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Abstract: The use of mathematical tumor growth models coupled to noisy imaging data has been
suggested as a possible component in the push towards precision medicine. We discuss the generation
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procedures to noisy molecular imaging data, and how the noise properties of such data can be analyzed
to estimate uncertainties in predicted patient outcomes.
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1. Introduction

Broadly speaking, mathematical oncology seeks to develop a collection of in silico models that
accurately predict the growth and progression of malignant tumors and their response to treatment [1].
While the basic scientific goal is to develop a rigorous quantitative science of cancer [2], a more
readily attainable goal is to use existing models and data to inform clinical practice in some substantive
way [3]. One approach to clinical mathematical oncology, which we call mathematical model-based
precision medicine, is to use mathematical models to make patient-specific prognostic and therapeutic
predictions which are subsequently employed to direct treatment choices and predict patient outcomes.
In our view, such predictions must be conditioned on patient data in order for the strategy to qualify as
precision medicine [4–6].

Two essential features of oncology are heterogeneity and uncertainty. Heterogeneity can manifest as
interpatient (between-patient), intrapatient (within-patient) and intratumor (within-tumor); see [7] for
a more complete discussion of the clinical impact of heterogeneity in cancer and [8] for a review of the
mathematical strategies to address heterogeneity. From a modeling perspective, heterogeneity implies
a statistical approach where model parameters are treated as spatially distributed random variables
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with both population and patient-specific probability distributions [5]. Heterogeneity also highlights
the issue of uncertainty: For a given patient, most if not all model parameters are unknown prior to the
acquisition of patient-specific data, and even with such data, uncertainties may remain, since model
parameters may only be partially identifiable and the data acquisition system may introduce additional
irreducible noise. Image data provides a clear example of this issue, as imaging introduces information
loss due to detector noise, low resolution and the possibility of null functions [9]. This uncertainty
must be accounted for if model-based predictions are to be used reliably in the clinical context.

Once a relevant mathematical model has been selected, prediction takes place in silico, whereby a
simulated patient is produced and Quantities-of-Interest (QoIs) are calculated. In this context, we say
that the parameter values and resulting simulations correspond to a virtual patient. Owing to the
heterogeneity and uncertainty issues discussed above, in both population and patient-specific
applications of mathematical oncology it is desirable to generate suitably randomized Virtual Patient
Populations (VPPs). If the VPP represents an untreated group, it is called a Virtual Control Population
(VCP) [4, 10], while if the VPP represents a treatment group, it is called a Virtual Treatment
Population (VTP). With appropriate VPPs, an in silico Virtual Clinical Trial (VCT) can be performed
to assess treatment choices, again in either the population or patient-specific case. Population VPPs
and VCTs can assist in making general prognosis and treatment recommendations or simulate a
regulatory trial [11], while a patient-specific VPP and/or VCT can be used to assess uncertainty in a
particular patient’s disease progression or treatment response [6, 12]. While population VCTs have
found usage in device design and regulatory contexts [13], patient-specific VPPs and VCTs have seen
limited usage.

In previous work [5, 6], we have highlighted the application of spatiotemporal random field
modeling to address heterogeneity and uncertainty. In this work, we discuss specific VPP-based
strategies towards the practical implementation of the framework presented in [5, 6]. Specifically, we
describe a method for generating VCPs by pairing a spatiotemporal reaction-diffusion equation
(RDE) model for avascular, pre-metastatic tumor growth with spatially inhomogenous random field
coefficients. We discuss the RDE model in sections 2.1 and 2.2 and the random field models in
section 2.3. Together, these models provide a solution of the ‘forward problem’ for VPP generation.
Two important inverse problems then arise. In the first, we consider in sections 4.1 and 4.2 the
problem of estimating the RDE coefficient fields for a specific patient from noisy molecular imaging
data; proof-of-concept simulation results are given in sections 5.1 and 5.2. For the second inverse
problem, we must estimate the statistical parameters that define the random field coefficient models
from a collection of many patients’ data, hence solving the statistical calibration problem for virtual
populations; we discuss this problem in section 4.3. Both maximum likelihood and Bayesian
techniques are presented, and both require an accurate likelihood model connecting model parameters
to available noisy data. To this end, in section 3 we discuss statistical models for molecular Emission
Computed Tomography (ECT) data. We make this emphasis both because well-validated likelihood
models for ECT are available [9], and because it is possible to model a direct connection between
physiological processes such as tumor cell density and spatial growth rate, and certain emission
imaging techniques and tracers.

Note that the results given in sections 5.1 and 5.2 are generated in a pure simulation setting, where
both ground-truth tumors and image data are simulated. This allows for methodological comparisons
with known ground truth and tight control of all nuisance parameters that influence the data. A
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summary of future work that extends these results is provided in section 6.

2. Tumor growth modeling with heterogeneity and uncertainty

In this section, we introduce the tumor growth model that we employ for the remainder of the paper.
We emphasize that the models we present are simplifications of real tumor biology, which is complex
and not yet fully understood. These models are intended to be more ‘clinically relevant’ [3] than
biologically accurate, due to their relative simplicity and amenability to patient-specific inference from
spatiotemporal imaging data. In section 2.2 we discuss the parameter-to-solution map, in section 2.3
we discuss random field models for the tumor growth model coefficients, and in section 2.4 discuss the
notions of virtual populations and virtual clinical trials.

2.1. Reaction-diffusion tumor growth models

A wide variety of Partial Differential Equation (PDE) models have been employed to model
spatiotemporal tumor growth, and the derivation and mathematical analysis of such models is
adequately described elsewhere [14–21]. Here, we are interested in computational techniques for
generating virtual patient populations, and thus consider a relatively simple PDE model (2.1) that has
gained traction in the context of GlioBlastoma Multiforme (GBM). The randomization and statistical
calibration techniques we present are independent of the tumor growth model, however, so the choice
of Eq (2.1) is largely for illustration purposes.

We denote a spatiotemporal density of tumor cells by n = n(x, t), with x ∈ V being a d−dimensional
position vector in the spatial domain V and 0 ≤ t ≤ T , where T is the maximum number of days
simulated. The units of n are cells per unit volume, and we take (x, t) to have units of cm and days,
respectively. For in vivo tumors d = 3, though for simulation purposes and modeling of in vitro
and certain in vivo experimental setups we also consider spatial domains in d = 2 as a reasonable
approximation. The general reaction-diffusion equation for n is

∂n
∂t = ∇ · (D∇n) +G(n) (x, t) ∈ V × [0,T ]

n(x, 0) = n0(x)

ν̂ · ∇n = 0 boundary conditions

(2.1)

The spatially varying scalar diffusion coefficient D = D(x) describes the rate of apparent cell
diffusion, while the growth function G(n) describes the growth and competition between the tumor
and its environment. The boundary condition is taken to be the no-flux (Neumann) condition
ν̂ · ∇n = 0, where ν̂ is the outward boundary normal of the domain V . Note that a treatment function
T (n) can be added to Eq (2.1) to model an intervention such as chemotherapy, radiotherapy or
surgical resection, but we postpone discussion of such models to a future work.

