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Abstract: This paper represents a literature review on traveling waves described by delayed reaction-
diffusion (RD, for short) equations. It begins with the presentation of different types of equations
arising in applications. The main results on wave existence and stability are presented for the equations
satisfying the monotonicity condition that provides the applicability of the maximum and comparison
principles. Other methods and results are described for the case where the monotonicity condition is
not satisfied. The last two sections deal with delayed RD equations in mathematical immunology and
in neuroscience. Existence, stability, and dynamics of wavefronts and of periodic waves are discussed.

Keywords: traveling wave; reaction-diffusion equation; delay; stability; existence; dynamics

1. Reaction-diffusion equations without delay

Reaction-diffusion waves arise in various applications such as ecological invasions [1], tumor
growth [2], cardiovascular events [3], combustion process [4] and many others. All these very
different applications can be considered as some particular cases of a general mathematical theory
developing during already almost one century and studying waves existence, stability, speed of
propagation, and their nonlinear dynamics. In this review, we will speak about the state of the art in
one of more recent developments of this theory related to delayed reaction-diffusion equations.

In this section we will briefly recall the main results about reaction-diffusion waves for the scalar
equation without delay. They will help us to present the results for the delay equations in the following
sections. We consider the equation

∂u
∂t

=
∂2u
∂x2 + F(u) (1.1)
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on the whole axis x ∈ R with a sufficiently smooth function F(u) such that F(0) = F(1) = 0. Traveling
wave solution of this equation is a solution of the form u(x, t) = w(x− ct), where c is the wave speed. It
is an unknown constant which should be found together with the function w > 0 satisfying the equation

w′′ + cw′ + F(w) = 0 (1.2)

and such that
w(−∞) = 1, w(∞) = 0. (1.3)

Systematic theory of reaction-diffusion waves begins in the 1930s with the works by Fisher [5] and
Kolmogorov-Petrovskii-Piskunov [1] in population dynamics, by Zeldovich and Frank-Kamenetskii in
combustion theory [6], and by Semenov in chemical kinetics [7], but the first works by Mikhelson [8]
and Luther [9] appeared several decades earlier.

Existence and stability of reaction-diffusion waves depend on the nonlinearity F(u). It is convenient
to introduce the classification of the functions F(u) according to the stability of the stationary points
u = 0 and u = 1 of the equation du/dt = F(u). In the bistable case, both of them are stable; in the
monostable case, one point is stable while another one is unstable; in the unstable case, both of them
are unstable, see Figure 1, upper row. A further classification of monostable and bistable nonlinearities
can be found in section 2.1 of [10].

Figure 1. Monostable (upper row, left) and bistable (upper row, right) nonlinearities F in
the non-degenerate case (i.e. F′(0), F′(1), F′(a) , 0). The lower row shows snapshots of
rightward traveling wave u(x, t) = w(x − ct).

Wave existence. Existence of solutions of problem (1.2), (1.3) can be studied by the phase plane
analysis for the corresponding system of first-order equations. In the monostable case, under the
assumption that F(u) > 0 for 0 < u < 1, monotonically decreasing solutions of this problem exist for
all values of speed c greater than or equal to some minimal speed c0 > 0. We will see below that the
monotone waves are stable, while non-monotone waves are unstable. The latter exist for all positive c.
If in addition F(u) ≤ F′(0)u, u ≥ 0, then c0 = 2

√
F′(0). Without the assumption that the monostable

nonlinearity F(u) is positive in the interval [0, 1], a solution of problem (1.2), (1.3) may not exist. If it
exists, then it is possible to affirm that the [0, 1]-waves, that is, solutions of Eq (1.2) with limits (1.3),
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exist in some interval [c0, c1) of speeds. If such waves do not exist, then the solution of the Cauchy
problem for equation (1.1) is described by systems of waves (see below).

In the simple bistable case where F(u) < 0 for 0 < u < u0, F(u) > 0 for u0 < u < 1, and some
u0 ∈ (0, 1), there exists a solution of problem (1.2), (1.3) for a unique value of speed c. In the general
bistable case, if the [0, 1]-wave exists, then the speed is unique. If it does not exist, then, as before,
there are systems of waves. Finally, in the unstable case, such wave does not exist.

Wave stability. There are different types of wave stability. Solution u(x, t) of Eq (1.1) with some
initial condition u(x, 0) = u0(x) converges to a wave w(x) in form and in speed if there exists a
function m(t) such that u(x, t) → w(x − m(t)) as t → +∞, uniformly in R, and m′(t) → c. This
convergence (in other terms) and the corresponding method to study it were introduced in KPP [1].
Uniform convergence implies that u(x, t) → w(x − ct − h) uniformly in R for some constant h.
Convergence in form and in speed follows from the uniform convergence but the opposite may not be
true.

In the monostable case, solution of the Cauchy problem converges to one of the [0, 1]-waves
depending on the initial condition u0(x). Namely, if u′0(x)/u0(x) → −λ as x → +∞, where
λ = c/2 −

√
c2/4 − F′(0), and limx→−∞u0(x) > 0, then the solution converges in form and in speed to

the wave with the speed c ≥ c0. If λ ≤ c0/2 −
√

c2
0/4 − F′(0), then the convergence occurs to the wave

with the minimal speed c0. More general results are also known (see [11] and the references therein).
In applications, initial conditions such that u0(x) ≡ 0 for x sufficiently large are often considered. In
this case, the solution converges to the wave with the minimal speed. The uniform convergence in the
monostable case occurs under some additional conditions.

In the bistable case, the [0, 1]-wave is globally asymptotically stable in the sense of uniform
convergence if F′(0) < 0, F′(1) < 0 and for a large class of initial conditions. The convergence in
form and in speed occurs without the last condition on the derivatives.

In general, monotone waves for the scalar reaction-diffusion equations are stable, and non-monotone
waves are unstable. This can be seen from the analysis of the spectrum. In the bistable case, it can be
easily verified that the linearized operator Lv = v′′ + cv′ + F′(w(x))v has a zero eigenvalue with the
corresponding eigenfunction v0(x) = −w′(x). If w(x) is a monotonically decreasing function, then the
eigenfunction v0(x) is positive. Therefore, 0 is the eigenvalue with the maximal real part (the principal
eigenvalue) [12], and all other spectrum lies in the left-half plane of the complex plane. Such structure
of the spectrum provides asymptotic stability of waves with shift with respect to small perturbations. If
the wave is non-monotone, then the eigenfunction v0(x) has variable sign. Hence, 0 is not the principal
eigenvalue, and there is a positive eigenvalue of the operator L. Thus, the wave is unstable. In the
monostable case, the situation is more complex because of the essential spectrum but the result about
stability of monotone waves (in certain sense) and instability of non-monotone waves remains valid.

