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Abstract: Drug discovery and the development of safe and effective therapeutics is an intricate 

procedure, further complicated in the context of cancer research by the inherent heterogeneity and 

complexity of the disease. To address the difficulties of identifying, validating, and pursuing a 

promising drug target, artificial intelligence (AI) technologies including machine learning (ML) have 

been adopted at all stages throughout the drug development pipeline. Various methods are widely 

employed to efficiently process and learn from experimental data sets, with agent-based models 

garnering thorough interest due to their ability to model individual cell populations with aberrant 

phenotypes. The predictive power of artificial intelligence modelling techniques founded in 

comprehensive datasets and automated decision-making generates an obvious avenue of interest for 

application in the drug discovery pipeline. 
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1. Introduction 

Cancer is a highly dynamic, heterogeneous, and complex disease underlain by diverse 

aberrations at both the molecular and cellular level. Consequently, cancerous cells induce abnormal 

changes at the organ and tissue level, with potentially lethal outcomes. As one of the leading causes 
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of death worldwide, cancers pose a significant challenge for the healthcare system, encompassing 

burdens on research, resource development and acquisition, and patient care [1]. Positive impacts on 

patient well-being and outcome are at the forefront of cancer research aims, meaning the demand for 

effective therapies in conjunction with a personalized medicine approach has never been more 

apparent [2]. However, novel cancer therapeutics comprise a large proportion of failed drug trials, 

resulting in very limited new treatment options for large cohorts of patients, many of whom are 

refractory to current treatments [3,4]. With the use of current technologies such as RNA-sequencing 

and extensive proteomic analyses allowing access to enormous amounts of highly informative data, it 

is essential to employ techniques which allow us to capitalize on this information. Therefore, this 

highlights the urgent need to take advantage of automation and computer-based modelling in order to 

efficiently process extensive datasets in order to streamline the drug development process. This 

approach enables data mining on an ever-increasing scale, and high throughput screening with the 

potential for identification and validation of new drug targets or active compounds whilst gaining 

further insight into the complexities of disease phenotypes and mechanisms [5].  

AI is the computer-driven simulation of human thought patterns to mimic behaviour and 

problem-solving strategies. AI technology extracts relationships and concepts from a data set and 

learns from available patterns independently [4,5]. This technology includes machine learning (ML), 

and deep learning (DL). As a subfield of AI, ML automates model development by iteratively 

learning from data sets through statistical methods, advantageously identifying patterns within the 

data without requiring manual coding to detect them. In other words, ML is computer algorithms that 

can predict future outcomes through learning from unstructured or structured data, identification and 

classification of hidden patterns [4,5]. This tool has garnered significant interest in the 

pharmacological industry in recent years to improve all aspects of the drug discovery pipeline, from 

target identification up to pre-clinical and clinical development phases [5]. ML holds great predictive 

power with algorithms capable of independently adapting as the data available to learn from 

increases [5]. DL is an ML based method utilizing a logical structure of artificial neural networks which 

is inspired by the biological neural networks to recognise and discriminate different patterns [5]. These 

approaches have revolutionized the context of systems biology from diagnosis, to recognizing the 

patterns of diseases and identifying novel drug targets (Figure 1). Given the non-linear and 

heterogenous composition and communication of structures and pathways that define biological 

functions, these methods can be particularly useful to search for modifiable targets and their 

correlations to the specific disease [6]. It is evident that the wealth of literature information and 

available data pertaining to the study of cancer biology appropriately poises this field for 

investigation with AI models to derive outputs with high translational capacity. Synergistically, the 

recent advancements in training DL algorithms to detect levels of error, and back-propagation 

through the model to determine the most informative features have driven the implementation of 

these models in related fields such as radiology and pathology [7]. The ability to automatically and 

repetitively process high volumes of clinical data, especially with various types of images being a 

primary data type, represents a significant clinical advantage and has led to the recent popularization 

of AI methods for cancer diagnosis [7]. Subsequently, large ‘omic’ data sets that typically provide 

directionality for identifying novel drug targets or testing responses to therapeutic agents can be 

rapidly screened with in silico analyses, thus providing an opportunity to implement AI models 

throughout the cancer diagnosis and treatment process [8].  
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Figure 1. Utilising the AI, ML and DL in drug discovery and drug development pipeline. 

