mistletoes and thus give mistletoes more space
for transmission. In brief, the average expansion of the domain can enhance the viability of mistletoes,
and vice versa.
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4. Numerical simulations and conclusions

In this section, we will implement some numerical simulations to test the previous theoretical re-
sults. In addition, to put more emphasis on the diffusive dynamics of mistletoes under the influence of
birds, we give the following assumptions about the some coefficients.

dM = 0.0001, dB = 0.5, r = 0.2, β = 0.1, λM
0 = π2,

m0(x) = 2 sin(πx), b0(x) = 0.2 sin(πx) + 0.1 sin(3πx).

To better survey the asymptotic behaviors of the solution of problem (1.4)–(1.5), we select different α,
δ and κ(t).

Example 4.1. Fix α = 0.1 and δ = 0.09905. Choose different κ(t):

(i) Let κ(t) = 1, then
RM

0 (1) =
α

δ + dMλ
M
0

= 0.9996 < 1.

It is easy to know from Figure 1 that m rapidly decreases to 0, which agrees with Theorem 3.11
(i) that at length mistletoes on a fixed domain will go to extinction;
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Figure 1. α = 0.1, δ = 0.09905 and κ(t) = 1. Graph (a) is a three-dimensional space of
density m varying with time t and space x. Graph (b) is the contour map. Graph (c) is the
cross-sectional view.

(ii) Set κ(t) = e0.1(1−cos(4t)), calculation obtains

κ−2 =
2
π

∫ π
2

0

1
κ2(t)

dt = 0.8269 < 1

and
RM

0 (κ) =
α

δ + dMλ
M
0 κ
−2

= 1.0013 > 1.

It is shown in Figure 2 (a) that m tends to a positive steady state. (b)–(c) implies that domain is
periodically evolving. And it is line with Theorem 3.10 that mistletoes can coexist with birds on a
periodically evolving domain, which also consists with Theorem 3.12 (iii).
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(a) (b)
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Figure 2. α = 0.1, δ = 0.09905 and κ(t) = e0.1(1−cos(4t)). Graph (a) is a three-dimensional
space of density m varying with time t and space x. Graph (b) is the contour map. Graph (c)
is the cross-sectional view.

Example 4.2. Fix α = 0.0845 and δ = 1
12 . Choose different κ(t):

(i) Let κ(t) = 1, then

RM
0 (1) =

α

δ + dMλ
M
0

= 1.0021 > 1.

Observing Figure 3, we easily find that m stabilizes a positive steady state, which is consistent
with Theorem 3.11 (ii) that mistletoes and birds can coexist in a fixed domain;
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Figure 3. α = 0.0845, δ = 1
12 and κ(t) = 1. Graph (a) is a three-dimensional space of

density m varying with time t and space x. Graph (b) is the contour map. Graph (c) is the
cross-sectional view.

(ii) Set κ(t) = e0.1(cos(4t)−1), result is

κ−2 =
2
π

∫ π
2

0

1
κ2(t)

dt = 1.2336 > 1

and
RM

0 (κ) =
α

δ + dMλ
M
0 κ
−2

= 0.9994 < 1.
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Figure 4 (a) shows that m decays to 0 eventually. (b)–(c) tells us that domain evolves periodically.
And it agrees to Theorem 3.10 that mistletoes will be eradicated in a periodically evolving domain,
which also consists with Theorem 3.12 (ii).
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Figure 4. α = 0.0845, δ = 1
12 and κ(t) = e0.1(cos(4t)−1). Graph (a) is a three-dimensional space

of density m varying with time t and space x. Graph (b) is the contour map. Graph (c) is the
cross-sectional view.
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