Systems of waves. If the [0, 1]-waves do not exist, then behavior of solutions of the Cauchy problem
is determined by systems of waves. In order to explain this notion, consider the following example.
Suppose that F(0) = F(u0) = F(1) = 0 for some u0 ∈ (0, 1), and F′(0), F′(u0), F′(1) < 0. Hence,
we can consider the bistable [0, u0]-wave and another bistable [u0, 1]-wave assuming that they exist.
Denote by c1 the speed of the former and by c2 of the latter. If c1 > c2, then there are two waves
propagating one after another with different speeds, and the solution u(x, t) converges to a two-step
function formed by these waves. If c1 < c2, then the two waves merge, and there is a single [0, 1]-
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wave. Such solutions were first studied in combustion theory. In the mathematical context they were
introduced and studied in [13,14] (called there minimal decomposition of waves). For general functions
F(u) they were studied in [15, 16].

Monotone systems. Consider now equation (1.1) with the vector variables u = (u1, ..., un), F =

(F1, ..., Fn). This system of equations is called a monotone system if the following inequalities

∂Fi

∂u j
> 0 , i, j = 1, ..., n, i , j (1.4)

are satisfied for all u ∈ Rn. This is a class of systems for which the maximum principle and comparison
theorems, conventionally used for the scalar equation, remain valid. These properties of monotone
systems provide the results on the wave existence and stability similar to the results presented above
for the scalar equation [11, 12]. Furthermore, the minimax representation of the wave speed and the
results on the systems of waves are also applicable for the monotone systems.

For a more general class of locally monotone systems, the inequalities (1.4) are supposed to hold
only on the surfaces Fi = 0. In this case, the maximum principle is not applicable but it is still possible
to prove wave existence in the bistable case.

2. Traveling waves in continuous scalar delayed reaction-diffusion equations

2.1. Waves in scalar reaction-diffusion equations with spatiotemporal delays

The fundamentals of the theory of parabolic functional differential equations (including reaction-
diffusion equations with delays) were developed in the 1970s [19], with the earlier contributions by
Artola [17,18] and later extensive studies in [20,21] (among many other papers: see the aforementioned
works for more history and references).

Particularly, the existence and uniqueness of traveling waves for scalar equations with non-local
diffusion and with reaction allowing spatiotemporal delays were already considered in 1980 by
Schumacher [22]. Even so, the first systematic and comprehensive studies of wave solutions for scalar
reaction-diffusion equations with discrete delays were realized by Schaaf [23] in 1987.

It is worth mentioning that the biggest part of mathematical models given by parabolic functional
differential equations is related to biological and ecological applications. In fact, the celebrated
Kolmogorov-Petrovskii-Piskunov-Fisher studies of propagation of advantageous genes [1, 5] are often
taken as a starting point for further improvements considering elaborated spatiotemporal interactions,
cf. recent studies in [24–28]. In continuation, we touch briefly on the variety of parabolic functional
differential equations that appear in the theory of traveling waves.

2.2. On the diversity of delayed continuous reaction-diffusion equations in biological modeling

In the next sections, we are considering biological systems∗ whose evolution is determined by the
interaction of a linear diffusionD and appropriate nonlinear response R incorporating delayed effects:

∂

∂t
u(t, x) = Du + Ru, u ∈ R, x ∈ Rn. (2.1)

∗Evolving in a continuous environment; note that there exists a vast bibliography on traveling waves for delayed reaction-diffusion
equations describing biological models in patchy habitats [30]
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In the ecological models, the term Du describes random motion of individuals. The derivation of the
diffusion term in (2.1) was analyzed by many authors, e.g. see [1,31,32]. In particular, Kolmogorov et
al. [1] explain how random spatial walk can be naturally represented by non-local diffusion operators
of the form

(Du)(t, x) = (K ∗ u)(t, x) − u(t, x),

where K ∗ u is the space-convolution and K ≥ 0 is some normalized (probabilistic) kernel,

(K ∗ u)(t, x) =

∫
Rn

K(x − y)u(t, y)dy,
∫
Rn

K(y)dy = 1.

If non-local diffusion is isotropic and short-ranged, then it can be approximated [1] by the local
diffusion operator given by the Laplacian

(Du)(t, x) = k∆u(t, x), (2.2)

where k > 0 is some diffusion coefficient. In Chapter 11 of [32], J. Murray presented a simplified
random walk derivation of the diffusion operator (2.2). Furthermore, the Fokker-Planck theory provides
a rigorous justification for the form (2.2).

In most biological applications, delayed Eq (2.1) is considered with Fickian diffusion (2.2) and
therefore (Du)(t, x) depends only on the current values of u(t, x) (see [28, 29] for other examples).
Delayed continuous reaction-diffusion equation with delay-independent nonlocal diffusion were
studied by many authors, see for more references [30, 33–37].

Next, as it was first suggested by Britton [38, 39], nonlocal space interactions (or, more generally,
spatio-temporal competitive effects in a population) can be taken into account by considering the
delayed reaction term

(Ru)(t, x) = f (u(t, x), (K ∗ g(u))(t − h, x)). (2.3)

Here f (u, v) and g(u) are some appropriate continuous functions of real variables, h > 0 is time delay
and K ∗g(u) is the space-convolution of g(u) and some normalized non-negative kernel K. Instead, one
can also consider more general spatio-temporal convolution K ∗ ∗g(u),

(K ∗ ∗g(u))(t, x) =

∫ t

−∞

∫
Rn

K(x − y, t − s)g(u(s, y))dyds,
∫ +∞

0

∫
Rn

K(y, s)dyds = 1.

There are also some other biological applications related to the analysis of age-structured
populations and leading to the same form of reaction term (2.3). Based on earlier work by Smith and
Thieme [40, 41], corresponding theory was developed in [31, 42] to analyze evolution of the total
matured sub-community of a single species population with age structure and a fixed maturation
period h.

In the simplified but nonetheless representative and non-trivial case when the spatial intraspecific
interaction is ignored in the reaction term and the influence of the past history on the current evolution
at each moment t is expressed only by the values of u(t − h, x), we obtain

(Ru)(t, x) = h(u(t, x), u(t − h, x)).

The surveys [31,43,44] discussed a series of specific biological situations which can be modeled by
equation (2.1) withD and R of the types (2.2), (2.3), respectively. Moreover, the question of traveling
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waves and their properties was studied in [31, 44]. After the publication of the aforementioned papers,
an important piece of work has been done by different authors. It includes studies of key questions of
the theory concerning existence, stability, uniqueness, genesis of waves etc, by different methods and
for various families of equations. Since almost each such family incorporates either Kolmogorov type
equation with some appropriate specific rate of increase f (u, v) and normalized non-negative kernel
K(x)

∂

∂t
u(t, x) = ∆u(t, x) + u(t, x) f (u(t, x), (K ∗ u)(t − h, x)) (2.4)

or the diffusive Mackey-Glass type equations

∂

∂t
u(t, x) = ∆u(t, x) − g(u(t, x)) + f ((K ∗ u)(t − h, x)),

∂

∂t
u(t, x) = ∆u(t, x) − g(u(t, x)) + (K ∗ f (u))(t − h, x)) (2.5)

with some birth and mortality rates f (u), g(v), it is both natural and instructive to illustrate results
obtained in last decade or so on the above models. This will be our main goal in the next sections,
where we will be concerned with both bistable and monostable plane traveling waves u = φ(ν · x + ct),
where ν ∈ Rn, |ν| = 1, is direction of wave propagation. Planarity of wave motion simplifies its
analysis which actually shows that the spatial dimension n is irrelevant in various aspects. Therefore
in subsequent sections we will always assume that n = 1 and x ∈ R. The exposition below reflects
the personal interests of the authors taking into account that it would be rather difficult to mention all
recent valuable contributions to the theory of traveling waves in Eqs (2.4) and (2.5).