Given these considerations, here we aim to review the current standing of computational 

modelling and ML approaches to cancer research and drug discovery. We seek to highlight the major 

ML techniques used in cancer modelling interrelated with the importance of understanding the 

underlying biology and physiology which directs research advances. Additionally, we provide an 

overview of the drug development pipeline with consideration of ML methods being used to 

streamline this process, and the associated challenges—both biological and technical. The scope of 

this review cannot explore all machine learning approaches in depth, particularly in the setting of 

cancer therapies, and for this we refer the reader to several excellent reviews which highlight the 

importance of this rapidly evolving field [7−9].  
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2. Artificial intelligence and machine learning in cancer modelling  

2.1. Disease modelling  

Disease modelling may be articulated as a problem-solving challenge, whereby the model 

facilitates our understanding of an issue by incorporating the essential aspects, functions, and 

interactions of a system [10]. The research question driving an investigation must be appropriately 

matched by the resolution of the model, such that the level of detail being investigated will be 

sufficient to answer the question [10]. Ultimately, the model should provide new and reproducible 

insights into molecular mechanisms underlying disease phenotypes [10], and ideally show strong 

predictive potential in order to enhance preclinical experimental design [3]. Pertinent in the case of 

cancer therapy is seeking to understand how modulation of a validated target may alter, and 

preferentially improve, a patient’s disease state [5]. Using ML algorithms to survey databases, data 

sets, or relevant literature [5] to initially identify targets provides increased flexibility compared to in 

vitro or in vivo target screening and can reduce bias and uncertainty that results from both biological 

variation and certain experimental techniques [6]. For example, Kumari and colleagues developed a 

prediction model to identify candidate drug target proteins based on amino-acid sequence features, 

through the use of databases documenting human protein sequences [11]. Such studies inform 

model-driven experimentation to test hypotheses in a pre-clinical setting to validate the target [6]. 

Additionally, the feedback to further optimize computer models and expand the parameters they 

consider [3]. Iteratively, a greater information output can be gained from in silico models with 

increased perturbations to replicate the complexity of cancer cells and tumors [3], producing 

functional responses as the algorithm continues to learn cellular characteristics and adapt to 

heterogenous environmental changes within a cancer system [12].  

2.2. Adopting AI for cancer modelling  

Designing computational models to investigate various aspects of cancer pathophysiology 

requires a deep understanding of the interplay between single cells and the tumour microenvironment. 

From this foundation, discrete in silico cell-based models can be derived to study single cells at a 

level that conserves the intracellular dynamics that progressively transform in cancer after genetic 

mutation [12,13]. In conjunction, it is often beneficial to model the tissue microenvironment as a 

continuum, a format which typically encompasses features such as transport of oxygen, nutrients, 

waste, and drugs [12,14]. Combining different methods strengthens the biological relevance of the 

model, connecting cellular phenotypes to local conditions, and whole tumour changes to fluctuations 

at the cellular level—concepts that are particularly crucial when investigating drug effects [15]. 

Metzcar et al. accurately describe this approach as the creation of a ‘virtual laboratory’, given 

discrete cell-based models track specific cellular parameters that may be perturbed during 

tumorigenesis [12]. Additionally, these approaches provide information about a cell’s behaviour 

within given environmental constraints, cell-cell interactions, and responses to selective pressures [12]. 

Of further benefit is the fact that validated computational models allow deep and thoughtful 

exploration of certain paradigms that cannot be tested on laboratory animals and/or humans due to 

economic, ethical, welfare, or practical restrictions [3]. Implementing ML models, heavily informed 
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by available preclinical data and extensive databases as previously mentioned, can explore diverse 

hypotheses and improve our understanding of the system in question as the model iteratively updates.  

Agent-based models are commonly employed in cancer studies, as each cell can be modelled as 

an independent autonomous entity, referred to as an agent, which makes decisions based on the 

simulated environment and the learned rules of the model [16]. This captures the inherent variability 

and inhomogeneity between cells within a population, which is essential when considering the 

abnormal development and signalling pathways exhibited by tumour cells [13,17]. Lattice-based 

models spatially restrict cells to a grid network [18] allowing evaluation of their spatial resolution [17] 

with respect to fluid dynamics and other physical forces, as well as interaction with other cells [19]. 

