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Abstract: A total of more than 27 million confirmed cases of the novel coronavirus outbreak, also
known as COVID-19, have been reported as of September 7, 2020. To reduce its transmission, a num-
ber of strategies have been proposed. In this study, mathematical models with nonpharmaceutical and
pharmaceutical interventions were formulated and analyzed. The first model was formulated without
the inclusion of community awareness. The analysis focused on investigating the mathematical behav-
ior of the model, which can explain how medical masks, medical treatment, and rapid testing can be
used to suppress the spread of COVID-19. In the second model, community awareness was taken into
account, and all the interventions considered were represented as time-dependent parameters. Using
the center-manifold theorem, we showed that both models exhibit forward bifurcation. The infection
parameters were obtained by fitting the model to COVID-19 incidence data from three provinces in
Indonesia, namely, Jakarta, West Java, and East Java. Furthermore, a global sensitivity analysis was
performed to identify the most influential parameters on the number of new infections and the basic
reproduction number. We found that the use of medical masks has the greatest effect in determining
the number of new infections. The optimal control problem from the second model was character-
ized using the well-known Pontryagin’s maximum principle and solved numerically. The results of a
cost-effectiveness analysis showed that community awareness plays a crucial role in determining the
success of COVID-19 eradication programs.

Keywords: COVID-19; community awareness; medical mask; rapid testing; hospitalization;
quarantine; basic reproduction number; forward bifurcation; optimal control

1. Introduction

An outbreak of the novel coronavirus was first identified in Wuhan, China, and was quickly trans-
mitted worldwide. As of September 7, 2020, approximately 27, 475, 333 individuals have been in-

http://http://www.aimspress.com/journal/MBE
http://dx.doi.org/10.3934/mbe.2020335


6356

fected [1]. In Indonesia, the first confirmed case was reported on March 02, 2020, and as of Septem-
ber 7, 2020, approximately 196, 989 cases have been detected [2]. DKI Jakarta, West Java, and East
Java are the three provinces with the highest number of COVID-19 cases. With no vaccine becoming
available in the near future, it is predicted that the number of COVID-19 infections may still increase.
Therefore, the implementation of current strategies, such as social and physical distancing, medical
masks, and other nonpharmaceutical interventions, should be investigated further.

Among these strategies that have been implemented to minimize the risk of infection are social
distancing and medical mask use. The implementation of these strategies can be more effective if there
is a high level of individual awareness. If people become aware of the importance of such interventions,
they would decide to implement these strategies. To deeply understand the transmission dynamics of
the disease and intervention effectiveness, extensive research using mathematical models could be used
as an alternative solution.

Mathematical models have a long history of application to help humans understand how the dynam-
ics of a disease spread in a population, for example in dengue [3–5], malaria [6–8], tuberculosis [9,10],
and many more. These models try to accommodate various essential factors in the spread of a disease,
such as the presence of a disease vector, the phenomenon of relapse and reinfection, symptomatic and
asymptomatic cases, analysis of the success of interventions with limited costs, and others. The exis-
tence of the influence of community awareness has also been discussed by several previous authors,
including in [10–13]. This awareness effect has been applied to the model as a variable that has its dy-
namics, as well as a parameter that affects the behavior of other parameters such as the rate of infection,
treatment, and others.

Since COVID-19 rapidly spread in many countries in the world, numerous mathematical models
have been conducted [14–18] to give a better understanding on the transmission mechanism of COVID-
19, and how to prevent it. Similar to the mentioned mathematical models in the previous paragraph, this
mathematical model tries to divide the human population based on their health status, then a dynamic
analysis is carried out in-depth. Kurchaski et al. [15] formulated a stochastic mathematical model to
assess the variations in disease transmission and measure the probability of newly introduced cases
triggering outbreaks in other regions based on the transmission variation in Wuhan, China. Prem et
al. [16] used mathematical models to assess the effects of changes in the population interacting with
each other during the outbreak. They found that restricting activities would help to minimize the
number of infections. Furthermore, research showed that the use of masks could reduce the disease
transmission dynamics [19]. Based on the model which considers the detected/undetected cases and
the symptomatic/asymptomatic cases, Giordano et al. [20] found that combination of restrictive social-
distancing, rapid testing and contact trace should be implemented partially to reduce the spread of
COVID-19. A similar result also given by Aldila et al. [21].

Although many studies have been conducted to understand COVID-19 transmission dynamics and
intervention, only a few studies on the COVID-19 disease transmission in Indonesia have been per-
formed [17, 18, 21]. Using the SEIR model, Soewono [17] calculated the basic reproduction number
of COVID-19 in DKI Jakarta, which was found to be 2.5148. In addition, Ndii et al. [18] formulated
deterministic and stochastic mathematical models and determined the probability of disease extinction
as well as calculating the basic reproduction number for Indonesia. They found that reducing the con-
tact rate by approximately 70% can minimize the number of infected individuals. Aldila et al. [21]
investigated the effects of rapid testing and social distancing in controlling the spread of COVID-19 in

Mathematical Biosciences and Engineering Volume 17, Issue 6, 6355–6389.



6357

Jakarta–Indonesia and found that a massive rapid-test intervention should be implemented if strict so-
cial distancing is relaxed. However, none of these works analyzed the effects of the individual’s aware-
ness or included a cost-effectiveness analysis. According to [23, 24], developing human awareness to
COVID-19 could help to prevent the spread of COVID-19. This campaign help to disseminate and
help to dispel misinformation on COVID-19, and in the same way to promote precautionary measures
like washing hands, physical distancing, and many other prevention strategies. Hence, it is important
to discuss how the awareness of the community effect the spread of COVID-19.