3. Traveling waves in continuous scalar delayed equations with monotonicity

Equations (2.4) and (2.5) are called quasi-monotone in the case when the birth functions
f (u, v), f (v) are monotonically increasing, with respect to the variable v, between the equilibria
connected by the traveling wave u = φ(x + ct). Similarly to (1.4), this property enables direct
application of the comparison principle and sliding techniques for the analysis of waves in (2.4), (2.5)
and the related equations, including the following profile equations:

φ′′(t) − cφ′(t) + φ(t) f (φ(t), (K ∗ φ)(t − ch)) = 0, (3.1)

φ′′(t) − cφ′(t) − g(φ(t)) + f ((K ∗ φ)(t − ch)) = 0. (3.2)

Actually, the use of comparison arguments led to the development of general theories of wave
propagations in abstract monotone evolution systems which include conveniently the quasi-monotone
models (2.4), (2.5). Within an abstract setting, the bistable case was considered in [45, 46] and [47]
while the monostable one was studied in [48, 50] (see also in [51, 52] and references therein for an
abstract recursive approach). In the next subsections, we discuss basic properties of our
quasi-monotone models.
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3.1. The diffusive Eq (2.5) with the monostable monotone birth function

Assume that g, f are increasing C1-smooth functions on some interval [0, κ] and that the following
monostability conditions are satisfied:

f (u) − g(u) > 0, u ∈ (0, κ), f (0) = g(0) = 0, f (κ) = g(κ), f ′(0) > g′(0), f ′(κ) < g′(κ).

Depending on the boundary conditions imposed on the wave profile at ±∞, we will consider the
leftward traveling waves (wavefronts)

u(t, x) = φ(x + ct), φ(−∞) = 0, φ(+∞) = κ,

and the rightward traveling waves

u(t, x) = φ(x + ct), φ(−∞) = κ, φ(+∞) = 0.

The first fundamental result concerns the structure of the set of all admissible wave speeds:

Proposition 3.1. There exist two extended real numbers (called rightward and leftward minimal
speeds) c∗−, c

∗
+ ∈ R ∪ {±∞}, c∗− < c∗+, such that (2.5) has a leftward [respectively, rightward] traveling

wave with monotone profile φ if and only if c ≥ c∗+ [respectively, if c ≤ c∗−] [50]. Furthermore, c∗−, c
∗
+

are the spreading speeds in the following sense: if u(t, x, u0) solves, for Eq (2.5), the initial value
problem u(s, x, u0) = u0(s, x), s ∈ [−τ, 0], x ∈ R, with continuous and compactly supported initial
datum u0 : [−τ, 0] × R→ [0, κ), then

lim
t→+∞

sup{u(t, x, u0), x ∈ (−∞,−c′t] ∪ [−c′′t,+∞)} = 0 whenever c′ > c∗+, c′′ < c∗−.

On the other hand, for each ε ∈ (0, κ) and each pair (c′′, c′), satisfying c∗− < c′′ < c′ < c∗+, there exists
positive rε such that if the initial function u0 satisfies the inequality u0(s, x) ≥ ε for all s ∈ [−τ, 0],
x ∈ [a, a + rε] and some real a, then uniformly in x

lim
t→+∞, x∈[−c′t,−c′′t]

u(t, x, u0) = κ.

Proof. In view of Remark 4.1 in [50], the above result follows from Theorems 3.4 and 4.4 (proved by
means of an abstract recursive approach) of the same paper. �

The waves propagating with the minimal speeds are called the minimal (or critical) waves.

Remark 3.2. In Eq (2.5), the properties of the extended numbers c∗± depend essentially on the
normalized non-negative kernel K. For example, if the bilateral Laplace transform
K(λ) =

∫
R

e−λsK(s)ds is defined for all real λ, both numbers c∗± are finite and c∗− < c∗+. In general,
both of these numbers can be nonpositive (or nonnegative). This means that a rightward wave can
actually propagate in the the left direction (in such a case, we obtain an extinction wavefront instead
of an invasion wave). However, if K is an even (symmetric) function this situation can not happen
since c∗− = −c∗+ < 0. Now, if K(s) converges slowly to 0 at ∞ (for example, the convergence is
algebraic and K(λ) is defined only for λ = 0), a different type of waves must be considered.
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The earlier (weaker) versions of Proposition 3.1 were established under the additional sub-tangency
inequality

f (u) ≤ f ′(0)u. (3.3)

The non-negativity of the function f ′(0)u− f (u) simplifies essentially the respective proofs and allows
the explicit calculation of the speeds c∗± from the characteristic equation

χ(z, c) := z2 − cz − g′(0) + f ′(0)e−zchK(z) = 0.

It is easy to see that there exists a unique value c#
− [respectively, c#

+] of parameter c for which χ(·, c)
has a negative [respectively, positive] double zero. If (3.3) is assumed then c∗± = c#

± and it may happen
that c∗− < c#

− and/or c∗+ > c#
+ in the opposite case. The minimal wavefront propagating with the speed

different from c#
± is called pushed [53].

The nonlinear stability (see Section 7 [54] for a formal definition of this concept) of the monostable
wavefronts (including monotone wavefronts as a particular case) to Eq (2.5) with n = 1 was analyzed
by means of the energy methods developed by Ming Mei et al. in a series of papers [55–60]. See
also [61,62] where additionally quasi-monotonicity condition was assumed. Since the energy approach
can be equally used for non-quasi-monotone nonlinearities, respective stability results will be discussed
later, in section 4. Instead, in Theorem 3.3 below we present one global convergence result from [63]
proved for the quasi-monotone delayed equation

∂

∂t
u(t, x) =

∂2

∂x2 u(t, x) − u(t, x) + f (u(t − h, x)), (3.4)

by means of the Chen’s [45] squeezing techniques (the same techniques were also used in [64] for
establishing the global stability of non-critical monotone waves for the general Eq (2.1) with the
monostable quasi-monotone non-local nonlinearity (2.3). However, in contrast to the previous works,
the sub-tangency condition (3.3) was not assumed in the mentioned theorem from [63]).

We start by observing that χ(z, c) has exactly two positive zeros (counting multiplicity) λ1 = λ1(c) ≤
λ2 = λ2(c) if and only if c ≥ c#

+. Set λ∗ := λ1(c∗+), then 0 < λ∗ ≤ λ1(c#
+).