Firstly, as a form of lattice-based modelling, cellular automaton (CA) models are often employed to 

replicate monolayers or multi-cell solid tumour structures, where the volume of one agent represents 

a single cell [12,17]. Cai et al [20] implemented a CA model to investigate tumour growth and 

angiogenesis with consideration for vasculature remodeling and blood flow dynamics, whereby the 

tumour cells would proliferate dependent on oxygen levels and space constraints, and vessel growth 

was contingent on substrate availability and mechanical stress. This model produced evidence for a 

strong association between highly proliferative tumour cells and the microvasculature, supporting 

previous observations that increased angiogenesis is linked with tumour growth and further refining 

our understanding of the use of tumour-associated vasculature as a drug-delivery system [20,21]. 

Secondly, lattice-gas CA (LGCA) models are most recognised for demonstrating the invasive 

capacity of tumour cells, with a single agent containing multiple cells which grow to great densities 

over time to illustrate cell population dynamics [12,17,22]. An influential study by Hatzikirou et al. [23] 

investigating the mechanism driving invasive tumour phenotypes and uncontrolled cell division used 

an LGCA model to demonstrate the cellular response, i.e., propagation, migration, or apoptosis, to 

varying degrees of hypoxia. The advantage of characterizing cell positioning and velocity with the 

LGCA model allowed this group to conclude that tumour cells exhibit phenotypic plasticity and 

adapt to local environmental changes [23]. LGCA models are typically favored when considering 

tumour invasion, given they have been shown to predict the motion-dependent velocity of the 

discrete cells at the helm of the invasion as they pass through channels in lattice agent sites [12,24]. 

In contrast, increased resolution of tumour behaviour can be accessed with the complex probabilistic 

Cellular Potts model (CPM), the third form of lattice-based modelling whereby each cell is 

represented by multiple lattice sites [12,25,26]. Designing targeted therapies requires an 

understanding of the irregularity and heterogeneity of tumour cell morphology; insight produced by a 

CPM as it tracks dynamic and fluctuating cell shapes and volumes in response to environmental 

interactions under the principle of free energy minimization [26−28]. 

Alternatively, off-lattice models can be used to depict cellular spatial organisation given each 

cell is not restricted to a grid for mapping their movement [29]. Centre-based off-lattice approaches 

represent cells as points or spheres, allowing the model to track the cell’s centre of mass to 

understand forces, such as adhesion and repulsion, endured by the cell within a growing tumour [12,26]. 

Although such models require consideration of cell collisions due to the lack of grid guidance, they 

aid in the study of tumour morphology with respect to cell-cell and cell-extracellular matrix 

interactions, which may be further enhanced by modelling each cell as a cluster of multiple 

subcompartments [29,30]. Off-lattice models also offer boundary-based options in which cells are 

represented as polygons to identify the cellular adjustments to external forces, which has proven 



6520 

Mathematical Biosciences and Engineering                                                   Volume 17, Issue 6, 6515–6530. 

 

informative in the study of tissue confluency, protrusion and contraction for motility, and tissue 

morphogenesis [31,32]. 

With applications of AI to biomedical sciences, we must be cognizant of properly training 

models to avoid bias, and to ensure algorithms are cross-validated. Proper model development is 

contingent on establishing sensitivity with relevant data and populations [33] and appropriate 

decision boundaries applied to unseen data [34]. Shirin et al. [34] investigated the efficiency of 

various cross-validation methods to optimize artificial neural network structures for cancer prognosis. 

The purpose of this is to assess how the results of a model can be applied to an independent data set 

to prevent over-fitting [34,35]. It was determined that stratified rather than simple k-fold cross 

validation is preferable for evaluating a network. Stratification of the data through rearrangement 

into folds, each representing the whole dataset, as opposed to a single partition, prevents biased 

outputs as the network is tested. Reviewing the accuracy of the model to provide reliable data 

validates the output patterns and provides information about the model’s performance. 

To capitalise on the benefits of computational modelling approaches, significant efforts have 

been made recently in order to make these technologies accessible and readily available, without the 

pre-requisite of extensive experience. Various programs and software packages are easily available 

to assist in dissecting cellular phenotypes and microenvironment interactions, with specific programs 

of interest summarized in Table 1. The interaction of tumours with adjacent cells create a tumour 

microenvironment (TME) which induces tumour-derived signalling. TME affects several immune 

effector and mediator cells generally to suppress tumour infiltration and anti-tumour functions as 

well as evading immune surveillance as a hallmark of cancer [36,37]. Many web-based tools have 

been developed to estimate the abundances of immune cells in tumour infiltration, using gene 

expression data such as CIBERSORT developed by Alizadeh laboratory in Java and R platform [38]. 