While in the scalar tumor growth context the Gompertz function G(n) = −ρn ln(n/κ) has gained
plausible mechanistic support via the notion of quiescence [22], to our knowledge the spatial RDE
growth function is largely a phenomenological choice. The Fisher-KPP growth function is frequently
selected in the GBM context, and is the one we will use in this paper:

G(n) = ρ(x)n(x, t)
(
1 −

n(x, t)
κ(x)

)
(2.2)
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The growth ρ(x) and carrying capacity κ(x) functions, which have respective units of cells per day and
cells, will be discussed further below.

2.2. Patient-specific parameters and the parameter-to-solution map

Note that in Eqs (2.1) and (2.2), several additional parameter functions are required to fully specify
the solution to the PDE. These include the diffusion coefficient D(x), the initial cell density n0(x), the
growth ρ(x) and carrying capacity κ(x). These parameter functions are certainly patient-specific, since
they correspond to local physiology and nutrient concentrations. For notational simplicity, we will use
the symbol β to denote the collection of all parameters necessary to specify a solution to Eq (2.1). In
the context of this paper, a virtual patient then corresponds to a particular choice of β, which we will
indicate by saying that patient j has parameter β j. We will assume for the remainder of this article the
initial condition is given by a Gaussian

n0(x) = A exp
(

1
2σ2 − ‖x − x0‖

2
)

(2.3)

with x0 = [0.5, 0.5]T , A = 5/2πσ2 and σ2 = 1e−4; this represents an initial collection of 5 tumor
cells, well-localized around the center of our computational domain. The collection of all remaining
unknown parameter fields is thus β = (D, ρ, κ). To avoid pathological situations, we also assume the
technical condition that β ∈ B, where B is a set of parameter functions selected to guarantee that a
positive, bounded solution n(x, t) of Eq (2.1) exists for all β ∈ B and for 0 ≤ t ≤ T . Selecting such a B
requires careful technical analysis of Eq (2.1); see [23].

While we assume that each patient corresponds to a unique set of parameters β = β j, it is likely
that β j is effectively unknown or uncertain for a given patient. To address this, we treat β as a function
space-valued random vector in both the population and patient-specific cases, and provide
corresponding random field models in section 2.3 below. In a simulation setting, we must choose a
computational representation for β j, which we indicate with a superscript v for ‘virtual’. So, β(v)

j is a
virtual (i.e., computational) sample corresponding to a sample for β.

Assuming Eq (2.1) is classically well-posed for every (or almost every) β ∈ B, we can construct the
deterministic parameter-to-solution map

n(model)
j = F (β j) (2.4)

where n(model)
j = n(model)

j (x, t) solves Eq (2.1) with the parameter vector β = β j, corresponding to patient
j. In a simulation setting, the forward map (2.4) is implemented via a numerical differential equation
solver. We have employed a finite difference method-of-lines approach with a five-point spatial stencil
and Runge-Kutta time stepper, as discussed in [24]. The result is an approximate solution to Eq (2.1),
where the virtual coefficient sample β(v)

j is processed through computational algorithm F (v) to produce
the virtual tumor cell density n(v)

j :

n(v)
j = F

(v)
(
β(v)

j

)
(2.5)

The choice of discretization specifies the format for the virtual cell density n(v)
j ; with our finite

difference scheme, we can assume that n(v)
j takes the form of an Nx × Ny × Nt voxel array (for d = 2).
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The specification of β(v)
j is discussed below; we will assume a voxel-free form (Eq (2.8) below) that

can be evaluated on an arbitrary grid when needed. Note that the virtual cell density will differ both
from a patient’s true cell density and from a measured cell density by discretzation, model and
measurement errors; see [8] for a discussion of these errors. A demonstration of our scheme
implementing (2.5) in d = 2 is shown in Figure 1.

Figure 1. A realization of the tumor growth model (2.1) with Fisher-KPP growth term (2.2)
(bottom row). The time-independent random field coefficients (top row, frames 2–4) are
draws from ρ ∼ LB(200, 0.1, 2e−3), D ∼ LB(20, 1e−7, 0.04) and κ ∼ LB(100, 5e7, 0.1), as
defined in section 2.3. The tumor burden N(t), defined in Eq (2.13), is shown for each time
point. The initial condition n0(x) is shown top left.

In the next section, we will introduce random field models that allow Eqs (2.4) and (2.5) to be used
to generate virtual tumor populations. Note briefly that we have made assumptions that allow us to
analyze and simulate Eq (2.1) as a Random PDE (RPDE) model, that is as a classically well-posed
PDE whose coefficients are randomized. Note that this is in contrast to a Stochastic PDE (SPDE)
model, which requires more advanced analysis and simulation techniques. See e.g., [5] for discussion
of a technique based on characteristic functionals (introduced briefly below), and [25–27] for further
discussion of the distinction between SPDE and RPDE.

2.3. Random field models for RDE coefficients

As discussed in the introduction, any mathematical model that is employed in a clinical precision
medicine context must account for the possibility of heterogeneity and uncertainty by assuming that
model parameters are sampled from a probability distribution. Since the model parameters that
specify Eqs (2.1) and (2.2) are spatial functions, we employ the theory of random fields. We will
avoid technical discussions, sufficing to say that one can treat β as a function space-valued random
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vector, written formally as β : Ω → B, where (Ω,F ,P) is a probability space and B is a set of
functions mentioned previously, selected to guarantee the existence of the forward map (2.4). We
assume that B ⊂ X, where X is a Hilbert space with inner product (β,ϕ)X, taken to be the L2(V) inner
product for vector-valued functions. In the most general setting, the complete statistics of a
second-order random process are fully specified by its marginal distributions (through the
Kolmogorov construction), its abstract probability distribution Pβ, or its characteristic
functional: [5, 9, 28, 29]

Ψβ(ϕ) = E
[
exp

(
i
(
β,ϕ

)
X

)]
. (2.6)

Frequently, a process is completely specified by its first few moments e.g., its mean function
β̄(x) = E[β] and its covariance function k(x, x′) = E[(β(x) − β̄(x))(β(x′) − β̄(x′))T]. While its use
requires functional calculus, the characteristic functional (2.6) is typically a compact and efficient way
to describe the complete statistics of a random field, and its use in the biological context is a topic of
current investigation [5]. Refer to the recent books [27] and [30] for a complete discussion of the
theory of Hilbert space-valued random vectors.

In this work, we will simulate random fields by first assuming a convenient functional form for the
realizations of the process, then randomizing the corresponding (finitely many) parameters to achieve
desired statistics. This method allows us to guarantee that realizations of β satisfy conditions for
Eq (2.1) to be well-posed, and allows for straightforward simulations using standard code packages.
In particular, the random field models we use will take the form of a randomized synthesis map, which
for a scalar-valued function ϕ j(x) takes the form:

ϕ j = Φ(θ j) (2.7)

whereΦ(·) : RN → X is a synthesis map that maps a (finite-dimensional) patient-specific parameter θ j

to the function ϕ(v)
j (x). By selecting a probability distribution P(θ j|θp) that depends on the population

parameter θp ∈ Θ ⊂ R
p, the synthesis map (2.7) produces a random field. In sections 4.1 and 4.2,

we discuss ways to estimate a particular θ j from image data, while in section 4.3 we discuss ways to
estimate the population parameter θp from a collection of images.