Proposition 3.3. Assume that the initial function w0 satisfies [63, Theorem 1]

(IC1) 0 ≤ w0(s, x) ≤ |w0|∞ := sup(s,x)∈Π0
w0(s, x) < ∞, (s, x) ∈ [−h, 0] × R ⊂ R2;

(IC2) lim infx→+∞mins∈[−h,0] w0(s, x) > 0,

and, for some A > 0 and c > c∗,
lim

x→−∞
w0(s, x)e−λ1(c)(x+cs) = A

uniformly on s ∈ [−h, 0]. If, in addition, the birth function g ∈ C1,γ[0, κ] is strictly increasing then the
solution u(t, x) of the initial value problem u(s, x) = w0(s, x), s ∈ [−h, 0], x ∈ R, for Eq (3.4) satisfies

lim
t→∞

sup
x∈R

|u(t, x) − φ(x + ct + a)|
ηλ1(x + ct)

= 0, ηλ(x) := min{eλx, 1}, (3.5)

where a = (λ1(c))−1 ln A and the front profile φ (existing in virtue of the assumption c > c∗) is
normalised by limx→−∞ e−λ1(c)xφ(x) = 1.
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Clearly, Theorem 3.3 also allows to answer the velocity selection question for solutions with initial
data possessing exponential decay at −∞.

The pushed wavefronts (i.e. when c = c∗+ > c#
+) for the quasi-monotone Eq (3.4) were further

analyzed in [35] and their global attractivity properties were established in [65] by means of the
squeezing approach combined with the Berestycki and Nirenberg method of the sliding
solutions [35, 66] as well as some ideas developed by Ogiwara and Matano in [46]:

Proposition 3.4. Let g ∈ C1,γ[0, κ] be monotone and the initial data w0 satisfy (IC1), (IC2) together
with [65, Theorem 1.5]

w0(s, x) ≤ Keµx, x ∈ R, s ∈ [−h, 0];

for some µ > λ1(c∗) and K > 0. Next, fix a positive number λ < µ such that λ ∈ (λ1(c∗), λ2(c∗)).
Then the solution of the initial value problem u(s, x) = w0(s, x), s ∈ [−h, 0], x ∈ R, for Eq (3.4)
asymptotically converges to a shifted pushed front: for some s0 ∈ R,

lim
t→∞

sup
x∈R
|u(t, x) − φ(x + c∗t + s0)|/ηλ(x + c∗t) = 0. (3.6)

Observe that Theorems 3.3 and 3.4 do not give any estimation of the rate of convergence of the
solution u(t, x) to its associated limit wavefront. It was conjectured in [63,65] that the convergence rate
in (3.5) and (3.6) is of the exponential type. In the particular case of the pushed waves, by enhancing
the squeezing method with some ideas of Chen [45] (Theorem 3.1) and Smith et al. [67] (Theorem 3.3),
this conjecture was affirmatively solved by Wu et al. in [68] while the case of the pulled wavefronts
(c > c∗+) still remains open.

The above stability results imply that two wavefronts to (3.4) propagating at the same speed c > c∗+
and having the same rate of exponential growth at −∞ should coincide (possibly, after a translation).
See also Theorem 1.2 of [35] for an alternative proof (based on the sliding solution method of
Berestycki and Nirenberg) of this uniqueness property of wavefronts (which are necessarily monotone
under the quasi-monotonicity assumption). If the birth function f meets the following special
Lipschitz condition (which implies (3.3))

| f (u) − f (v)| ≤ f ′(0)|u − v|, u, v ∈ [0, κ], (3.7)

then the uniqueness of wavefronts (including the minimal ones) for the non-local equations (2.5) is
assured by the Diekmann-Kaper theory [33, 69]. Without condition (3.7), as far as we know, the
uniqueness of wavefronts for the non-local equations is an open question even if the birth function is
assumed to be monotone. A weaker uniqueness property within the class of monotone wavefronts for
(2.5) was shown in [70] for the monotone C1-smooth nonlinearities satisfying

f ′(u) ≥ f ′(κ), u ∈ [0, κ],

(importantly, the latter inequality does not exclude the weak Allee effect [71, 72]).
Finally, it is worth mentioning than several results proved for non-quasi-monotone equations and

mentioned in section 4 are also valid for more simple monotone case.
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3.2. The diffusive Eq (2.1) with the bistable monotone nonlinearity (2.3)

Consider the reaction term Ru defined in (2.3),

(Ru)(t, x) = f (u(t, x), (K ∗ g(u))(t − h, x)).

We will say that the diffusive Eq (2.1) is of the bistable type if C1-smooth function
F(u) := f (u, g(u)), u ∈ [0, κ], is such that

F(u)(u − a) > 0, u ∈ (0, κ) \ {a}, F(0) = F(κ) = F(a) = 0, F′(e) , 0 for e ∈ {0, a, κ}.

The bistable Eq (2.1) is called quasi-monotone if, in addition, f (u, g(v)) is an increasing function of v.
The definition of the bistable wavefront for bistable quasi-monotone Eq (2.1) is the same as given at the
beginning of section 3.1. It should be noted that (2.1) also can have monostable wavefronts connecting
the equilibria a and κ.

In 1987, for the particular quasi-monotone nonlinearity (Ru)(t, x) = f (u(t, x), u(t − h, x)), Schaaf
[23] established the existence and uniqueness of the bistable wavefront. What is not very typical for
the delayed systems, the phase space arguments were used in the cited work. This wave solution
(propagating at some speed c∗(h)) has strictly increasing profile φh. Furthermore, φh and c∗(h) depend
continuously on h, c∗(h) is monotone decreasing and sign c∗(h) = sign

∫ κ

0
F(u)du. As it was showed

by Ogiwara and Matano in Theorem 7.2 of [46] on the base of their general convergence theorem
for abstract order preserving systems under a group action, obtained bistable wavefront is necessarily
locally asymptotically stable with phase shift. Moreover, by using the squeezing technique within the
general framework of the theory of abstract functional differential equations [20], Smith and Zhao [67]
proved that this bistable wave is globally and exponentially asymptotically stable with phase shift.

Next, in 1997, Chen [45] considered an abstract scalar evolution equation of the bistable quasi-
monotone type. By introducing new ideas and partially motivated by the seminal work of Fife and
McLeod [13], Chen successfully approached the questions of the existence, uniqueness and asymptotic
stability of the bistable wavefronts for his abstract (non-delayed but generally non-local) evolution
equation. For non-delayed Eq (2.1) with bistable quasi-monotone nonlinearity (2.3), Theorem 5.1
[45] guarantees the existence and uniqueness of the bistable wavefront (which, in addition, should be
monotonic). Moreover, an explicit a priori estimate for the absolute value |c∗(h)| (not depending on
h) can be drawn from Theorem 3.5 [45]. In 2007, developing further the comparison and squeezing
technique of [45], Ma and Wu [73] proved the global exponential stability with phase shift of the
unique monotone wavefront in the bistable quasi-monotone Eq (2.5). For a family of nonlocal delayed
advection-diffusion equations (which include the model (2.1) with (2.3)) the existence, uniqueness and
stability results of similar kind were obtained by Wang et al. [74].