In the present study, we formulated a mathematical model with nonpharmaceutical and pharmaceu-
tical interventions for COVID-19 control programs and performed a cost-effectiveness analysis. The
interventions considered were the use of medical masks, rapid test interventions, and pharmaceutical
interventions, which are all affected by community awareness. As the purpose of the study is to de-
termine the best intervention strategies, the optimal control approach was implemented in the model.
The effectiveness of all the intervention schemes was analyzed using the infection averted ratio (IAR)
and average cost-effectiveness ratio (ACER) methods. To test our model, we estimated the values of
the parameters using incidence data from Jakarta, West Java, and East Java in Indonesia.

Compared with other established COVID-19 transmission model [14–21], the novelty of this pa-
per lies in several important features. Compared to the model in [20], our model accommodates the
latent stage before an individual is ready to spread COVID-19. Compared to [15–17], our model ac-
commodates detected/undetected cases. The first novelty is that our model accommodates how human
awareness of the detected cases may reduce the infection rate. Furthermore, our model also consid-
ers the use of medical masks massively, not only for infected individuals but also for susceptible and
recovered individuals. Our parameters were estimated using incidence data from West Java and East
Java, which has never been used previously, and also incidence data from DKI Jakarta.

The remainder of the paper is organized as follows. Section 2 presents the basic model and the
model’s analysis regarding the equilibrium, basic reproduction number, and bifurcation analysis. Sec-
tion 3 extends the model from Section 2 to include the effects of community awareness on the infec-
tion rate. The characterization of the optimal control problem is also conducted in this section using
Pontryagin’s maximum principle. The parameter estimations are presented in Section 4, followed by
numerical experiments for the autonomous system. The numerical experiments described in Section 5
consist of a sensitivity analysis, optimal control simulations, and a cost-effectiveness analysis. Finally,
conclusions for our research are presented in the last section.

2. The basic model

2.1. Model formulation

We divide the human population into seven categories based on their health status: susceptible
individuals (S ), exposed/latent individuals (E), asymptomatic individuals (A), symptomatic individuals
(I), quarantined individuals (Q), hospitalized individuals (H), and recovered individuals (R). Hence,
the total human population at time t is given by

N(t) = S (t) + E(t) + A(t) + I(t) + Q(t) + H(t) + R(t).

A flowchart of the model is given in Figure 1. The susceptible population is generated by recruit-
ment through births at a constant rate of Λ. Due to the direct contact with an infected individual A
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Figure 1. Schematic of the COVID-19 infection diagram considering asymp-
tomatic/symptomatic cases and detected/undetected cases.

and I, susceptible individuals will become infected by COVID-19 and transferred to the exposed com-
partment. For the infection process, the following assumptions have been used. a) Exposed individuals
cannot spread COVID-19 as they are still in the incubation period. b) Infected individuals who un-
dergo quarantine or hospitalization cannot spread the disease. c) As asymptomatic individuals do not
show any symptoms, which in this case means they do not spread pathogens from sneezing as often as
symptomatic individuals. Li et al. [22] showed that the infection rate of asymptomatic cases is lower
than that of symptomatic cases and hence we set that the infection rate of asymptomatic individuals
is lower than that of symptomatic individuals, with the reduction parameter σ ∈ (0, 1). Therefore, the
infection term in our model is given by

βS (I + σA).

We assume that an intervention to reduce the transmission rate has been implemented in the population
that forces all individuals to use a medical mask. Assume that a q proportion of N use a medical mask,
while the rest 1 − q do not. Hence, the total mass contact between each S and I is given by

q S q I + q S (1 − q)I + (1 − q) S qI + (1 − q) S (1 − q) I

If we assume that an individual who uses a medical mask reduces the chance to spread/receive
pathogens from other individuals with the reduction factor φ, the total of newly infected individuals
caused by contact between susceptible and symptomatic individuals is given by

ΓI = βφq S φq I + βφq S (1 − q)I + β(1 − q) S φqI + β(1 − q) S (1 − q) I,

= β (φq + 1 − q)2 S I. (2.1)

Similarly, the total of newly infected individuals caused by contact between susceptible and asymp-
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tomatic individuals is given by

ΓA = σβφq S φq A + σβφq S (1 − q)A + σβ(1 − q) S φqA + σβ(1 − q) S (1 − q) A,

= σβ (φq + 1 − q)2 S A. (2.2)

After the incubation period α−1, a portion of exposed individuals p progress to be symptomatic
infected individuals, while the remainder, 1 − p, are determined to be asymptomatic. Note that there
is a possibility that exposed individuals could recover without progressing to be infected individuals
due to their immune systems. We symbolize this possibility as γ1. The number of infected individuals
I then decreases due to the recovery rate γ3 or rapid assessment at a rate of η1. Detected symptomatic
individuals will be forced to be hospitalized. Hence, the H compartment increases due to the transition
from I at a rate of η1. Similarly, the number of asymptomatic individuals decreases due to a natural
recovery rate of γ2 and rapid assessment η2, which transfers them into a Q compartment. Asymptomatic
individuals may progress into symptomatic individuals. Hence, we have a transition from A to I at
a rate of ξ1, and from Q to H with the rate of ξ2. Finally, the number of infected individuals in
the quarantine and hospitalized compartments will decrease due to the recovery rates of γ4 and γ5,
respectively. According to [25], from more than 23 million cases in the world on August 25, 2020,
the reported death cases has been only 816,469 cases (Case fatality rate is around ±3%). Hence, since
our model’s simulation only conducted for a short period, it is sufficient to assume that the death rate
induced by COVID-19 to be neglected.