Because the coefficients in the RDE (2.1) must be non-negative and bounded to be physiologically
realistic, it is advantageous to begin with a random field model that always produces non-negative,
bounded realizations. For our simulations, we employ ‘lumpy-type’ random field models [31, 32], a
realization of which has the functional form

ϕ(x) =

Lmax∑
l=1

bl`(x − xl;γ). (2.8)

If the lump function `(x;γ) and the lump amplitudes bl are non-negative and bounded, and the number
of lumps is finite, then Eq (2.8) is guaranteed to produce non-negative and bounded realizations. For
simplicity, we use isotropic unnormalized Gaussian lumps:

`(x;σ2) = exp
(
−

1
2σ2 ‖x‖

2
)

(2.9)
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Random fields with this choice of lump function were proposed to model soft tissues with smoothly
varying characteristics [31], while more sophisticated choices of `(x), such as the clustered lump
technique [32], can model more complex tissues such as breast or brain tissue. Ultimately, the choice
of `(x) and its shape parameter γ requires a statistical calibration step such as that discussed in
section 4.3.

We randomize Eq (2.8) as follows. We first select a lump shape parameter γ = σ2 = σ2
0, a constant

lump amplitude b0, and a mean number of lumps L̄ � Lmax. We then draw L ∼ Poi(L̄), and set b` = b0

for 1 ≤ ` ≤ L, and b` = 0 otherwise. Lastly, we draw x1 . . . , xL, I.I.D. uniform in the domain V
and form the sum (2.8). Note that the resulting random field realization can be written in terms of
a nonlinear synthesis map (2.7) with N = (d + 1)Lmax. We use the notation LB(L̄, b0, σ

2
0) to indicate

a lumpy-type field with mean number of lumps L̄, amplitude b0 and isotropic lump variance σ2
0. A

demonstration of the behavior of lumpy-type random fields of the form given in Eq (2.8) is shown in
Figure 1, top row.

We reiterate that a single realization of the random field specified in Eq (2.8) is fully specified by
the parameters σ2

0, b0 and the lump center list [xl], while the complete statistics of the random field are
fully specified by L̄, σ2

0 and b0. This distinction is important when we discuss parameter estimation
problems in sections 4.1–4.3.

2.4. Virtual populations and quantitative biomarkers

Suppose that q ∈ Rn is a low-dimensional vector quantifying patient status or prognosis, for
instance (informally) q = [metric of tumor burden,metric of normal tissue function]. In the
model-based precision medicine context, such a vector is generally called a quantitative
biomarker [6,33,34]. The purpose of a virtual patient population, and more generally a virtual clinical
trial, is to predict the distribution of q for either a control or treatment group. We will assume for
convenience that q = q ∈ R is a scalar functional of β and n:

q =M (β, n) (2.10)

Given a virtual population of simulated parameters and tumors,
(
β(v)

1 , n
(v)
1

)
, . . . ,

(
β(v)

J , n
(v)
J

)
, we estimate

the biomarker q for each virtual patient using a methodM(v), resulting in a vector

Q(v) =
[
M(v)

(
β(v)

1 , n
(v)
1

)
, . . . ,M(v)

(
β(v)

J , n
(v)
J

)]
∈ RJ (2.11)

If Q(v) is generated from a population distribution, that is, the random vector β models inter-patient
heterogeneity, then we say that Q(v) is a population virtual biomarker sample. If β models
patient-specific uncertainties, for instance if β is sampled from the conditional random vector β j|g j

where g j is some patient-specific data, then we say that Q(v) is a patient-specific virtual biomarker
sample. Statistical properties of q such as its mean, standard deviation and distribution can be
estimated from Q(v). By generating virtual control and treatment groups, Eq (2.11) can be used to
simulate a clinical trial. If the VPP employed in Eq (2.11) represents a treatment group, decisions
regarding the intervention can be made based on these statistics. For instance, a rigorous
decision-theoretic approach to patient-specific treatment selection would define an additional function
U(q) which measures the utility of achieving the biomarker q(τ) via the intervention τ. Since q is a
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random vector, the typical approach is to maximize the expected utility, that is, we seek the
intervention τ∗ which solves

τ∗ = arg max
τ
E

[
U(q(τ))

]
(2.12)

While numerous patient-specific therapy optimization schemes have been suggested [35], to our
knowledge a scheme based on Eq (2.12) has not seen practical implementation in this context. The
VPP methodologies presented here may prove applicable to a future application of Eq (2.12), since
the expected value in Eq (2.12) can be approximated via Eq (2.11).

An example of a quantity-of-interest that we will use to illustrate our methods is the tumor burden,
which is the total number of tumor cells as calculated from n(x, t):

N(t) =

∫
V

n(x, t) dx (2.13)

If the goal is to predict N(t) for some t in the future, a VPP allows one to assess the uncertainty in this
value as a result of uncertainty in the patient-specific parameter β j being ‘propagated’ through the
models F and M [25, 30]. An illustration of uncertainty propagation is demonstrated in Figure 2,
where several choices of the population parameter θp are chosen and the resulting (estimated)
probability distribution of N(100) is shown. Further examples are given in section 5 below. Another
possible QoI, the integrated log-kill, is similar to Eq (2.13) but with the integrand n(x, t) replaced by
ln(n(x, t)/n0(x)). This metric is derived from a mass action drug effect and is applicable in
chemotherapy evaluation [5]. Note that we do not discuss the important topic of exactly which scalar
QoIs have real clinical impact in terms of patient outcomes; refer to e.g., [33, 34].

Figure 2. Demonstration of the influence of the random field parameters θp on the
distribution of the biomarker (2.13). The parameters (b0, σ

2
0) controlling the statistics of

ρ(x) ∼ LB(200, b0, σ
2
0) are changed, and for each pair, a virtual biomarker sample of size

J = 512 is computed with q = M(v)(n(v)) = N(100). Relative frequency histograms are
displayed for each virtual biomarker sample.

3. Molecular emission imaging data

In a pure simulation setting, a virtual biomarker sample of the form shown in Eq (2.11) can be
computed without reference to any particular patient-specific data, so long as the corresponding
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probability distributions are well-calibrated. However, the model-based precision medicine context
requires that patient-specific data be used to create individualized VPPs, hence making
uncertainty-informed decisions about patient j possible. We will focus on the case of molecular
Emission Computed Tomography (ECT) data, for reasons discussed below.

3.1. Preclinical and clinical imaging modalities

In the clinic, image data typically takes the form of reconstructed tomographic imaging studies
such as MRI, CT, or 18F-FDG Positron Emission Tomography (PET). Note that while it can be difficult
to precisely relate these standard tomographic data to either nj or β j, it is nonetheless possible to
postulate such relationships and thereby extract useful information from these images. An example
of such an approach is the usage of Apparent Diffusion Coefficient (ADC) maps, generated using
Diffusion-Weighted MRI (DWMRI), to estimate nj through the application of a model which relates
tissue cellularity to ADC [3,36,37]. The basic difficulty in such efforts is that malignancy is not directly
measured by any of these standard techniques: For example, ADC maps estimate the apparent diffusion
coefficient of water molecules and CT measures X-Ray attenuation, neither of which is uniquely altered
by the presence of a malignant tumor. While increased 18F-FDG uptake implies increased cellular
metabolism along the glycolytic pathway, a byproduct of malignant growth, this effect is not unique to
malignant cells, since benign tumors can also display an increased metabolic rate [38].