Finally, a completely different approach for proving wave exponential stability (in the case of quasi-
monotone non-local but non-delayed bistable equation) was developed by Ducrot et al. in [75]. It
requires a careful analysis of the spectral properties of some associated linear elliptic operator with a
nonlocal term. As it was noted by authors of [75], their method may also apply to reaction–diffusion
equations with delay.
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4. Traveling waves in continuous scalar delayed equations without monotonicity

Suppose now that the birth function f (u, v) is not monotone increasing with respect to the second
variable. For example, such situation happens when f (u, v) = u(1 − v) (the case of the KPP-Fisher
delayed or nonlocal equations) or when f (v) in the Mackey-Glass type Eq (3.4) is not increasing
between equilibria. This lack of the monotonicity has at least three following immediate negative (and
partially related among them) consequences for the studies of Eq (2.1) with non-monotone nonlinearity
(2.3):

i) Restricted application of the comparison arguments;
ii) Limitations in the use of various efficient approaches (e.g. the monotone iterative technique [76]

and the sliding solution method);
iii) More complex spectral theory for the linearized equation at the positive equilibrium κ (on the

other hand, for the above mentioned biological models, there are not qualitative changes in the
spectral analysis of the linearized equation at the zero equilibrium). In particular, the spectrum
Σ(κ) of the mentioned equation can have an empty intersection with the real negative semi-axis
and therefore generally wave profiles are oscillating around the positive equilibrium [26, 28, 56,
77–80] (each positive wave developing non-decaying oscillations around the positive equilibrium
and converging to 0 at the opposite end of the real line will be referred to as a semi-wavefront). But
even when Σ(κ) contains negative eigenvalues, a new class of non-oscillating and non-monotone
stable wavefronts appear in several relevant biological models as a consequence of delayed effects
[81–83]. Observe that stable wavefronts for scalar non-delayed bistable equations are necessarily
monotone, cf. [46].

As a result, till the present moment the theory of traveling waves for non-monotone delayed
equations did not obtained such a finished form as in the case of quasi-monotone equations. In
general, even the basic questions concerning the existence and uniqueness of waves are not
completely answered (surprisingly, even adequate definition of the minimal speeds of propagation for
monostable equations including (3.4) is an open question [84, 85]). Nevertheless, there are a series of
rather satisfactory results concerning the existence, uniqueness, stability, geometric and convergence
properties of wavefronts for some particular subclasses of non-monotone delayed reaction-diffusion
equations. Let us mention some of these findings:

Existence of monostable semi-wavefronts. The abstract recursive approach [50] mentioned in section
3.1 is an efficient tool to study the spreading properties of solutions to the nonlocal delayed diffusive
equations. Its extension in [37, 86] for some classes of non-monotone systems also allows to solve
the wave existence problem. In contrast with [50], the sub-tangency assumption (3.3) was assumed in
these works (cf. [37] inequality (4.4) and [86] condition (GC)) to prove the existence of the minimal
speed for the semi-wavefronts propagation. By amplifying the Diekmann-Kaper theory of a nonlinear
convolution equation [69], an alternative abstract approach to the semi-wavefront existence problem
was proposed in [87]. It also requires the dominance condition (3.3). For Eq (3.4), the abstract settings
of [37, 86] and [87] yield essentially the same conclusions as the earlier remarkable contribution [88]
by Ma (see also [37, 86, 87, 89, 90] for the further references).

Quasi-monotonicity in the sense of Wu and Zou: existence of monostable monotone wavefronts.
Even if the Eq (2.1) has a non-monotone nonlinearity (2.3), it can still have the monotone wavefronts
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for some range of the propagation speeds. In particular, this happens if the non-monotone differential
wave profile equation can be rewritten in the equivalent integral form possessing good monotonicity
properties. As it was indicated in the pioneering work [76] by Wu and Zou, sometimes it is possible to
impose a special quasi-monotonicity condition on the birth function (which is not monotone increasing
with respect to delayed variable) which allows to implement such a transformation [28]. Remarkably,
further developments of the Wu and Zou idea allowed to obtain simple criteria for the existence of the
monotone wavefronts in the non-local delayed (including some neutral types) KPP-Fisher and Mackey-
Glass equations [28, 70, 91, 92]. It should be noted here that for the latter equation, apart of inequality
(3.3), a similar condition at the positive equilibrium was required in [70].

Hale-Lin functional analytic-approach and global continuation of monotone wavefronts.
Assuming that Eq (2.1) has a wave solution for certain parameters (e.g., for some fixed speed and
delay), sometimes it is possible to use the Lyapunov-Schmidt reduction method in appropriate
functional spaces to extend this solution for close values of parameters. For instance, since the wave
existence problem simplifies for the parameters ε = 1/c = 0 (and some fixed delay τ > 0) or for τ = 0
(and some fixed admissible speed), it is convenient to the extend wave solutions existing either for
non-delayed equations (when τ = 0) or for simpler first-order delay differential equations (when the
propagation speed c = ∞). The idea behind this method goes back to the Hale and Lin studies [34,93]
of the heteroclinic connections for the delayed equations. As a perturbation technique for establishing
the persistence of fast monostable wave solutions in general delayed systems, it was invoked for the
first time by Faria et al. in [94]. Application of this method requires a detailed analysis of the
Fredholm properties of the linearization about the original wave solution. The presence of positive
delay complicates this analysis considerably. In a series of subsequent works, the functional analytic
approach was successfully applied to study the existence of periodic waves and semi-wavefronts
periodically oscillating around the positive equilibrium [95, 96], the persistence of wavefronts in
nonlocal reaction-diffusion equations for small delays [97,98], the positivity and oscillation properties
of the wavefronts [77, 99], the uniqueness of fast wavefronts in the Mackey-Glass type
equations [100], the non-uniqueness of semi-wavefronts in the non-local KPP-Fisher equations [78],
the existence of non-oscillating non-monotone wavefronts in the Kolmogorov ecological
equation [82]. Moreover, as it was shown in [101] for the unimodal monostable equations and
in [102] for the unimodal bistable equations, the Hale-Lin approach allows to obtain rather optimal
global continuation results for the case of monotone wavefronts.

Leray-Schauder continuation principle. The main idea of this method is to transform continuously
a non-quasi-monotone model to a quasi-monotone one while keeping track of traveling wave
solutions. It was successfully applied to prove the existence: a) of bistable wavefronts for a series of
non-delayed models (see [11, 103, 104] for more references and further discussion); b) of the minimal
pulled monostable semi-wavefronts in the non-local KPP-Fisher equation [105]; c) of the wavefronts
to non-delayed combustion models [66]. Recent works [106, 107] show that the version of the
Leray-Schauder theory elaborated in [103, 104] allows to prove the existence of monotone wavefronts
for the non-quasi-monotone model

∂

∂t
u(t, x) =

∂2

∂x2 u(t, x) + u(t, x)(1 − u(t, x) − g((K ∗ u)(t − h, x)), u ≥ 0, (t, x) ∈ R2, (4.1)

proposed in [108] in order to understand spatiotemporal dynamics of virus infection spreading in
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tissues (see section 5 for more details). According to its biological meaning explained in [106–108] it
was assumed in [106, 107] that smooth function g has a unique critical (global maximum) point and
g(0) > 1, g′(0) > 0,

equation g(w) = 1 − w has a single solution w0 for 0 < w < 1,

g(w) > 0 for 0 ≤ w < 1, g(1) = 0, g′(1) > −1.