Hence, the full model equation in terms of the rate of change for each sub-population is given as
follows.

dS
dt

= Λ − (φq + 1 − q)2 βS (I + σA) − µS ,

dE
dt

= (φq + 1 − q)2 βS (I + σA) − αE − γ1E − µE,

dA
dt

= (1 − p)αE − γ2A − η2A − ξ1A − µA

dI
dt

= pαE + ξ1A − γ3I − η1I − µI, (2.3)

dQ
dt

= η2A − γ4Q − ξ2Q − µQ,

dH
dt

= η1I + ξ2Q − γ5H − µH,

dR
dt

= γ1E + γ2A + γ3I + γ4Q + γ5H − µR,

where µ is the natural death rate. Notably, the model (2.3) is supplemented with non-negative initial
conditions

S (0) ≥ 0, E(0) ≥ 0, A(0) ≥ 0, I(0) ≥ 0,Q(0) ≥ 0,H(0) ≥ 0,R(0) ≥ 0.

Note that all parameters are positive, with their descriptions given in Table 1.
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Table 1. Definitions and value ranges for the parameters in the system (2.3).

Param. Description Value/Interval Unit Source

Λ Human recruitment rate 107

70×365
individual

day Estimated

µ Natural death rate 1
70×365

1
day [26]

β Effective contact rate - 1
individual×day Fitted

φ Medical mask efficiency 0.11 - [27]

q Proportion of medical mask use 0.1 - Estimated

σ Modification parameter for reduced infec-
tiousness of asymptomatic individual

0.5 - [28, 29]

α Rate due to incubation period of exposed in-
dividuals

1
5.1

1
day [30–33]

p Proportion of exposed individuals who be-
come symptomatic individuals

0.4 - [34, 35]

γ1 Recovery rate of exposed individuals 0.05 1
day Estimated

γ2 Recovery rate of asymptomatic individuals 0.13978 1
day [36]

γ3 Recovery rate of symptomatic individuals 0.1 1
day [28, 37]

γ4 Recovery rate of asymptomatic quarantined
individuals

1
8

1
day [28]

γ5 Recovery rate of symptomatic hospitalized
individuals

0.1 1
day [28]

η1 Hospitalization rate 0.083 1
day [38]

η2 Quarantine rate for asymptomatic due to
contact trace

0.2435 1
day [39]

ξ1 Progression from asymptomatic non-
quarantined to symptomatic individual

0.01 1
day Estimated

ξ2 Progression from asymptomatic quarantined
to symptomatic individual

0.01 1
day Estimated

2.2. Model analysis

2.2.1. Basic properties

For the biological significance of model (2.3), it is necessary to ensure that all variables in our
model are non-negative at time t ≥ 0 when the initial condition is also non-negative. Hence, we have
the following lemma.

Lemma 1. For a non-negative initial condition for system (2.3) as follows

S (0) ≥ 0, E(0) ≥ 0, A(0) ≥ 0, I(0) ≥ 0,Q(0) ≥ 0,H(0) ≥ 0,R(0) ≥ 0,
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the solutions of S (t), E(t), A(t),Q(t), I(t),H(t), and R(t) of model (2.3) are non-negative for all time
t > 0.

Proof. Please see Appendix A for the proof. �

Lemma (1) guarantee each variable’s positivity for all time t > 0, which is needed for epidemiolog-
ical interpretation. In our cases, all our variables in system (2.3) represent the number of the human
population. Furthermore, the following lemma completes the well-posed biological properties of our
model, which guarantee that each variable in system (2.3) is bounded for t → ∞.

Lemma 2. The feasible region Ω defined by

Ω =

{
(S , E, A,Q, I,H,R) ∈ R7

+ : 0 ≤ S + E + A + Q + I + H + R ≤
Λ

µ

}
(2.4)

is positively invariant under system (2.3).

Proof. Please see A for the proof. �

2.2.2. Equilibrium and the basic reproduction number

With a straightforward calculation, system (2.3) has a unique disease-free equilibrium as follows.

E0 = (S 0, E0, A0,Q0, I0,H0,R0) =

(
Λ

µ
, 0, 0, 0, 0, 0, 0

)
. (2.5)

Using the next-generation matrix [40], the basic reproduction number (R0) of system (2.3) is given by

R0 =
Λαβ(1 − q + qφ)2 ((1 − p)σ(µ + η1 + γ3) + p(µ + η2 + γ2) + ξ1)

µ(µ + ξ1 + γ2 + η2)(µ + η1 + γ3)(µ + α + γ1)
. (2.6)

It is possible to rewrite the expression of R0 to account for the source of infection as follows

R0 = RAsymptomatic + RSymptomatic-1 + RSymptomatic-2, (2.7)

where

RAsymptomatic =
Λ

µ
×

(1 − q + qφ)2σβ

µ + α + γ1
×

(1 − p)α
µ + ξ1 + γ2 + η2

,

RSymptomatic-1 =
Λ

µ
×

(1 − q + qφ)2β

µ + α + γ1
×

pα
µ + η1 + γ3

.

RSymptomatic-2 =
Λ

µ
×

(1 − q + qφ)2β

µ + α + γ1
×

(
ξ1

µ + η1 + γ3
×

(1 − p)α
µ + ξ1 + γ2 + η2

)
.

This expression shows infections resulting from two sources, namely, asymptomatic and symp-

tomatic individuals. The first component
(
Λ

µ

)
in each term represents the total number of individuals

who can be infected by infected individuals at an early stage of the infection being spread.
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The second expression in each component is
(
(1 − q + qφ)2β

µ + α + γ1

)
, which represents the infection that

is affected by the use of a medical mask during the lifetime period of an individual in the exposed
compartment. Hence, increasing the value of the denominator will reduce this component. However,
we cannot increase the value of α as it leads to the acceleration of the incubation period, and it is not
possible to shorten the life expectancy of humans. Therefore, the only possible way is by increasing
the recovery rate of γ1. Before the virus becomes active in the human body, there is a short time period
during which the immune system will fight against the virus. If the immune system successfully kills
the virus, the human will recover. Therefore, increasing γ1 is highly related to increasing the effec-
tiveness of the immune system in the human body, such as increasing its endurance through additional
supplements/vitamins, exercise, and the consumption of healthy food.