Later, they expanded the application of this tool by ML methods like support vector regression (SVR) 

to profile tumour infiltrating immune cells using RNA-from bulk RNA sequencing data without 

physical single cell isolation [39]. Multiple computational methods have also been developed to 

utilise gene expression profiles (GEPs) based on linear regression to find, understand and correct the 

patterns of expressed genes in specific cell types. As an example, Scaden is a deep neural network 

(DNN) based method which quantifies GEPs from RNA-seq data to predict cell fraction profiles [40]. 

2.3. Prediction of drug resistance in cancer 

Tumour resistance to chemotherapy poses a significant and complicated challenge to successful 

treatment and limits the span of effective clinical approaches. Resistance may be attributable to a 

variety of mechanisms, experimentally revealed to include genetic, cellular, pharmacokinetic 

contributions, among others [41]. The combination of extensive data sets generated from in vivo and 

in vitro experiments and clinical cohorts has encouraged a new era of studying molecular dynamics 

through computational simulations, which has improved our understanding of resistance mechanisms 

but also advanced the tools available for disease prognosis [42,43]. Additionally, high-throughput 

approaches allow for the incorporation of the pharmacokinetics and pharmacodynamics of drug 

treatments; consideration of which may be limited in experiment-based studies [44]. Ultimately, the 

goal of implementing modelling techniques in the study of molecular resistance is to facilitate more 

effective drug design by overcoming the intricacies associated with cancer biology [45].  
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Table 1. Summary of supportive resources for computational modelling of biological systems. 

Resource Description Application 

PhysiCell Agent-based (lattice-free) 

multicellular simulation 

platform designed for use on 

standard computers with 

computational cost related 

linearly to the number of cells 

being modelled [12].  

Understanding the contribution of cell growth and 

interaction to tissue-scale changes. Encompasses 

cellular processes including division, apoptosis, 

and necrosis, in the context of heterogeneous cell 

populations and dynamic microenvironments 

[80,81].  

BioFVM (Finite 

Volume Method for 

Biological Problems) 

Widely accessible code for 

modelling three-dimensional 

transport system in a biological 

context using partial differential 

equations [46]. 

The substrate surrounding cells varies widely and 

is subject to various processes including diffusion, 

secretion, uptake, and decay as cellular phenotypes 

changes in response to the environment. BioVFM 

allows for multicellular modelling with 

consideration of three-dimensional substrate 

changes to better understand the interactions of 

cells with their immediate surroundings, with 

implications for signalling molecules and drugs 

within the substrate. 

CellPD: Cell 

Phenotype Digitizer 

An accessible, user-friendly 

program designed to quantify 

features of a cell’s phenotype. 

Designed with consideration for 

experimental variability and 

irregularities [47]. 

The complexity of biological systems can be 

increasingly characterised with the quantification 

of various cellular parameters, such as proliferation 

and death. This allows for measuring cellular 

changes in particular conditions over multiple time 

points whilst removing the variability associated 

with laboratory-based experiments. This also 

provides the opportunity to quantitatively assess 

phenotypic changes with environmental 

disturbances, such as the introduction of a novel 

drug. 

multicellDS 

(Multicellular Data 

Standard) 

A platform designed to curate 

public, standardised datasets to 

maximise the output of 

experimental and clinical 

information. Facilitates model 

refinement and streamlining 

datasets from high-throughput 

studies with an array of data 

processing techniques [48]. 

Collaborative, data-sharing efforts may introduce 

new insights and strengthen our ability to generate 

and test novel hypotheses. The fusion of data from 

different groups and research focuses can only help 

in deepening our understanding of the cellular 

biology underlying the complexities of cancer. 

Drug resistance models can be generalised as either mechanistic-based or data-driven 

prediction-based [49]. Mechanistic-based models produce quantitative readouts at both the molecular 

and cellular level. This may originate at the fundamental level of drug-target binding relationships, 

which have been shown to be altered by conformational target protein changes caused by mutation [49]. 