In this article we consider a wide class of imaging techniques known as Emission Computed
Tomography (ECT), broadly defined as any imaging modality (such as PET) which detects a
molecular tracer distribution via optical or nuclear detection techniques. We choose to focus on ECT
data because the wide variety of available tracers allows for more direct modeling relating these data
to tumor cell density nj and the RDE coefficient fields β j. As an example, genetically engineered
cancer cells can be made to express Green Fluorescent Protein (GFP), which acts as a photon activity
distribution when excited [39], and thus ECT, typically in the form of intravital microscopy (e.g.,
window chambers [40]) can be used to image nj directly in vivo, at least in the small animal setting.
Meanwhile, the growth factor ρ j can potentially be measured using the PET tracer 18F-FLT, which is a
radioactive version of the molecule thymadine used in DNA synthesis [41, 42]. Ex vivo, the Ki-67
immunohistochemistry stain would typically be employed to measure proliferation, but this requires
either a biopsy or sacrifice of the animal. Current progress in small animal imaging is working
towards producing in vivo imaging agents for common immunohistochemistries, but to our
knowledge an in vivo Ki-67 analog is not available. The other advantages of ECT are the possibility
to perform polyscopic imaging (that is, measurement of several distinct physiological processes
simultaneously) [43], and the wealth of literature on the statistics of raw and reconstructed ECT
data [9].

To employ the statistical estimation strategies discussed in section 4, we require statistical models
for ECT data. We emphasize the case of raw, un-reconstructed ECT data because the statistics are
better understood: Most reconstructed images produced in the clinic are generated by a proprietary
‘black box’ method provided by the imaging system manufacturer. Our framework can still be applied
to such data by carefully modifying theH operator defined in Eq (3.3) to account for the reconstruction
step, however it can be difficult to calibrate an appropriate noise model for likelihood-based estimation.
If the MLEM algorithm is known to have been employed for reconstruction, see [44] for a discussion
of the resulting noise characteristics.

Mathematical Biosciences and Engineering Volume 17, Issue 6, 6531–6556.



6540

3.2. Statistics of ECT data

In an ECT system, a chemical tracer is engineered to emit some measurable particle, such as
photons, charged particles or nuclear decay products [45]. A tracer corresponds to a particle activity
distribution f j(x, t), having units of particles emitted per unit volume per unit time. For the case of
GFP imaging discussed above, a reasonable model is f (GFP)

j (x, t) ∝ n j(x, t), that is, the photon activity
is proportional to the actual tumor cell density, with constant of proportionality related to the photon
yield per cell (i.e., the number of photons detected, on average, per cell). Similarly, we can assume
f (18F-FLT)

j ∝ ρ j, the growth factor. The energy produced by f j(x, t) propagates through the tissue
medium and is detected by specialized ECT imaging hardware, which can range from optical CCD
and CMOS detectors to scintillation-type detectors for high-energy particles. The statistics of raw
ECT data are discussed at length elsewhere [9, 46], so we summarize by noting that two data formats
are commonly available, known as binned-mode data and particle-processed data. Because the
presentation of particle-processing requires a more technical discussion of imaging detectors, we only
consider binned-mode data in this work; see e.g., [45–47] for a discussion of particle processing. In a
future work we will address the usage of particle processing data in mathematical oncology.

Binned-mode ECT data arises when detected particles are sorted into spatial bins corresponding
to a discretization of the detector. These spatial bins need not correspond to physical detector pixels,
which many ECT imaging detectors do not have. The physics-based statistics of particle counting
nearly always lead to a Poisson data model for particle count data, which can be written in terms of a
noisy linear functional of the activity f j as follows. Suppose that the imaging system has M detector
bins, with data for patient j labeled g j1, . . . , g jM. The statistical model for binned-mode ECT data is
that g j is a Poisson random vector with mean

ḡ jm =

∫ T

0

∫
V

hm(x, t) f j(x, t) dxdt (3.1)

where hm(x, t) is called the m-th sensitivity function of the imaging system (assumed to be fixed for
all patients), f j(x, t) is the particle activity distribution corresponding to the tracer administered to
patient j, and T is the total imaging time. For tomographic systems, hm(x, t) must account for both the
propagation within the patient, typically following a Radiative Transport Equation (RTE), as well as
the geometry and blur characteristics of the imaging detector [6, 9]. For this work, we will consider
a simplified imaging geometry, intended to model intravital microscopy techniques such as mouse
window chambers, where optical and/or gamma-ray images are collected with a planar detector above
a pseudo-2D activity distribution. To a reasonable approximation, a Gaussian blur model

hm(x, t; A, σ2
blur) =

A
2πσ2

blur

exp
(
−‖x − xm‖

2/2σ2
blur

)
(3.2)

is then appropriate. This blur accounts for both imaging elements such as lenses and collimators as
well as position estimation blur [9, 46]. More sophisticated imaging system models, for instance 3D
tomographic systems, will be discussed in a future work (see section 6).

Expressing Eq (3.1) as a linear continuous-to-discrete operatorH : X → RM allows us to write a
binned-mode system model succinctly as

g j = ḡ j + η j =H f j + η j, (3.3)
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where ḡ j = [ḡ j1, . . . , ḡ jM]ᵀ = H f j ∈ R
M is defined via Eq (3.1). Considering f j as a parameter, the

probability distribution for the count vector g j is thus

P(g j| f j) =

M∏
m=1

exp(−ḡ jm)ḡg jm

jm

g jm!
=

M∏
m=1

exp
(
−(H f j)m

)
(H f j)

g jm
m

g jm!
(3.4)

If f j has been parameterized using a finite-dimensional parameter θ j, for instance via a synthesis map
of the form shown in Eq (2.8), we can define a nonlinear function H : RN → RM, where for image
reconstruction typically N < M, as follows:

H(θ j) =HΦ(θ j) (3.5)

This function computes the mean image data ḡ j for the synthesized object f j = Φ(θ j), and is
implemented computationally via numerical quadrature methods applied to Eq (3.1). The component
functions of H are denoted Hm(θ j) : RN → R. Note that if the synthesis method is nonlinear, as in
Eq (2.8), then H is a nonlinear function of the vector θ j, while ifΦ is linear, then H is linear. In either
case, we can write a probability distribution for g j|θ j as follows:

P(g j|θ j) =

M∏
m=1

exp
(
−Hm(θ j)

)
Hm(θ j)g jm

g jm!
(3.6)

We will make use of Eqs (3.4)–(3.6) for likelihood-based estimation methods in section 4 below.

4. Statistical estimation and inversion techniques

Assume that for patient j, ECT data g j ∈ R
M has been collected, where g j can either be

monoscopic (a single imaging study) or polyscopic (consisting of multiple imaging studies,
corresponding to multiple tracers). In the previous section, we provided statistical models for g j that
relate it to the activity distribution f j via Eq (3.3). As discussed there, ECT tracers allow f j to be
directly related to nj and ρ j. In this section, we discuss statistical techniques for estimating f j (hence
nj and ρ j) from g j. In section 4.1, we discuss point estimation techniques for an individual patient,
where a single estimate of f j is produced, then in section 4.2 we discuss patient-specific Bayesian
strategies where the solution consists of samples from a posterior distribution. In section 4.3, we
discuss methods for estimating a population parameter θp from a database G = [g1, . . . , gJ] of images
collected for J patients.