The difference between RAsymptomatic,RSymptomatic-1, and RSymptomatic-2 is presented in their third com-
ponent. In RAymptomatic, the infection term is multiplied by the ratio between the transition from being
exposed to the infection period of the asymptomatic class. To become a symptomatic individual from
the exposed compartment, two paths can be taken. The first path is E → I directly, which contributes
to RSymptomatic-1, while the second path is E → A → I, which contributes to RSymptomatic-2. Notably, the
third component for each R is multiplied by α, which represents the incubation period of coronavirus.
Hence, we understand that a shorter incubation period of COVID-19 will increase R0.

An important result is stated in the following theorem.

Theorem 1. The disease-free equilibrium E0 of system (2.3) is locally asymptotically stable if R0 < 1,
and unstable if R0 > 1.

This theorem has been reviewed by the author in [41]. Hence, we do not show it in this article.
The theorem implies that it is possible to eradicate COVID-19 if this threshold is less than unity. The
basic reproduction number is defined as an expected number of secondary cases due to infection from
one primary case during its infection period in a completely susceptible population [42]. This means
that the basic reproduction number picturing the number of new COVID-19 which is produced by one
infected individual when the initial condition of the population is at the COVID-19 free state. Hence, it
is understandable that the number of an infected individual will increase and tends to the endemic state
whenever the basic reproduction number is larger than unity. Many epidemiological models generate
the same results (see [43–46] for some examples). However, not always R0 < 1 indicates the disease
may not persist. When backward bifurcation appears, another stable equilibrium, which in this case
is the endemic equilibrium, is locally stable. Please refer to [21, 47–49] for examples. Hence, it is
important to understand the bifurcation type of our proposed model in (2.3).

The next equilibrium is the endemic equilibrium point, E1, which is given by

E1 = (S , E, A,Q, I,H,R) = (S 1, E1, A1,Q1, I1,H1,R1) , (2.8)

where

S 1 =
Λ

β(I1 + A1σ)(2φq(1 − q) + (1 − 2q) + q2(1 + φ2)) + µ
,

E1 =
(µ + ξ1 + γ2 + η2) (µ + η1 + γ3) I1

α (µ p + pη2 + pγ2 + ξ1)
,
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A1 =
(1 − p) (µ + η1 + γ3) I1

µ p + pη2 + pγ2 + ξ1
,

Q1 =
I1 η2 (1 − p) (µ + η1 + γ3)

(µ + γ4 + ξ2) (µ p + pη2 + pγ2 + ξ1)
,

H1 =
η1I1 + ξ2Q1

µ + γ5
,

R1 =
(µ + γ5)(γ1E1 + γ2A1 + γ3I1 + γ4Q1) + γ5(η1I1 + ξ2Q1)

µ(µ + γ5)
,

while I1 is taken from the positive roots of

c1I + c0 = 0 (2.9)

with

c1 = −β (φ q − q + 1)2 (µ + ξ1 + γ2 + η2) (µ (µ + α + γ1) + η1 (µ + α + γ1) + γ3 (µ + α + γ1))
(σ(1 − p)(µ + η1 + γ3) + p(µ + η2 + γ2) + ξ1) < 0,

c2 = (p(µ + η2 + γ2) + ξ1) µ(µ + ξ1 + γ2 + η2)(µ + η1 + γ3)(µ + α + γ1) (R0 − 1) .

As c1 < 0 and c0 > 0 ⇐⇒ R0 > 1, we have the following theorem regarding the existence of the
endemic equilibrium.

Theorem 2. There exists a unique endemic equilibrium E1 of system (2.3) whenever R0 > 1.

Based on Theorems 1 and 2, our model exhibits a change in stability and the existence of an equilib-
rium at R0 = 1. Hence, we investigate the stability of the endemic equilibrium using the well-known
Castillo-Song theorem [50] at R0 = 1.

Theorem 3. System (2.3) undergoes a forward bifurcation at R0 = 1.

Proof. Please refer to Appendix A for the proof of this theorem. �

Theorems (2) and (3) indicate that COVID-19 will exist if the threshold number R0 larger than unity.
Hence, whenever the COVID-19 free equilibrium E0 exist and stable, then the COVID-19 equilibrium
does not exist, and vice versa. Our analysis in this section suggests the importance of paying attention
to the size of R0. From the expression of R0 in (2.6), it can be seen that q and η1 are inversely
proportional to R0. Hence, increasing both of these parameters will reduce R0, as shown in Figure 2.
It is easy to verify that the minimum proportion/rate of medical mask/rapid testing required to reach
R0 < 1 will decrease whenever β decreases. Hence, it is important to reduce the transmission rate
simultaneously with other interventions. Naturally, the transmission rate will be decreased when the
community becomes aware of the existence of the disease. The massive amount of information about
COVID-19 provided through social media, TV, or other sources could lead to community awareness
of the disease. Hence, we improve our model to consider the community awareness effect on the
transmission rate in the following section.
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Figure 2. Dependency of R0 with respect to the proportion of medical mask use (a) and
rapid testing (b) for various reductions in β.

3. Improvement of the model for a COVID-19 control program under the awareness effect

3.1. Model formulation

Here, we improve our proposed model in (2.3) by considering two factors: population awareness,
which will decrease the infection rate, and the introduction of time-dependent control variables.