Agent-based models are also employed in this context to address cellular signalling responses to 
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drugs, with consideration of the microenvironment and dynamic effects of drug concentration [42]. 

Such interactions may be further complicated by changes in cellular behaviour and population 

composition, which are commonly represented by ordinary differential equations to include cell 

cycle changes and dynamic interactions with the immune system in order to identify critical 

parameters for drug efficacy [50,51]. Drug resistance is correlated with multiple factors including 

cellular phenotypes and activity, and responses to extracellular signals. To assess the interaction of 

these varying components, Jackson et al. [51] developed a hybrid discrete-continuous model using 

partial differential equations, whereby individual cells were exposed to DNA damage-inducing drugs 

and altered oxygen concentrations in a fixed vasculature landscape [52]. Here, resistance was 

modelled as either pre-existing or as a consequence of drug treatment, permitting comparison of 

resistance variation in the context of tumour growth and microenvironmental conditions [52]. 

Ultimately, this model indicated the overt importance of the microenvironment only when cells 

acquire resistance. Such studies improve our understanding of the techniques to appropriately target 

various tumour cell populations and assist in identifying drug combination schedules which may lead 

to more effective tumour control. 

3. Artificial intelligence in cancer drug discovery 

The drug discovery and development pipeline are complex multi-stage processes dependent on 

identifying a therapeutically targetable facet of disease and using extensive high-quality data sets to 

produce a safe and efficacious drug. The opportunity to take advantage of machine learning 

capabilities is one that has gained increased interest recently. Not only does this provide a high-

throughput biological approach with exorbitant potential for data analysis and storage, but it also 

increases the likelihood of developing a successful product and avoiding the poor drug approval rate 

that plagues the pharmaceutical industry [5].  

Developing methods to predict the mechanisms of action of new drugs early screening 

processes using neural network automation and evolutionary algorithms may profoundly impact the 

pharmaceutical industry. ML-based recognition of patterns and integrated learning for drug 

discovery represents the capability of AI to solve problems by learning from experience and novel 

conditions. Various ML algorithms have been developed and/or adopted for drug discovery, such as 

supervised learning algorithms of support vector machine (SVM) and random forest (RF) that can be 

utilized for ligand or structure-based virtual screening and quantitative structure-activity relationship 

(QSAR) methods. These algorithms, alongside others for de novo drug design and Absorption, 

Distribution, Metabolism, Excretion and Toxicity (ADMET) analysis are extensively discussed in 

Yang et al. review [53]. Here, we will briefly describe the application of machine learning techniques 

in the context of the various stages of drug-discovery which summarised in Figure 1, to assess how 

the artificial intelligence approach is revolutionizing therapeutic development and overcoming 

typical limitations in this field. 

3.1. Prognostic and pre-clinical development 

Currently, the role of machine learning algorithms in pre-clinical drug development lies in 

biomarker prediction and high-throughput screening of cancer responses to novel therapeutics [5]. 
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One of the most prominent issues in the clinical management of cancer is the accurate prediction of 

people who may develop a malignant disease [54]. Current risk stratification protocols are dependent 

on prognostic biomarkers, defined as a particular property of diseased tissue which, when analysed, 

correlates with the possibility of cancer development [54]. Existing biomarkers often show limited 

predictive potential and commonly only identified through long and arduous surveillance processes, 

thus warranting the application of computational models to streamline and improve biomarker 

discovery [55]. Fischer et al. validated this premise by devising computational models to represent 

various cell populations, such as myeloid and lymphoid cells, which were then combined in a multi-cell 

model scheme to predict the cytokine and chemokine signatures in inflamed tissue [55]. This 

approach inherently incorporated time-dependent fluctuations in signalling pathways and kinetics of 

cell interactions. Ultimately, resembling tissue processes in a computational model provides 

information about cell-cell interactions and resulting signalling and inflammatory changes, showing 

great potential as a method to screen putative therapeutics and assess their effects on biomarker 

profiles [54]. Additionally, biomarker prediction allows for progress in the direction of personalized 

medicine, as information about the expression of particular markers is informative about how a drug 

will affect individual patients. Seemingly, various limitations are associated with the predictive 

capacity of biomarkers, including reproducibility, model selection, and data quality, meaning their 

application is often limited to simulations or pre-clinical settings, rather than progressing into clinical 

practice [5].  