4.1. Patient-specific maximum likelihood parameter estimation

Given data g j ∈ R
M for patient j, we consider the estimation of the underlying activity distribution

f j using the imaging system model g j = H f j + η j, given in Eq (3.3). To approach this infinite-
dimensional inverse problem, we select a finite-dimensional parameterization f j = Φ(θ j), where θ j ∈

RN , and consider the problem of estimating θ j from g j, that is, solving the inverse problem g j = H(θ j)+
η j. Note that moving from f j to θ j might introduce an approximation error, owing to the fact that f j

need not be expressible in same form as the synthesis used for the reconstruction; in ECT imaging,
f j is typically quite smooth, so this approximation error is typically insignificant when compared to
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the influence of detector resolution and noise. While typical image reconstruction algorithms assume
a voxel-based parameterization of f j, we elect to use a lumpy-type synthesis of the form given in
Eq (2.8). As discussed, the activity distribution can correspond to the cell density nj, or the growth
factor ρ j(x). We denote a generic estimate of θ j produced from g j by a hat, i.e., θ̂ j is an estimate of
θ j produced from the data g j. While a wide array of strategies exist to solve this inverse problem, we
consider only likelihood-based methodologies.

Recall from section 3.2 that the probability distribution for binned-mode ECT data is Poisson. For
an activity distribution f j parameterized using the synthesis map Φ, i.e. f j = f j(θ j), we thus have a
likelihood function

L(θ j|g j) = P(g j|θ j) = P(g j| f j(θ j)) = P(g j|Φ(θ j)) =

M∏
m=1

exp(−Hm(θ j))Hm(θ j)g jm

g jm!
(4.1)

where P(g j| f j) is the Poisson distribution given in Eq (3.4), and Hm(θ j) are the components of the
function defined in Eq (3.5). Note the abuse of notation in Eq (4.1): The two functions P(g j|θ j) and
P(g j| f j) have different parameter types, but we take Eq (4.1) to define the former in terms of the latter.
Taking its logarithm (and ignoring the θ j-independent constant) results in the log-likelihood function

`(θ j|g j) = ln(L(θ j|g j)) =

M∑
m=1

[
g jm ln(ḡ jm) − ḡ jm

]
=

M∑
m=1

[
g jm ln(Hm(θ j)) − Hm(θ j)

]
(4.2)

We now define the Maximum Likelihood Estimate (MLE) as the maximum of either Eq (4.1) or
Eq (4.2) over the set Θ of allowed parameters:

θ̂
(ML)
j = arg max

θ∈Θ
L(θ|g j) = arg max

θ∈Θ
`(θ|g j) = arg min

θ∈Θ

[
−`(θ|g j)

]
(4.3)

A variety of optimization algorithms exist to compute θ̂
(ML)
j , including the Expectation Maximization

(EM) algorithm and Newton-type methods [48, 49]. If the imaging operator H(θ j) is linear, the EM
algorithm applied to Poisson data leads to an iterative method known in the imaging community as the
MLEM algorithm. Starting from θ̂

(0)
j , the MLEM algorithm performs the iterative update

θ̂(k+1)
jn =

θ̂(k)
jn

sn

M∑
m=1

Hmn
gm(

Hθ̂
(k)
j

)
m

, sn =

M∑
m=1

Hmn (4.4)

We will employ the method (4.4) to compute some MLEs for linear imaging models in section 5,
while for nonlinear models we use the Matlab algorithm fmincon, which is a based on an interior
point method with BFGS quasi-Newton steps [50]. A demonstration of algorithm (4.4) applied to
a reconstruction of n j(x, t) from image data of the form (3.1) is shown in Figure 3. Note that the
reconstruction displays visual artifacts due to the function H(θ) having a nontrivial null space. We have
found that these artifacts have minimal impact on the task at hand, which is to predict the progression
of n(x, t) and N(t). Future work will analyze in more detail the question of task-based image quality,
as defined in [9, 51], in the mathematical oncology context.

We note briefly that under certain technical conditions, an MLE is asymptotically consistent and
efficient, meaning for well-specified likelihood models, the MLE converges to the true parameter and
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Figure 3. Illustration of the MLEM image reconstruction algorithm (4.4) for k = 102, 103 and
104 iterations. The true n j(x, t) shown on the right. The visible artifacts are due to the fact that
H has a nontrivial null space which is not accounted for in the MLE (4.3). Regularization
strategies can alleviate this, though we have found that for the task of predicting tumor burden
N(t), these artifacts have minimal impact.

attains the Cramér-Rao lower bound. Asymptotically, the distribution of the estimate θ̂
(ML)
j (as a random

variable depending on the data g j) converges to a normal with covariance given by the inverse of the
Fisher information [9]:

√
M

(
θ̂

(ML)
j − θ j

)
→ N(0, F−1), Fnn′ = −Eg j

(
∂2`(θ j|g jm)
∂θ jn∂θ jn′

)
(4.5)

The Fisher information matrix F = F(θ j) can be used to design more efficient measurement systems
by ‘tuning’ the design parameters of the system to modify the likelihood in a desirable manner [52].
Note also that the Fisher information matrix can be evaluated ‘off-line’, by computing the expected
values in Eq (4.5), which allows one to analyze the uncertainty in the MLE in a frequentist setting.
While F depends on the true θ j, for many ECT systems this dependence is minimal (i.e., the Fisher
information matrix is nearly constant with respect to θ j), which allows one to compute a single (system-
dependent) F to be used for all MLEs derived from the system. One can also estimate confidence
intervals for scalar quantities of interest derived from estimates of θ j using transformation rules for the
Fisher information matrix [53].

To use the MLE procedure to generate a patient-specific virtual population, we assume that g j =

H f j, where either f j = n j(x, t0), f j = ρ j, or f j = [n j(x, t0), ρ j(x)]T , that is, we image either the cell
density at a single time point, or the growth factor, or both the cell density and the growth factor. From
this data, we take the following steps:

(i) Use MLE to obtain θ̂
(n)
j (and θ̂

(ρ)
j , if measured) from which we synthesize n̂j (and ρ̂ j, if measured).

(ii) Randomize the remaining parameters D, κ (and ρ, if not measured) using a well-calibrated
random field model such as Eq (2.8), resulting in D(1)

j , . . . , D(J)
j , κ(1)

j , . . . , κ
(J)
j (and ρ(1)

j , . . . , ρ
(J)
j , if

required).

(iii) Generate a patient-specific virtual population by using n̂j as the initial condition, either ρ̂ j or
ρ(1)

j , . . . , ρ
(J)
j for the growth factor, and D(1)

j , . . . , D(J)
j , κ(1)

j , . . . , κ
(J)
j for the diffusion coefficient and

carrying capacity, and solving the forward problem (2.5) for each sample.
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(iv) With the resulting VPP, compute any desired quantitative biomarkers as in Eq (2.11).

Note that in the above procedure, we make no attempt to estimate D and κ by performing the nonlinear
parameter estimation task implied by Eq (2.4), nor do we attempt to estimate n(x, t) for any t < t0.
From single time point data such as this, an identifiability (i.e., uniqueness) issue arises preventing
such estimation from succeeding. This procedure is used in sections 5.1 and 5.2 to produce virtual
populations.