The first improvement is to include the population awareness of the danger of COVID-19. We
assume that the more aware the community is, the more readily the infection rate will decrease. Let m
describe the level of awareness of the community. A larger m−1 indicates a high level of community
awareness, while a low m−1 indicates a low awareness level. Next, we assume that the community
awareness depends on the number of reported cases, which in our model is the individuals in H and
Q. Hence, instead of treating β as a constant, it should be a function that depends on m,H, and Q,
namely, β̄(m,H,Q). This function should be a monotonic decreasing function with respect to H and

Q, i.e.,
∂β̄

∂H
< 0,

∂β̄

∂Q
< 0 and

∂β̄

∂m
< 0. Furthermore, limH+Q→∞ β̄ = β̄min and limm−1→∞ β̄ = β̄min,

which represents the transmission rate, tends to its minimum values whenever the number of reported
cases tends to infinity or when the awareness level is high (large m−1). Conversely, β̄ should also fulfill
limH+Q→0 β̄ = β̄max and limm−1→0 β̄ = β̄max which represent the transmission rate tends to it maximum
value whenever the number of reported cases and awareness are very low. In this article, we chose the
following infection function:

β̄(m,H,Q) = β0 − β1
H + Q

m + H + Q
, (3.1)

where β0 is the maximum of β̄ if the level of awareness is low (m−1 → 0) or H + Q → 0. With this
chosen function, we have:

∂β̄(m,H,Q)
∂Q

=
∂β̄(m,H,Q)

∂H
= −

β1m
(m + H + Q)2 < 0,

∂β̄(m,H,Q)
∂m

= −
β1(H + Q)

(m + H + Q)2 < 0,
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limH+Q→∞ β̄(m,H,Q) = limm−1→∞ β̄(m,H,Q) = β0 − β1 = βmin > 0,
limH+Q→0 β̄(m,H,Q) = limm→∞ β̄(m,H,Q) = β0 = βmax.

Next, we consider the intervention parameters to be time-dependent variables. First, we introduce
the control variable as the proportion of individuals who use a medical mask, denoted by u1(t). The
second and third controls are for rapid test interventions for asymptomatic and symptomatic individ-
uals, respectively. Hence, we change η1 and η2 into u2(t) and u3(t), respectively. The last control
variable is the pharmaceutical interventions dedicated to accelerating the recovery rate for hospitalized
individuals, denoted by u4(t).

Hence, the model for COVID-19 transmission, considering the level of awareness and interventions
(pharmaceutical and nonpharmaceutical), is given as follows.

dS
dt

= Λ − (φu1(t) + 1 − u1(t))2
(
β0 − β1

H + Q
m + H + Q

)
S (I + σA) − µS ,

dE
dt

= (φu1(t) + 1 − u1(t))2
(
β0 − β1

H + Q
m + H + Q

)
S (I + σA) − αE − γ1E − µE,

dA
dt

= (1 − p)αE − γ2A − u3(t)A − ξ1A − µA

dI
dt

= pαE + ξ1A − γ3I − u2(t)I − µI, (3.2)

dQ
dt

= u3(t)A − γ4Q − ξ2Q − µQ,

dH
dt

= u2(t)I + ξ2Q − (γ5 + u4(t))H − µH,

dR
dt

= γ1E + γ2A + γ3I + γ4Q + (γ5 + u4(t))H − µR,

supplemented with nonnegative initial conditions

S (0) ≥ 0, E(0) ≥ 0, A(0) ≥ 0,Q(0) ≥ 0, I(0) ≥ 0,H(0) ≥ 0,R(0) ≥ 0.

3.2. Model analysis

For the model analysis, let us assume that all control variables are constant parameters; hence,
ui(t) = ui, for i = 1, 2, 3, 4. Therefore, the COVID-19 model in (3.2) can now be written as follows.

dS
dt

= Λ − (φu1 + 1 − u1)2
(
β0 − β1

H + Q
m + H + Q

)
S (I + σA) − µS ,

dE
dt

= (φu1 + 1 − u1)2
(
β0 − β1

H + Q
m + H + Q

)
S (I + σA) − αE − γ1E − µE,

dA
dt

= (1 − p)αE − γ2A − u3A − ξ1A − µA

dI
dt

= pαE + ξ1A − γ3I − u2I − µI, (3.3)

dQ
dt

= u3A − γ4Q − ξ2Q − µQ,
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dH
dt

= u2I + ξ2Q − (γ5 + u4)H − µH,

dR
dt

= γ1E + γ2A + γ3I + γ4Q + (γ5 + u4)H − µR,

Using a similar approach as with Lemma (1) and Lemma (2), we also have the following two
properties for model in (3.3)

Lemma 3. For the non-negative initial conditions for system (3.3) as follows

S (0) ≥ 0, E(0) ≥ 0, A(0) ≥ 0, I(0) ≥ 0,Q(0) ≥ 0,H(0) ≥ 0,R(0) ≥ 0,

the solutions of S (t), E(t), A(t),Q(t), I(t),H(t), and R(t) of model (3.3) are non-negative for all time
t > 0.

Lemma 4. The feasible region Ω defined by

Ω =

{
(S , E, A,Q, I,H,R) ∈ R7

+ : 0 ≤ S + E + A + Q + I + H + R ≤
Λ

µ

}
(3.4)

is positively invariant under system (3.3).

Similar to the previous model in (2.3), the awareness-based model in (3.3) has a COVID-19-free
equilibrium given by:

E0 = (S 0, E0, A0,Q0, I0,H0,R0) =

(
Λ

µ
, 0, 0, 0, 0, 0, 0

)
. (3.5)

Using the next-generation matrix [40], the basic reproduction number (R0) of system (3.3) is given by

R∗
0 =

Λαβ0(1 − u1 + u1φ)2 ((1 − p)σ(µ + u2 + γ3) + p(µ + u3 + γ2) + ξ1)
µ(µ + ξ1 + γ2 + u3)(µ + u2 + γ3)(µ + α + γ1)

. (3.6)

The local stability of E0 is also determined by R∗
0 for the case of the awareness-based model in (3.3).