Observe that in the spatially local case with single discrete delay, Eq (4.1) was also analyzed in [108]
(by using the phase plane method) and in [102] (under more realistic conditions on g and inside the
Hale-Lin functional-analytical framework).

Now, for the bistable types of Eq (3.4) and non-local Eq (2.4) (with f (u, v) = (u− θ)(1− v)), Alfaro
et al. [109, 110] appealed to the Leray-Schauder topological degree argument to prove the existence
of both monotone fronts and non-monotone semi-wavefronts. In contrast to [103, 104, 111] (where
topological degree was constructed for general elliptic problems in unbounded domains) but similarly
to [66,105], the continuation method in [109,110] was applied to establish the existence of a ‘truncated
semi-wavefronts’ φa on finite intervals [−a, a], then the required wave was obtained by letting a→ +∞.

Uniqueness of semi-wavefronts. For a broad series of autonomous delayed and non-local equations,
the Diekmann-Kaper theory of a nonlinear convolution equation [69] and its versions developed in [28,
33, 91, 92] allowed to answer the uniqueness question in the case of the monostable semi-wavefronts,
both critical and non-critical: each semi-wavefront propagating with a fixed velocity c is unique up to
translation. Application of this theory, however, requires a rather strong linear dominance condition,
like (3.7) for the model (3.4). Now, as it was recently shown in [112], the condition (3.7) can be
weaken for a broad class of reaction-diffusion models with distributed but finite delays. For example,
by Corollary 4 in [112], for the particular case of Eq (3.4), the inequality

f (y) − f (x) ≤ f ′(0)(y − x), for all non-negative y > x,

implies the uniqueness. An analog of this condition also holds for the delayed logistic (i.e. KPP-Fisher)
model that allowed to prove the uniqueness of semi-wavefronts for this equation.

In the case of both bistable and monostable pushed semi-wavefronts, the above-mentioned
dominance type conditions are not longer available: as a consequence, even for such simple equation
as (3.4), the uniqueness of either bistable or pushed semi-wavefront remains to be an open
question [110].

Importantly, as the studies [78, 113, 114] reveal, for some non-local monostable models, including
the non-local KPP-Fisher equation, the wave’s uniqueness property fails to hold. It would be interesting
to find an adequate biological interpretation of such a non-uniqueness phenomenon.

Stability of semi-wavefronts. The stability of monostable wavefronts (both monotone and
oscillating) to non-quasimonotone version of Eq (2.5) with n = 1 was an object of investigation in
several recent papers by Mei and his collaborators [59, 60, 115, 116]. The technical weighted energy
approach was combined with other analytical tools in these works. For example, for Eq (3.4)
satisfying (3.7), Theorem 1.1 in [116] presents a rather optimal global stability result, showing that all
non-critical wavefronts are globally exponentially stable and all critical waves are globally
algebraically stable (with the convergence rate O(t−1/2) as t → +∞ in the usual sup-norm for C(R,R)).
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It is unclear at this point whether a similar stability result could be obtained: a) for the proper (not
converging) semi-wavefronts; b) in situation when (3.7) is not assumed and the wave speed is close to
the minimal one.

Recently, a different approach to the stability of oscillating monostable semi-wavefronts (both
critical and non-critical) was proposed by Solar et al. in [54, 63, 117, 118]. It is based on maximum
principle arguments and requires the dominance of the linearization of (2.5) at zero equilibrium over
the whole Eq (2.5). The obtained results complement the studies in [59, 60, 115, 116] and can be
considered as the first steps in the solution of the above mentioned problems a) and b). Furthermore,
Benguria and Solar [24] developed a technique which allowed to demonstrate local stability (on
infinite semi-axes) of each semi-wavefront propagating with the velocity c ≥ 2

√
2 to delayed version

of the celebrated KPP-Fisher equation

ut(t, x) =
∂2

∂x2 u(t, x) + u(t, x)(1 − u(t − τ, x)), u ≥ 0, x ∈ Rm, τ ≥ 0, (4.2)

(see [27, 76, 92, 94, 101, 119, 120] for more references about this model). Since the minimal speed
c∗ in (4.2) is equal to c∗ = 2, the stability problem for this model remains open in the case of slow
semi-wavefronts.

Finally, we refer to [37, 54, 63, 71] for related asymptotic properties of solutions to
non-quasimonotone delayed monostable equations. In should be noted that the stability (and even a
weaker question of uniqueness) of both bistable and pushed semi-wavefronts for non-quasimonotone
delayed equations seems to be unexplored in the existing literature.

5. Delay RDEs in mathematical immunology

Virus density distribution in the tissue u(x, t) can be described by the delayed reaction-diffusion
equation [108, 121, 122]:

∂u
∂t

= D
∂2u
∂x2 + ku(1 − u) − f (uτ)u, (5.1)

where the first term in the right-hand side characterizes its random motion, the second term
determines virus reproduction considered in the logistic form, and the last term its elimination by the
immune cells. Time delay τ in the function f (uτ), where uτ(x, t) = u(x, t − τ), characterizes clonal
expansion of immune cells. Parameters D and k are positive constants, the function f (u) describes the
intensity of immune response depending on viral load. It is a non-negative sufficiently smooth
function defined for u ≥ 0, it is growing for sufficiently small values of u and decaying for u large
enough. Its characteristic form can be qualitatively described by the function f (u) = (a1u + a2)e−a3u,
where a1, a2, a3 are some positive constants. It will be used below for convenience of presentation.
Let us note that f (0) corresponds to immune response in the absence of pathogen, that is, to the level
of acquired immunity.

RDE without time delay. The function F(u) = ku(1 − u) − f (u)u vanishes at u0 = 0 and it has up
to three positive zeros. For a single positive zero u = u1, there exist [u0, u1]-waves, that is, the waves
with the limits u(−∞) = u1, u(∞) = 0, for all values of the speed c ≥ c0, where c0 = 2

√
k − f (0) is the

minimal speed (monostable case). These waves are stable in appropriate weighted norms.
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If there are two positive zeros, u1 and u2, u1 < u2, and u0 and u2 are stable stationary points of the
equation du/dt = F(u) (bistable case), then the [u0, u2]-wave exists for a single value of c. This wave
is globally asymptotically stable.

In the case of three positive zeros, u1, u2, u3, u1 < u2 < u3, there are monostable [u0, u1]-waves
and a bistable [u1, u3]-wave. If the speed c1 of the [u1, u3]-wave is greater than the minimal speed c0

of the [u0, u1]-waves, then there are [u0, u3]-waves. Otherwise, such waves do not exist, and there are
two consecutive waves propagating with different speeds. Convergence of the solution of the Cauchy
problem to waves and systems of waves in known [13–16].

Time delay. If the function f (u) is decreasing, then the existence of waves in the monostable and
bistable cases can be proved using the methods based on the maximum principle and comparison
theorems [45, 73]. For a non-monotone function f (u) such methods are not applicable. In the bistable
case, the wave existence is proved in [106] by the Leray-Schauder method and in [102] by the Hale-Lin
approach (see section 4).