Furthermore, developing techniques to understand the metastatic potential of a tumour is an 

active research topic in relation to cancer prognosis, primarily to avoid patient exposure to 

unnecessary treatments [56]. Considering this, Mojarad et al. [57] investigated a number of 

pathological prognostic breast cancer markers including tumour size, expression of estrogen and 

progesterone receptors, and levels of Ki-67 and p53 in an artificial neural network model to test their 

reliability for predicting metastasis. Using this platform, various combinations of the markers, and 

their inherent biological interaction, could be considered to assess the effectiveness of their use for 

prognosis. The predictive capacity of artificial neural networks proves them to be important in 

dissecting the non-linear relationship between the wealth of biomarkers and disease progression and 

outcome.  

An additional aspect where AI models have proven beneficial is the prediction of cancer cell 

sensitivity to therapeutics, particularly in the context of drug repurposing and personalized medicine. 

Menden et al. [58] developed a high-throughput screening method to assess the response of 

genetically variable cancer cell lines to active compounds, with readouts of the drug’s effectiveness 

(IC50) dependent on the genomic heterogeneity and the chemical structure and on-target interactions 

of the drug. Such models are fundamental to implementing AI screening methods to assess the anti-

tumour efficacy of novel therapeutics. By basing the model on the cellular genetic landscape, this 

poises the framework for application in drug repurposing, as existing therapies could be incorporated 

and their effect on various genetic targets assessed, thus potentially increasing their treatment 

applicability [59].  

3.2. Target identification, prioritisation, and validation  

Two fundamental questions immediately arise in the development of new drugs. Firstly, 

whether modifying a certain molecular or cellular target will have a noticeable and beneficial effect 
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on the disease state, and secondly, whether these targets can legitimately be altered with a deliverable 

drug [5]. To answer these questions, there must be sufficient evidence to suggest that the target plays 

a causal role in disease development or progression. AI models of natural language processing for 

text mining have been employed to survey the literature to identify disease targets and associated 

genetic markers with high confidence [60,61]. In support of this, the abundance of data available in 

public databases from both pre-clinical and clinical settings provides homeostatic and disease-state 

genetic profiles, expanding into transcriptomic, metabolic, and proteomic landscapes [51]. 

Additionally, chemical libraries may be screened and in silico models developed to predict the 

feasibility of structural interactions between potential drug molecules and biological targets with 

implications for the drug-target association, and pharmacokinetics and pharmacodynamics [63,64]. 

The depth and multi-dimensionality of such datasets require application carefully selected models so 

as to gain the most insight with optimal efficiency. The aim of these data mining and high-

throughput screening approaches is to identify a ‘hit compound’ which can then be tested in 

biological assays, usually beginning with cell-based experiments followed by in vivo models, with 

tentative hypotheses about their activity in association with the target [65]. Due to the predictive 

capacity of ML models, a significant advantage of implementing computational techniques is the 

refinement and prioritisation of promising targets which progress to testing in in vivo or in vitro 

systems, thus reducing attrition rates and expenditure [4].  

3.3. Compound screening, lead identification and optimisation 

Extensive compound libraries are screened using both virtual and experimental methods to 

determine the efficacy of the compound in modifying the disease target [5]. This is followed by 

systematic modifications to refine hit compounds, aiming to improve their target affinity and 

selectivity whilst minimising off-target effects and toxicity [4,5]. This may be aided by the 

computational screening of compounds with similar structure and properties to the lead compound, 

improving the understanding of the activity of the small molecule and enhancements that may induce 

greater efficacy [66]. De novo drug design has also proven informative, with deep learning models 

used to generate compounds with essentially optimal parameters such as solubility and bioactivity, 

thus providing additional insights as to how best to modify a lead compound [67]. Additionally, deep 

learning simulations are employed to model the most efficient chemical synthesis processes, thus 

streamlining the laboratory-based production of the target [5]. Importantly, AI models may improve 

confidence in the safety profiling of novel drugs due to their capacity for prediction of mechanisms 

of action, inherently considering cell signalling pathways and downstream effects of drug-target 

interactions. A variety of AI tools and platforms have been developed for the purpose of predicting 

the toxicity of new compounds, exploiting chemical databases to link chemical structures with 

known toxic properties [68].  