This is stated in the following theorem.

Theorem 4. The disease-free equilibrium E0 of system (3.3) is locally asymptotically stable if R∗
0 < 1,

and unstable if R∗
0 > 1.

From the form of R∗
0 , it can be seen that m, γ4, γ5, and u4 do not determine the type of stability

of E0 as they do not appear in R∗
0 . However, these parameters play an important role in determining

the size of the epidemic when the endemic equilibrium occurs and determine the speed to reach the
COVID-19-free equilibrium when R0 < 1. We will provide the analysis using numerical simulations
in Section 5 for these claims.

The endemic equilibrium of system (3.3) is given by

E1 = (S , E, A,Q, I,H,R) =
(
S ∗1, E

∗
1, A

∗
1,Q

∗
1, I
∗
1,H

∗
1,R

∗
1
)
, (3.7)

where

E∗1 =
A∗1(γ2 + u3 + ξ1 + µ)

(1 − p)α
,
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Q∗1 =
A∗1u2

µ + γ4 + ξ2
,

H∗1 =
A∗1u3ξ2 + I∗1 µ u1 + I∗1 γ4u1 + I∗1 u1ξ2

(µ + γ5 + u3) (µ + γ4 + ξ2)
,

R∗1 =
γ1E∗1 + γ2A∗1 + γ3I∗1 + γ4Q∗1 + (γ5 + u4)H∗1

µ
,

where S ∗1 is a function of other variables and has a considerably long expression, which could not be
included in this paper, while A∗1 and I∗1 are taken from the intersection of the following polynomials:

P1(I, A) = k1I3 + (k2 + k3A)I2 + k4(k5 + A)(k6 + A)I + k7(k8 + A)(k9 + A) = 0,
P2(I, A) = k10A + I = 0.

Note that ki for i = 1, 2, . . . 10 has an extremely long expression, which could not be included in this
paper. From the above expression of E1, which depends on the intersection between P1 and P2, it is
difficult to determine the number of possible endemic equilibria. Thus, we plot the polynomials P1 and
P2 in Figure 3 using the set of parameters given in Table (1).

Figure 3. Existence of COVID-19 endemic equilibrium of system (3.3) that depends on
polynomial P1 and P2.

We close our dynamical analysis in this section with the following theorem that states the bifurcation
type of model in (3.3) at R∗

0 = 1.

Theorem 5. The awareness-based COVID-19 transmission model in (3.3) undergoes a forward bifur-
cation at R∗

0 = 1.

Proof. Please refer to Appendix A for the proof of this theorem. �
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Our result for the COVID-19 model which considers awareness of the population in system (3.2)
shows a similar qualitative behavior with the standard model in system (2.3), where the related basic
reproduction number becomes the unique threshold to guarantee the existence/persistence of COVID-
19 from the population for each model. Hence, we can conclude that COVID-19 could be eradicated
as long as we can reduce the basic reproduction number less than unity. Otherwise, COVID-19 will
persist. Furthermore, it can be seen that m does not appear in R∗

0 . This result indicates that when the
community awareness only appears in the transmission term, then the community awareness does not
change the condition such that R∗

0 = 1. However, it does change the size of the endemic equilibrium
for each variable and the time to reach the outbreak of COVID-19. We discuss this result in more detail
using numerical experiments in Section 4, Figure 5.

3.3. Optimal control characterization

As we already stated in an earlier section of this manuscript, four different control variables will be
implemented, namely, the use of medical masks to reduce the infection probability u1(t), hospitalization
rate for symptomatic individuals u2(t), rapid testing to detect asymptomatic individuals and push them
to conduct a self-quarantine u3(t), and increases in the medical treatment quality to accelerate recovery
rate u4(t).

The optimal control problem seeks to minimize the number of people infected by COVID-19, while
keeping the cost for control implementations as low as possible. To do this, let us consider the following
objective function.

J(ui) =

∫ T f

0
[ω1E(t) + ω2A(t) + ω3Q(t) + ω4I(t) + ω5H(t)] dt +

∫ T f

0

 4∑
i=1

υiu2
i

 dt, (3.8)

where ω j for j = 1, . . . 5 and υi for i = 1, . . . 4 are positive constants that will balance the relative
purposes for each term in the objective function J , and T f is the final time of control implementation.
Furthermore, let the set of admissible control setsU be given by:

U =
{
ui ∈ (L∞(0,T ))4|0 ≤ ui(t) ≤ 1; ui for i = 1, 2, 3, 4 are Lebesgue measurable

}
. (3.9)

The first component of J , i.e.,
∫ T f

0
[ω1E(t) + ω2A(t) + ω3Q(t) + ω4I(t) + ω5H(t)] dt, represents the

cost related to the existing number of infected individuals in the field. This cost is not related to
the control variables. For example, this term is related to the economic cost of the pandemic. Term∫ T f

0

[∑4
i=1 υiu2

i

]
dt is related to the total cost of control implementations to achieve the eradication of

COVID-19 from the community. We choose a quadratic cost function to model the cost for interven-
tions as has already done by many authors, such as in [44, 45, 52–54]. Biologically, this quadratic
function represents a condition in which a larger intervention that needs to be implemented will be
more costly, which means it is not linear. For example, the increment for the implementation of med-
ical masks from u1 = 0.1 to u1 = 0.2 is not difficult to implement as the number of medical masks is
easy to find. In contrast, the increment from u1 = 0.8 to u1 = 0.9 is more difficult to implement because
of the limitation of medical masks available in the field.