Figure 2. Spatiotemporal regimes of infection spreading. The monostable wave becomes
non-monotone with decaying or persisting oscillations behind it. The type of patterns on
the left is characterized by a transition zone between decaying space oscillations and the
bistable wave with perturbed time oscillations around the homogeneous solution u1. Space
oscillations become more complex for larger values of τ. If time delay is sufficiently large,
then the two traveling waves merge forming a single stable non-monotone wave. The values
of time delay are, respectively, τ = 0.7, 1, 1.5, 2, D = 0.0001. Reprinted from [108].

If f ′(u1) > 0, where u1 is the first positive zero of the function F(u), then the stationary solution
u = u1 of the delay differential equation

du
dt

= F(uτ) (5.2)

loses it stability for the values of τ greater than some critical value τc. Periodic time oscillations, period
doubling bifurcations and transition to chaos occur as τ increases [123].

Periodic time oscillations of solutions of Eq (5.2) influence the propagation of monostable
[u0, u1]-waves and monostable-bistable waves. Figure 2 shows some examples of wave propagation in
the monostable-bistable case [108]. The monostable wave with the minimal speed in this example
propagates faster than the bistable wave. The monostable wave becomes non-monotone with
decaying or persistent oscillations behind the wave front. The speed of the bistable wave increases
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with the increase of time delay, and for τ sufficiently large, the two waves merge forming a single
wave with the speed c0 of the monostable wave.

Figure 3. Behavior of solutions of Eq (5.1) with periodic boundary conditions: standing
weaves for D = 0.001 (left), periodic waves for D = 0.0004 (middle), aperiodic regimes for
D = 0.0001 (right). The upper row of the graphs specifies the spatial pattern of solutions at
some time t. The lower row shows the spatiotemporal structure of solutions with the positions
of the maxima of solutions in time. Reprinted from [123].

Another mechanism of the emergence of spatiotemporal patterns described by Eq (5.1) is related to
secondary bifurcations of the homogeneous in space periodic time oscillations. The loss of stability
of such oscillations with respect to spatial perturbations leads to the emergence of standing waves,
periodic waves, and more complex aperiodic regimes (Figure 3) [123, 124].

Figure 4. Quasi-waves for the non-monotone function f (u). The figure shows snapshots of
solutions (upper row) and location of the maxima of solutions on the (x, t)-plane (lower row).
Reprinted from [123].

Behavior of solutions of this equation is different for the initial condition of u(x, 0) = u0(x)
considered as a piece-wise constant function, u0(x) = u1 for 0 ≤ x ≤ x0 and u0(x) = u2 for x0 < x ≤ L,
where L is the length of the interval, x0 ∈ (0, L), u1 and u2 are some constants. Two different
time-oscillating solutions of Eq (5.2) with the initial conditions u(0) = u1 and u(0) = u2 are observed
in the left and in the right parts of the interval [0, L] separated by a transition zone between them. The
width of this transition zone grows in time with a decaying rate (Figure 4, left) or with a constant rate
(Figures 4, middle and right). The former is determined by diffusion, and the latter by a wave
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propagating between a constant in space and periodic in time solution and spatiotemporal oscillations
in the middle of the interval. These oscillations can be close to periodic with a single spike moving
back and forth along the transition zone (Figure 4, left) or they can have a more complex structure
with multiple spikes (Figures 4, middle and right). Though such oscillations are not periodic, they
have some characteristic space and time scales which can be identified in the patterns formed by the
maxima of solutions (Figure 4, lower row).

Multi-dimensional equation. The 2D equation

∂u
∂t

= Dx
∂2u
∂x2 + Dy

∂2u
∂y2 + ku(1 − bu) − f (I(uτ))u − σ(y)u (5.3)

is introduced in [125] (without time delay) in order to study dynamics of virus distribution with respect
to the space variable x ∈ R and genotype variable y ∈ [−L, L]. Here I(u) =

∫ L

−L
u(x, y, t)dy is the

total virus density for all genotypes. Dependence of the function f (I(u)) on this integral signifies that
the strength of immune response depends on the total virus density for all genotypes. A non-negative
function σ(y) characterized genotype-dependent virus mortality.

If σ(y) ≡ 0, then for the boundary condition

∂u
∂y
|y=±L = 0, (5.4)

and the initial condition independent of y, dynamics of this solution is similar to the dynamics for the
1D equation described above.

The corresponding 1D equation with respect to the genotype variable y and the function σ(y)
different from 0 was studied in [126, 127]. Positive stationary solutions of this equation decaying at
infinity correspond to virus quasi-species. The condition of their existence is determined by the
properties of the genotype-dependent mortality σ(y) and by the mutation rate Dy.

If σ(y) , 0, then the solution of Eq (5.3) is essentially two-dimensional. However, in the particular
case b = 0 it can be reduced to 1D equation by the methods of separation of variables. Set u(x, y, t) =

u(x, t)φ(y). Then problem (5.3), (5.4) can be reduced to the 1D equation for the function v(x, t):

∂v
∂t

= Dx
∂2v
∂x2 + kv(1 − f (vτ)) + λv, (5.5)

where λ is the principal eigenvalue of the problem

Dyφ
′′ − σ(y)φ = λφ , φ′(±L) = 0, (5.6)

with
∫ L

−L
φ(y)dy = 1. Equation (5.5) is similar to Eq (5.1) with a modified nonlinearity. Dynamics of

its solutions can be analyzed by the same methods.

Systems of equations. A more complete model of infection development consists of the equations
for the virus density and for the concentration of immune cells:

∂u
∂t

= Du
∂2u
∂x2 + ku(1 − u) − σcu, (5.7)
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∂c
∂t

= Dc
∂2c
∂x2 + φ(uτ)c(1 − c) − ψ(uτ)c, (5.8)

where Du,Dc, k, and σ are positive parameters, φ(u) and ψ(u) are some non-negative functions.
Equation (5.7) is similar to Eq (5.1) where the concentration c of immune cells is replaced by the
function f (uτ) (see below). The right-hand side of Eq (5.8) describes random motion of immune cells,
their reproduction, and death. The last two terms depend on the virus density with time delay. Under
the quasi-stationary approximation in Eq (5.8), from the equality φ(uτ)c(1 − c) − ψ(uτ)c = 0, we get
c = f (uτ), where f (u) = 1 − ψ(u)/φ(u). This approximation allows us to reduce system (5.7), (5.8) to
Eq (5.1).

If the function f (u) is strictly decreasing, then system (5.7), (5.8) with τ = 0 can be reduced to a
locally monotone system. The existence of waves in this case is proved by the Leray-Schauder method
based on the topological degree for elliptic problems in unbounded domains and a priori estimates
in some properly chosen weighted spaces [12]. If this function is not monotonically decreasing, this
reduction cannot be done. The wave existence in the bistable case without time delay is proved in [128]
and with time delay in [111]. Dynamics of waves is studied numerically in [108, 129]. Depending
on the values of parameters, these waves convert the disease-free equilibrium either in the virus-free
equilibrium, corresponding to infection elimination, or to virus-positive equilibrium corresponding to
persistent infection.