Note that one issue that is not addressed in the above technique is uncertainty inherent in the noisy
data g j, namely that g j being random means the MLE is also random. While Fisher information
analysis can be employed to analyze this uncertainty in an off-line frequentist setting, this analysis
does not provide a clear method for producing alternates to θ̂ j, since one only has access to a single
realization of g j. The Bayesian methodology discussed below provides an avenue towards producing
many plausible estimates from a single realization of g j.

4.2. Patient-specific Bayesian solution

In a patient-specific Bayesian solution to the inverse problem g j =H f j+η j, we assume that f j were
sampled from a prior distribution P0( f ). Note that P0( f ) need not correspond to a well-calibrated model
of the true population in order to proceed with the inference, but the method is typically much more
reliable if it does. Then, since g j is statistically coupled to f j through Eq (3.3), we can consider the
conditional random vector g j| f j, whose statistics are described by the likelihood function L( f j|g j) =

P(g j| f j) as discussed previously. A Bayesian inverse solution to the inference problem is to consider
the posterior random vector f j|g j instead of a single point estimate f̂ j. Samples from the posterior can
be used to generate a virtual population as described in the procedure above, where now n̂j and ρ̂ j are
replaced by samples from their corresponding posteriors to account for uncertainty in the data g j.

Bayesian personalization of tumor growth has been considered in [21, 54], for example. The
former considers an RDE similar to Eq (2.1) but requires two segmented MRI images to perform the
personalization. The latter generates ensemble members (i.e., virtual patients) by using fixed RDE
coefficients (β in our notation) and imposing an ad hoc additive Gaussian noise model on the system
evolution, in order to leverage the ensemble Kalman filter technique.

The distribution of the posterior f j|g j is given via Bayes rule, which states informally that
Ppost( f j|g j) ∝ P0( f )L( f j|g j). More rigorously [55], we would say that

dPpost

dP0
∝ L( f j|g j) = exp

(
−`( f j|g j)

)
Practically speaking, in this paper we consider (via Eqs (2.7) and (2.8)) finite-dimensional
parameterizations of f , so that when coupled with binned-mode ECT data, the result is a
finite-dimensional Bayesian inverse problem [56]. Taking as before a lumpy-type parameterization
f j = Φ(θ j), and with the data described by the nonlinear function ḡ j = H(θ j) = HΦ(θ j) defined in
section 3.2, we now assign a prior on the vector θ j, which we assume has PDF p0(θ j). The Poisson
likelihood L(θ j|g j) is given in Eq (3.6), leading to a description of the posterior as

p(θ j|g j) ∝ p0(θ j)L(θ j|g j) (4.6)

If either the prior is infinite-dimensional or the ECT data is assumed to be of particle-processing form,
a fully infinite-dimensional Bayesian approach must be considered [55].
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To draw samples from the posterior (4.6), we apply a Markov Chain Monte Carlo (MCMC)
algorithm based on the one presented in [57]. First, we assume for each tracer f j an expansion of the
form Eq (2.8), so that f j = Φ(θ j) with θ j = [b1, . . . , bLmax , x1, . . . , xLmax ,γ1, . . . ,γLmax

]. Note that in
some cases, we reduce the computational burden by fixing the xl and/or γl and only sample the
remaining parameters. The MCMC procedure is then as follows:

(i) Given the current sample θ(n)
j , we propose a new sample θ′j ∼ π

(
θ′j|θ

(n)
j

)
by randomly selecting

Lmcmc lumps and perturbing their amplitudes bl, location xl and shape γl by a Gaussian with
diagonal covariance Σ. This proposal is symmetric.

(ii) From θ′j, the activity f ′j is synthesized using Eq (2.8) and the proposed mean image ḡ′ =H f ′j is
simulated using Eq (3.5).

(iii) The acceptance probability is computed using the Metropolis-Hastings rule [25]:

Q(θ′j, θ
(n)
j ) = min

1,
p(θ′j|g j)

p(θ(n)
j |g j)

 = min

1,
p0

(
θ′j

)
L

(
θ′j|g j

)
p0

(
θ(n)

j

)
L

(
θ(n)

j |g j

)
 ,

after which we accept θ(n+1)
j = θ′j with probability Q(θ′j, θ

(n)
j ), and take θ(n+1)

j = θ(n)
j with probability

1 − Q(θ′j, θ
(n)
j ).

By construction of the Metropolis-Hastings algorithm, the Markov chain samples θ(1)
j , θ

(2)
j , . . . have

stationary distribution given by the posterior p(θ j|g j), and can thus be used to synthesize virtual patients
for the calculation of any quantitative biomarkers as discussed in section 2.4. An example of this
approach is discussed in section 5.1. Note that the standard Metropolis-Hastings algorithm performs
best for θ with relatively small dimension; various modifications for high-dimensional problems have
also been proposed [25, 30, 55].

4.3. Calibration of population distributions

As illustrated in Figure 2, the population parameter θp which specifies the random field models
used to generate the virtual population has a substantial influence on the statistics of any biomarkers
calculated using Eq (2.11). The question of how to estimate θp from data thus arises. Such calibration
problems in the context of VCTs have been discussed in [58,59], but their methodology accounts only
for ODE models arising in systems pharmacology and does not directly apply to our context of PDE
tumor growth models, random fields and imaging data. In this section, we discuss briefly a technique
to estimate the population parameters which specify a lumpy-type model (2.8) from a database of ECT
images G = [g1, . . . , gJ].

Suppose we assume a lumpy-type model for each of the RDE coefficient fields, β = [D, ρ, κ], say
each is of the form given in Eq (2.8) with `(x) given by a Gaussian (2.9). While the lump function `(x)
can itself be the target of calibration (see [60], for instance), we assume Eq (2.9) for simplicity. The
statistics of the random field LB(L̄, b0, σ

2) are thus fully specified by the three scalars L̄, b0 and σ2,
which we write as θp = [L̄, b, σ2] ∈ Θ = (0,∞)3. The problem of calibrating a population distribution
such as this is to take a database of noisy image data G = [g1, . . . , gJ] for a population of J patients

and produce an estimate θ̂p =

[̂
L̄, b̂, σ̂2

]
. We can again apply either MLE or the Bayes approach as

discussed in sections 4.1 and 4.2.
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To develop a likelihood model for θp, we consider first the generic case where g j consists of direct
images of some activity f j, for instance f j ∝ ρ j as discussed in section 5.1. This case corresponds to
that considered in [61]. Assuming inter-subject independence, we have

L(θp|G) = p(G|θp) =

J∏
j=1

P(g j|θp) (4.7)

Using the law of total probability and the fact that the distribution of the image data is independent of
the object statistics, we can write

P(g j|θp) = E f j |θp

[
P(g j| f j)

]
(4.8)

In (binned-mode) ECT imaging, the probability distribution P(g j| f j) is given by the Poisson (3.4),
which depends on the imaging operatorH . The expression (4.8) states that the probability of observing
a given image g j if the population parameter is θp is the probability of observing g j given the object
f j, averaged over of all possible random field realizations f j with statistics specified by the parameter
θp. The expectation in Eq (4.8) is ostensibly infinite dimensional (since the f j are functions), though
it can be approximated using Monte Carlo:

P(g j|θp) ≈
1
J′

J′∑
j′=1

P(g j| f j′), f j′ ∼ P( f j|θp) (4.9)

Equation (4.9) specifies a computational method for approximating the likelihood (4.7): For fixed
θp, compute Eq (4.9) for each image in the database, then compute the product (or its logarithm) in
Eq (4.7). The MLE of θp is then defined as before in Eq (4.3), with θp ∈ Θp, where Θp is the set
of admissible population parameters. Note that the estimate (4.9) can be computed in parallel using
graphics processors, which drastically reduces the time required for each likelihood calculation, which
would have previously been a bottleneck in the application of a traditional MLE. Despite this, the MLE
optimization problem (4.3) applied to the likelihood (4.7) poses a challenge for standard numerical
optimization routines due to scaling and non-convexity issues. See section 6 for a brief discussion of
future work aimed at addressing these issues.