The sufficient condition to determine the optimal control u∗i for i = 1, 2, 3, 4 inU such that

J(u∗i ) = min
U
J(ui), (3.10)
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with the constraints of our COVID-19 model in (3.3) can be obtained using Pontryagin’s maximum
principle [51]. The principle of this method is to transfer our system, which involved the state sys-
tem (3.3), cost function (3.8), and minimization problem (3.10), into minimizing the Hamiltonian
functionH problem with respect to ui for i = 1, 2, 3, 4, that is

H = ω1E(t) + ω2A(t) + ω3I(t) + ω4Q(t) + ω5H(t) +

 4∑
i=1

υiu2
i


+ λ1

(
Λ − (φu1 + 1 − u1)2

(
β0 − β1

H + Q
m + H + Q

)
S (I + σA) − µS ,

)
+ λ2

(
(φu1 + 1 − u1)2

(
β0 − β1

H + Q
m + H + Q

)
S (I + σA) − αE − γ1E − µE

)
+ λ3 ((1 − p)αE − γ2A − u3(t)A − ξ1A − µA) (3.11)
+ λ4 (pαE + ξ1A − γ3I − u2(t)I − µI)

+ λ5 (u3(t)A − γ4Q − ξ2Q − µQ, )

+ λ6 (u2(t)I + ξ2Q − (γ5 + u4(t))H − µH)

+ λ7 (γ1E + γ2A + γ3I + γ4Q + (γ5 + u4(t))H − µR) ,

where λi for i = 1, 2, . . . , 7 are the adjoint variables for the state system S , E, A, I,Q,H,R, respectively.
These adjoint variables satisfy the following system of ODEs.

dλ1

dt
= (φ u1 − u1 + 1)2

(
β0 −

β1 (H + Q)
m + H + Q

)
(Aσ + I) (λ1 − λ2) + µ λ1,

dλ2

dt
= −ω1 + pα(λ2 − λ4) + (1 − p)α(λ2 − λ3) + µλ2 + γ1(λ2 − λ7),

dλ3

dt
= −ω2 + (φ u1 − u1 + 1)2

(
β0 −

β1 (H + Q)
m + H + Q

)
Sσ (λ1 − λ2) . . .

+ u3(λ3 − λ5) + ξ1(λ3 − λ4) + γ2(λ3 − λ7) + µλ3,

dλ4

dt
= −ω3 + (φ u1 − u1 + 1)2

(
β0 −

β1 (H + Q)
m + H + Q

)
S (λ1 − λ2) . . .

+ u2(λ4 − λ6) + γ3(λ4 − λ7) + µλ4 (3.12)
dλ5

dt
= −ω4 + (λ1 − λ2) (φ u1 − u1 + 1)2

(
−

β1

m + H + Q
+

β1 (H + Q)
(m + H + Q)2

)
S (Aσ + I) . . .

+ ξ2(λ5 − λ6) + γ4(λ5 − λ7) + µλ5,

dλ6

dt
= −ω5 + (λ1 − λ2) (φ u1 − u1 + 1)2

(
−

β1

m + H + Q
+

β1 (H + Q)
(m + H + Q)2

)
S (Aσ + I) . . .

+ (u4 + γ5)(λ6 − λ7) + µλ6,
dλ7

dt
= µλ7,

supplemented with the transversality condition λi(T f ) = 0 for i = 1, 2, . . . 7. In characterizing the
optimal controls, the Hamiltonian function H is differentiated partially with respect to each control
variable ui for i = 1, . . . 4, which gives us:

∂H

∂u1
= 2υ1u1 + 2 (φ u1 − u1 + 1)

(
β0 −

β1 (H + Q)
m + H + Q

)
S (Aσ + I) (φ − 1) (λ2 − λ1)
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∂H

∂u2
= 2υ3u2 + I(λ6 − λ4), (3.13)

∂H

∂u3
= 2υ4u3 + A(λ5 − λ3),

∂H

∂u4
= 2υ5u4 + H(λ7 − λ6).

Hence, considering the upper and lower bound of each control parameter by umax
i and umin

i , respectively,
we can characterize the optimal controls as

u∗i = min
{
umax

i ,max
{
umin

i , u†i
}}
, (3.14)

for i = 1, . . . , 4, where u†i is the solution of ∂H
∂ui

= 0 for i = 1, . . . , 4.

4. Parameter estimation from COVID-19 incidence in Indonesia and the autonomous
simulation

In this section, the transmission rate (β) is estimated against COVID-19 data from the DKI Jakarta, East
Java, and West Java Provinces, and the other parameters are obtained from the literature and presented
in Table 1. The total populations of DKI Jakarta, West Java, and East Java are 10,374,235, 49,316,712
and 39,501,000, respectively.

The sum of the squared error between the model and data is minimized, which is given by

S E =

n∑
t=1

(Ht − ft(x))2 + (Qt − gt(x))2 (4.1)

where Ht and Qt is the number of active cases of H and Q up to day t, respectively, while ft(x) and
gt(x) is the number of active cases for H and Q up to day t from the model’s solution, respectively. The
transmission rate, β0 and β1, is then estimated using the “lsqnonlin” built-in function in MATLAB.