6. Neural field models

Neural field models describe the distribution of electric potential in the brain cortex. Ensemble of
neurons in these models is considered as a continuous medium. Neurons receive signals from other
neurons and fire if this signal exceeds some threshold level. Neural field models describe various waves
and patterns observed in different types of brain activity [130–132, 134].

The investigation of neural field models begins with the work by Wilson and Cowan [133] who
introduced delay integro-differential equations for the densities of activating and inhibiting neurons.
This work was followed by many others with a variety of models and results. Typically, neural field
model can be considered as a system of two equations

∂u
∂t

= D1
∂2u
∂x2 + W11 −W12 − σ1u, (6.1)

∂v
∂t

= D2
∂2v
∂x2 + W21 −W22 − σ2v, (6.2)

where the integrals

Wi1(x, t) =

∫ ∞

−∞

φi1(x − y)S i1

(
u
(
y, t −

|x − y|
q1

− τ1

))
dy, i = 1, 2,

Wi2(x, t) =

∫ ∞

−∞

φi2(x − y)S i2

(
v
(
y, t −

|x − y|
q2

− τ2

))
dy, i = 1, 2,

describe total signals coming from all points y to the point x, W11 and W21 correspond to the activating
signals and W12 and W22 to inhibiting signals. Time delay |x − y|/qi corresponds to the delay in signal
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transmission, where its speed qi can be different for activating and inhibiting signals, and τi is time
delay in the response function S i j due to signal processing. The connectivity functions φi j

characterize the intensity of neuron connection as a function of distance between them. They are
usually considered as exponentially decaying functions of the argument |x − y|, while the neuron
response functions S i j are sigmoid-type functions. The last terms in right-hand sides in Eqs (6.1),
(6.2) describe signal decay. Neural field models are often considered without the diffusion
terms [135]. In this case, signal transmission occurs along the axons, and it is taken into account in
the integral terms. For the sake of generality and taking into other possible mechanisms (molecular
diffusion), we consider the case of nonzero diffusion coefficient. Signal transmission speed qi are
sufficiently fast [136], and the terms |x − y|/qi can be neglected.

We will consider various particular cases of the model (6.1), (6.2) and will describe their main
properties from the point of view of the existence of wave fronts and periodic waves.

Activation without inhibition. Assuming that the coefficients in Eqs (6.1) and (6.2), as well as
connectivity and response functions are equal to each other, we get u(x, t) ≡ v(x, t) for all x and t, if
this equality is satisfied for the initial condition. Therefore, the system of two equations can be reduced
to a single equation. Next, if the response function for inhibiting neurons is set 0, then we obtain the
scalar equation for the density of activating neurons (signals):

∂u
∂t

= D
∂2u
∂x2 +

∫ ∞

−∞

φ(x − y)S (u(y, t − τ))dy − σu. (6.3)

The subscripts are omitted here for simplicity of notation. Existence and stability of wave fronts for
a similar equation in the context of population dynamics was studied in [73]. The wave speed in a
partially damaged tissue due to stroke, where the connectivity and response function are modified,
decreases with respect to the normal tissue [137]. If the damage of the tissue is not too strong, the
wave speed can be restored by the external stimulation.

A modified equation, where the integral and the nonlinearity are inverted, S (J(u)) with J(u) =∫ ∞
−∞
φ(x − y)u(y, t − τ)dy, instead of J(S (u)) in (6.3), are also considered in neural field models and

in other applications. It is shown that the wave speed for this equation can be determined either by
diffusion or by neuron connectivity depending on their relative contribution [138].

Activation and inhibition. In the presence of inhibition, system (6.1), (6.2) can be reduced to the
single equation

∂u
∂t

= D
∂2u
∂x2 +

∫ ∞

−∞

φ1(x − y)S 1(u(y, t − τ1))dy −
∫ ∞

−∞

φ2(x − y)S 2(u(y, t − τ2))dy − σu

(with the corresponding subscripts). Assuming that S 1(0) = S 2(0) = 0, then u = 0 is a homogeneous in
space stationary solution of this equation. Linear stability analysis shows that this solution can lose its
stability leading to the bifurcation of homogeneous in space periodic time oscillations or of stationary
periodic in space solutions. Periodic traveling waves bifurcate from the unstable solution u = 0.
Therefore, they are unstable near the bifurcation point but they can become stable for sufficiently large
time delay τ2 [139]. It is interesting to note that different waves can coexist for the same values of
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parameters. This result corresponds to the existence of periodic waves with different frequencies and
speeds observed in the brain cortex.

Reduction of system (6.1), (6.2) to the single equation imposes some constraints on parameters and
dynamics of solutions. Bifurcation of stable periodic waves can occur for the system of two equations,
various other patterns and waves are observed [135].

Other models. Models with distributed time delay can also manifest complex dynamics with
periodic traveling waves, stationary and time-dependent patterns [140, 141]. Neural field model with
refractoriness [142] takes into account time delay after neuron firing. Traveling waves in delay
reaction-diffusion equations for some other applications are considered in [143, 144].

7. Conclusions

Delayed reaction-diffusion equations arise in various biological and biomedical applications where
time delay in the reaction term takes into account duration of some production or elimination processes,
such as duration of cell cycle in cell proliferation or virus replication inside cell, and so on. The
derivation of these models should be done with certain precaution because time delay in negative terms
can lead to the loss of positivity of solutions. Furthermore, the combination of delay with random
motion (diffusion) can false the density distribution because the ‘particle’ moves during delay period.
Therefore, the reaction term f (u(x, t − τ)) taken at the space point x at time t − τ does not necessarily
correspond to the density variation ∂u

∂t (x, t) at the same space point but some time later. In this case,
the assumption that motion and proliferation are mutually exclusive, as it is the case in some models
of tumor growth, can be appropriate.

Introduction of time delay in biological models allows us sometimes to simplify the model
excluding some processes occurring at a lower space scale. If the model concerns, for example, a cell
population, then we can possibly bypass complex and often not sufficiently well known intracellular
regulation. On the other hand, if the characteristic diffusion time is much larger than time delay in the
reaction term, then the introduction of time delay is not justified. As such, in the evolutionary models
with time scale measured in dozens of generations, we do not take into account the duration of
gestation.

From the mathematical point of view, delayed equations represent an interesting development of
the classical theory of reaction-diffusion equations. We can identify two sub-classes of such equations,
satisfying or not the maximum principle (quasi-monotonicity). If it is satisfied, then conventional
methods to study existence and stability of traveling waves remain usually applicable, though they can
be technically more involved. Much less can be done if quasi-monotonicity is not satisfied. In this
case, some other methods, such as various continuation methods (including Leray-Schauder method),
are developed for some particular types of equations.

Similar to ODEs where time delay can lead to time oscillations, time delay in reaction-diffusion
equations makes their dynamics more complex and interesting. Numerical simulations show the
emergence of periodic waves and other spatiotemporal patterns. Complex nonlinear dynamics of
delayed reaction-diffusion equation is not yet well investigated. The same is true for many other
questions including distributed and state dependent delay in reaction-diffusion equations, systems of
delayed equations, multi-dimensional equations.
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