5. Results

In this section, we discuss two in silico experiments that illustrate the methodologies discussed
above. For both, a common ‘ground truth’ cell density path n(x, t) is generated by sampling a random
field for each coefficient and simulating until t = T = 365 days. In the first experiment, we use
(simulated) ECT data for f j(x) = n(x, 100) to compute both an MLE and a collection of posterior
samples for the tumor cell density at t = t0 = 100 days. Then, a virtual population is generated
by using the resulting n̂j (or posterior samples) as the initial condition in Eq (2.1), randomizing the
remaining coefficients and simulating until t = T . The resulting populations are then compared to the
‘true’ n(x, t), using the tumor burden N(t) defined in Eq (2.13) as the quantity-of-interest. In the second
experiment, we use ECT data and MLE for both the growth factor ρ(x) and the cell density n(x, t0),
again generating a VPP by using the estimated cell density as the initial condition n0(x) and ρ j = ρ̂ j,
then randomizing both D and κ.
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For both experiments, we use the following random fields, both to generate the initial ‘true’ tumor
path n(x, t) and to randomize unmeasured coefficients. We assume D ∼ LB(20, 1e−7, 0.04), ρ ∼
LB(200, 0.25, 0.002), and κ ∼ LB(100, 5e7, 0.1). These parameters were selected to achieve an average
tumor size of approximately 108 cells after the first year; obviously a calibration procedure such as the
one outlined in section 4.3 would be required to estimate population parameters for a real population
of tumors. The exact sample used is shown in Figure 4.

Figure 4. The ‘true’ tumor cell density, generated using Eq (2.1) with β = (D, ρ, κ) sampled
from the random field models specified in the section 5 introduction above. The simulated
imaging studies are performed at t = 100 days (second panel).

5.1. Experiment 1: Maximum likelihood estimation and posterior sampling of cell density n

In this experiment, we suppose that g(n)
j = H

(n)nj + η(n)
j consists of ECT measurements of the cell

density n j(x, t0), with t0 = 100 days, and that no other measurements are available. We assume that
the experimental setup is confined to a thin slab so that a 2D simulation described in section 3.1 is
appropriate, and that the imaging system corresponds to Eq (3.1) with blur kernel given by Eq (3.2).
The blur is taken to be σ2

blur = 0.0212, which corresponds to an imaging resolution (Full-Width-Half-
Max, FWHM) of 500 µm, and we assume that the photon yield is A = 1e−3 (detected photons per cell).
Once the mean image data ḡ j = H f j is computed using Eq (3.1), a randomized image is produced
using poissrnd.

To perform the image reconstruction for n j(x, t0), we apply the linear MLEM algorithm (4.4) with a
reconstruction of the type (2.8), with fixed lump centers and lump variance, so that θ = [b1, . . . , bLmax].
Specifically, we fix the lump centers on a grid of size 25 × 25, uniformly spaced on [0.35, 0.65]2, and
set the lump variance to σ2 = 1e−2/256. The matrix H with columns given by ḡl = H(`(x − xl)) is
then computed using Eq (3.1), and the MLEM algorithm (4.4) applied for Kmax = 5000 iterations, with
initial guess θ̂

(0)
j = HT g j. From the final θ̂

(Kmax)
j , we synthesize the estimate n̂ j(x, t0) using Eq (2.8).

The results of this reconstruction are shown in Figure 5.
To demonstrate the usage of this estimate to generate a virtual tumor population as discussed in

section 4.1, we use the resulting n̂ j(x, t0) as the initial condition n0(x) in Eq (2.1), and randomize the
remaining coefficient fields using the lumpy-type random field models described in the introduction to
this section to produce a virtual population of size J = 64. In Figure 6, the quantity-of-interest N(t) is
shown for the resulting virtual population, while in Figure 7, a collection of 10 virtual tumors is shown
for t = 150 (i.e., 50 days post-imaging).
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Figure 5. Comparison of the ‘true’ tumor shown in Figure 4 (left, imaged at t0 = 100
days) to the maximum likelihood reconstruction n̂(ML)

j (middle). The original noisy image

g j = Hnj + η j and the mean image evaluated at the MLE ḡ j = H n̂(ML)
j = Hθ̂

(ML)
j are

shown to the right. The MLEM algorithm (4.4) with 5000 iterations was employed. The
reconstruction grid is shown on the middle plot (black dots). The computational time required
for this reconstruction was about 30 seconds.

Figure 6. Illustration of a VPP-based prediction of tumor burden N(t) when an MLE of
n(x, t0) is used as the initial condition and remaining coefficients are randomized (J = 64).
The ‘true’ tumor path (bold), empirical average of the VPP (dotted) and a one standard
deviation confidence band (dashed line) are shown. Individual VPP samples are shown in
light grey. The left plot shows the time interval from 0 (tumor initiation) to 1 year, while
the right shows the interval from imaging to 30 days post-imaging. The VPP appears biased
towards slower trajectories than the actual.

To demonstrate the usage of the Bayesian methods discussed in section 4.2, we generated samples
from the posterior nj|g j to use as part of the virtual population generation procedure. For the MCMC
procedure, we use the algorithm outlined in section 4.2, moving Lmcmc = 3 lumps for each proposal
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Figure 7. Example VPP Samples for t = 150, i.e., 50 days post-imaging, generated using the
MLEM estimate of n j(x, 100) as the initial condition and randomizing the other coefficient
fields as described in the main text. All plots are shown on [0.3, 0.7]2 and with a common
colorbar. It is apparent that the tumor morphology is largely consistient across the population,
though some virtual tumors demonstrate small ‘islands’ of growth and the overall rate of
growth is variable, as seen in Figure 6.

with a proposal distribution of N(0, σ2
mcmcI), taking σmcmc = 1e4. The prior for θ j = [b1, . . . , BLmax]

is chosen to be I.I.D. uniform on the interval [0, 1e10]. Starting from θ(0)
j = θ̂

(ML)
j , i.e., starting at

the maximum likelihood estimate, we generate J = 512 samples, then synthesize n(1)
j , . . . , n

(J)
j . Note

that the subscript remains j as these samples correspond to patient j, while the superscript indicates
that these are posterior samples, generated using MCMC. Starting at the maximum likelihood estimate
(which for our prior corresponds to the MAP estimate) reduces the need for an expensive burn-in period
in which the first J0 samples are thrown out to ensure that the chain is sampling from the posterior. The
acceptance rate for our chain (number of proposals accepted divided by total number of samples) is
0.495. Using each posterior sample as an initial condition, we again generate a virtual population by
solving Eq (2.1) with the remaining coefficients D, ρ, κ randomized according to the lumpy-type field
models specified previously. The results of this virtual population are shown in Figure 8.