3.4. Clinical trials and development 

Translation of preclinical findings into clinical treatment through controlled trials in the context 

of cancer therapeutics shows a poor success response, with as few as 8% of novel drugs approved for 

use [64]. It has been suggested that implementing computational models to identify appropriate 
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patient populations for drug trials could improve trial outcomes [69]. This approach would allow a 

more accurate assessment of the effect of novel drugs on patients expressing relevant phenotypes 

based on biomarker prediction who would likely respond to the treatment [4]. Additionally, enrolling 

cancer patients in trials predicted to benefit them based on such analyses may aid in improving 

enrolment statistics and medication adherence [70].  

The application of AI in assessing disease pathology after drug treatment is an area where 

quantitative results would be extremely beneficial, as opposed to qualitative descriptions [17]. Whilst 

the use of algorithms for efficient quantitation of tissue morphological changes and in histopathology 

samples is necessary before human trials to understand drug effects on cellular and tissue changes, 

there are obvious applications for such models after drug treatment to assess patient response [5]. 

Parameters such as cellular heterogeneity, cell-cell interactions, marker expression, and cell 

morphology have been quantified have been investigated with machine learning models [65,66]. This 

would; however, require larger cohort sizes to obtain sufficient information to understand the cancer 

response to the tumour, alongside conventional analysis to ensure appropriate classification and 

interpretable results [5].  

4. Future directions and concluding remarks  

In efforts to progress our understanding of cancer biology and pioneer new treatments, AI offers 

a sophisticated tool for processing biomedical literature and mining extensive datasets. Already, 

large pharmaceutical companies and technology groups are investing in these approaches to fast-

track drug discovery [72], relying on collaboration between various scientific disciplines, and 

pharmaceutical and technology companies. High-throughput screening has already been 

implemented widely and integrated into laboratory settings such as with the recently established 

‘cancer-on-a-chip’ platform [73]. Using cost-effective miniaturized platforms to accelerate testing 

whilst recapitulating the tumour microenvironment, lymphatics, angiogenesis, metastasis, and 

immune infiltrate, provides a powerful tool for generating large amounts of data and quickly testing 

possible treatments [73]. Additional prospects involve further personalization of treatments and 

improving the ability to predict tumour and patient responses to therapy.  

We have identified many drugs for targeting disease throughout our publications [74−80]. 

However, according to practical experience, this is a time-consuming procedure that can be 

accelerated by utilizing modern technologies and automation. The recent crisis of COVID19 

pandemic divulged the emerging prerequisite of applying AI in finding new therapeutics and 

vaccines urgently. While the significance of AI is already evident in all aspects of cancer prognosis, 

diagnosis, and drug development pipeline; it remains important to consider and maintain the balance 

between the curation of reproducible, trustworthy biological data with computation skills and the 

expertise to appropriately select and develop simulations to model scientific phenomena. ML 

approaches show great promise in their predictive capacity for enhancing and fast-tracking necessary 

novel therapeutics. Harnessing computational power for advances in healthcare and patient welfare 

using solid data as the foundation introduces vast possibilities for new therapies, with great potential 

for progress in the field of personalized medicine [81,82]. Researchers argue that a series of 

experiments can solve problems and address hypothetical questions. However, attempting to 

approach similar problems amongst different contexts with the same methodology may be biased and 
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produce sub-optimal outcomes. Concepts of modern biology which carefully define the cell as a 

system can be revolutionized by converting communications, signalling pathways and interactions as 

algorithms, thus allowing us to harness computer power to better understand biological processes. 

With this approach, we may more directly investigate biological systems by reducing the complexity 

of the fundamental information. Defining user-friendly languages to analyse and predict biological 

functions rapidly and accurately will aid in converting new targets to opportunities for therapeutic 

intervention. This approach will enhance both the quality of decision making with unbiased and 

unsupervised means, and the quantity of data that can be analysed, thereby accelerating experimental 

processes with machines thinking and deciding to find therapeutics for terminal diseases such as 

cancer. The main question that should be answered in the future is whether AI-based, ML algorithms 

and DL methods can conceive the heterogeneity of cancer and combine multiple types of data and 

multi-omics big data from different resources to find their biological relation to enhance the 

prediction of effective drugs for targeting cancer. 
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