For both the maximum likelihood and Bayesian solutions, the resulting virtual populations under-
estimate, on average, the true tumor burden both over the short- and long-term, which indicates that
additional data may be needed to estimate other model coefficients to gain a more accurate patient-
specific prediction; we discuss on possibility in section 5.2 below. While the Bayesian technique
accounts for uncertainty inherent in the image data g(n)

j , this uncertainty appears relatively small as
it relates to the prediction of N(t); the variance of N(t) for the virtual population generated using the
Bayesian technique is only slightly larger than the variance for the MLE population.

5.2. Experiment 2: Maximum likelihood estimation of both n and ρ

In Experiment 1, we saw that the virtual population under-estimated the true tumor path in both the
MLE and Bayesian examples, suggesting that additional data may be required. In this experiment, we
assume that the image data g j consists of (simulated) polyscopic data of the following form. We assume
that we have access first to cell density measurements of the form g(n)

j = H
(n)nj + η(n)

j , whereH (n) is
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Figure 8. Illustration of the virtual population generated using Bayesian posterior sampling
for the initial condition n0(x). The empirical average path N̄(t) (dotted) and confidence band
(dashed) are shown in comparison to the true tumor path (solid), as well as the J = 512 paths
constituting the virtual population (light grey).

the same as in Experiment 1. The second dataset is of the form g(ρ)
j =H

(ρ)ρ j +η
(ρ)
j , where we now have

σ2
blur = 0.0425 (1 mm FWHM). As in the first experiment, we assume that imaging is performed at

t = t0 = 100. The image reconstruction for nj is performed using MLEM as in experiment 1 (Figure 5).
For ρ j(x), we use MLE with a nonlinear synthesis map as follows. The lumpy-type expansion (2.8)
with Gaussian lump (2.9) is assumed where now θ j = [x1, . . . , xLmax , b, σ

2], that is, we fit the lump
positions and a common lump amplitude and variance. The result is a reconstruction of the form

ρ̂ j = b̂
Lmax∑
l=1

exp
(
−

1
2σ̂2 ‖x − x̂l‖

2
)
,

where we have chosen Lmax = 60 for this experiment. We assume further the constraints that xl ∈

[0, 1]2, b ∈ (0,∞), and σ2 ∈ (0, 0.1], and use the Matlab algorithm fmincon to perform the MLE
optimization (4.3). The results of this reconstruction are shown in Figure 9.

In Figure 10, we compare the tumor burden predicted using the virtual population to the ‘true’ tumor
path. Over the first 30 day post-imaging period, the ensemble mean N̄(t) for the virtual population
tracks the true tumor path closely, indicating that if both n and ρ are estimated, the result appears
unbiased over this short time period. This is also demonstrated by looking at the individual virtual
population samples in Figure 11: Visual inspection reveals a closer overall appearance to the ‘true’
tumor than was apparent in Figure 7. Over a longer time period, the ensemble still trends towards a
lower overall growth rate than the ‘true’ tumor path, as seen previously in Figure 6.

6. Discussions

In this article, we have presented a rigorous, end-to-end statistical framework for addressing both
inter- and intra-patient heterogeneity for the commonly used reaction-diffusion tumor growth
model (2.1), emphasizing the usage of raw molecular emission imaging data to estimate unknown
model parameters. We demonstrated these methods in two in silico experiments, using a simulated
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Figure 9. Maximum likelihood reconstruction of the growth factor ρ j (left) from simulated
imaging data (top right). The reconstruction (middle) with the resulting lump centers
highlighted (black dots) are shown, as well as the mean image at the MLE ḡρj = H

(ρ)ρ̂ j

(bottom right). The computational time for this reconstruction was several hours. While the
reconstruction may appear visually poor, it is sufficient for the task of predicting n(x, t) and
N(t), as illustrated in Figures 10 and 11.

Figure 10. Prediction of tumor burden N(t) when MLEs of n(x, t0) and ρ(x) are used for the
initial condition and growth factor. D(x) and κ(x) are randomized to produce a VPP (J = 64).
The original tumor path (bold) and empirical average of the VPP (dotted), as well as a one-σ
confidence band (dashed) and individual VPP samples (light grey) are shown. The left plot
shows t = 0 to t = 365, while the right plot shows t = 100 (imaging time) to t = 130. Over
the 30 day post-imaging window, the VPP appears nearly unbiased (compare to Figure 6).

ground truth tumor path and simulated imaging data to illustrate patient-specific Virtual Patient
Population (VPP) generation.

In section 2.3, we presented a family of random field models that are both easy to simulate and
demonstrate a wide variety of spatial heterogeneity; in section 4.3, we discussed how the parameters
defining the statistics of these random field models can be estimated from a collection of molecular

Mathematical Biosciences and Engineering Volume 17, Issue 6, 6531–6556.
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Figure 11. Example VCT Samples for t = 150, i.e. 50 days post-imaging, generated using
the MLEM estimate of n j(x, 100) as the initial condition, the MLE of ρ j(x) for the growth
factor, and randomizing D(x) and κ(x) as described in the main text. All plots are shown on
[0.3, 0.7]2 and with a common colorbar. In contrast to Figure 7, the morphology apparent in
the virtual population is nearly identical; heterogeneity in the overall growth is apparent in
Figure 10.

images, and discussed some of the computational challenges inherent in this task. Future work will
discuss algorithms for solving this MLE problem, as well as additional estimation strategies to
calibrate more general random field models from noisy data.

In section 3, we discussed molecular Emission Computed Tomography (ECT) imaging systems
and their associated statistical models. For simplicity, we emphasized the case of performing direct,
possibly polyscopic, 2D imaging of a thin sample. While the 2D approximation is very limiting in
general, it is applicable to the experimental setting of mouse window chambers, a topic of future work
in our group. In another future work, we will address fully 3D tomographic ECT systems with
particle-processing data and the associated computational and image quality questions that arise.
Understanding image data quality in a task performance setting can help design better imaging
systems [51], and to our knowledge, there is currently minimal effort formally evaluating the quality
of image data in the mathematical oncology context.

In section 4, we presented general likelihood-based statistical procedures for estimating both
patient-specific and population parameters from noisy molecular imaging data, and in section 5, we
presented two experiments to illustrate these procedures. In the first experiment, measurements of
n j(x, 100) are used to construct a maximum likelihood estimate and posterior samples, which are
subsequently used to generate a patient-specific VPP. In the second experiment, we add an additional
imaging study, using only maximum likelihood to estimate both n j(x, 100) and ρ j(x). The resulting
virtual population demonstrated a more accurate prediction of the true N j(t), over a 30 day
post-imaging prediction period. In a future work, we will investigate the question of optimizing
imaging acquisition schemes for the task of predicting N(t). We will also address the addition of
treatment models and evaluation techniques discussed in [5] to our virtual population methodology,
working towards providing a general strategy to solving the optimization problem (2.12).
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