The aim of the estimation is to obtain a general insight regarding the transmission rates of the disease
in these three provinces during the early incidence period. The incidence data are taken from [56] for
Jakarta, [57] for East Java, and [58] for West Java. Each dataset was obtained during a one-month
period from the beginning of the recorded incidents. The fitted values for the transmission rate of DKI
Jakarta are β0 = 2.015 × 10−7 and β1 = 0.94 × 10−7. Hence, the lowest infection rate in Jakarta was
1.075×10−7, which is 47% less than the initial infection rate of β0. On the other hand, the transmission
rates for East Java are β0 = 4.64×10−8 and β1 = 1.856×10−8. The maximum reduction in infection rate
due to community awareness in East Java was 60%. Finally, the transmission rates for West Java are
β0 = 4.9 × 10−8 and β1 = 4.41135 × 10−8. Therefore, the maximum reduction in the transmission rate
was 90% in West Java. Using these parameter values, the basic reproduction number during the early
spread of COVID-19 for Jakarta, East Java, and West Java are 4.18, 3.67, and 4.84, respectively, which
indicates that COVID-19 will persist in the community if no further intervention is implemented. The
results of the comparison between the actual and simulated data are given in Figure 4. Although there
is some systematic bias in the data and model simulations for West Java in the middle of the outbreak,
the result is sufficient to meet the purpose of the estimation, which is to obtain a general insight into
the transmission rate in the early period of the outbreak.
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Figure 4. Results of a comparison between the model simulations and data. Plot (a) depicts
DKI Jakarta province, Plot (b) depicts West Java Province, and Plot (c) depicts East Java.

Various interventions have been conducted by policymakers in different countries, such as social
distancing to reduce the contact rate, hospitalization to medicate infected individuals, contact tracing
with rapid test intervention, and medical masks, the most popular intervention. In this section, we
will determine how the control interventions affect the dynamics of the proposed model. The first
simulation was conducted with various values for the awareness level of the community (m), and other
parameters were kept constant with β0 and β1 from the Jakarta data. The results are given in Figure 5.
It can be seen that although the awareness level did not affect the size of R0, which in this case
means it also did not determine the equilibrium stability type, it is clear that a high level of community
awareness could reduce the level of the outbreak and delay the occurrence time. The second simulation
was conducted to determine the effect of the medical mask intervention. To perform the simulation,
we kept all parameters constant, while u1 varied. The results are given in Figure 6. It can be seen that
the effect of medical mask use was significant in reducing the outbreak and could delay the outbreak
occurrence time. This result confirms the reason policymakers suggest the use of a medical mask, not
only for the infected individual but also for the susceptible population. The application of medical mask
use is based on the difficulty of finding infected people, especially those who do not show symptoms.
Therefore, protecting all individuals using a medical mask is a reasonable option.
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Figure 5. Effect of the community awareness level on the dynamics of infected individu-
als. The simulation was conducted with parameter values that fitted Jakarta’s data and with
various values of m.
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Figure 6. Effect of medical mask use on the dynamics of infected individuals. The simulation
was conducted with parameter values that fitted Jakarta’s data and with various values of u1.

The next simulation was conducted to determine the effect of rapid testing to trace the existence
of infected individuals in the community. To run this simulation, we used various values of u2 and u3

simultaneously, while the other parameters remained constant. From this simulation, it can be seen
that rapid testing succeeded in reducing the total number of infected individuals, detected individuals,
and undetected individuals. The implementation of rapid tests was successful in reducing the number
of undetected cases, which in this case, transferred to the quarantined or hospitalized compartments.
When these individuals were moved to these compartments, the recovery duration from COVID-19
was improved, which reduced the number of detected cases.

5. Numerical experiment on a sensitivity analysis and optimal controls

This section presents the results of a sensitivity analysis and optimal control simulations.

5.1. Sensitivity analysis

A global sensitivity analysis was performed using Latin hypercube sampling (LHS) in conjunction
with the partial rank correlation coefficient (PRCC) multivariate analysis [59, 60]. When the PRCC
value of the parameter closes to positive or negative one, it indicates that the parameters are influential.
The sign (positive or negative) indicates the relationship between the parameters and the output of
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Figure 7. Effect of rapid testing on the dynamics of infected individuals. The simulation
was conducted with parameter values that fitted Jakarta’s data and with various values of u2

and u3.

interest. For example, when the sign is negative, it means that an increase in the parameter values
results in a decrease in the output (in our case, it is the number of infections or the reproduction
number). We measured the increasing number of infected individuals and the reproduction number
(Eq (3.6)). The increasing number of infected individuals is given by the following equation

CI =

∫ T

0
αE dt, (5.1)

where CI is the cumulative number of infectious individuals. The aim is to investigate the influential
parameters on the increasing number of infected individuals and the reproduction number. The PRCC
values for each parameter measured against the increasing number of infected individuals are given in
Figure 8.

For the sensitivity analysis, 2000 simulations were performed to assess the model’s sensitivity to
the parameters, and the results are given in Figure 8. This figure shows that the transmission rate β0

and control rates, which are the use of masks (u1), are the most influential parameters and affect the
increasing number of infectious individuals. Parameter β0 has a positive relationship, and the control
rate (u1) has a negative relationship, to the model’s outcome. This means that an increase in this control
rate would reduce the number of infected individuals. Interestingly, the effects of the other controls are
not as strong as this control. The results imply that to reduce the number of infected individuals, the use
of masks should be strongly implemented. We also ran 2000 samples to determine the most influential
parameters on the reproduction number and found the same results in which the transmission rate (β0)
and control rate (u1) were the most influential parameters. The first rate has a positive relationship and
the other rate has a negative relationship. The results are given in Figure 9. The control rate (u2) also
affects the reproduction number, although it is not as strong as the effect of medical mask use (u1.)

5.2. Optimal control simulation

The computations for the optimal control problem were performed numerically using the Runge–
Kutta method of the fourth order with MATLAB. The algorithm is summarized as follows. First,
an initial guess of the control variables is made and used to solve the state system (3.2) forward in
time. The results for the state variables and initial guess of ui are then substituted into the adjoint
system (3.12), which is solved backward in time with the transversality condition λ(T f ) = 0. Both the
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Figure 8. PRCC values when measured against the increasing number of infectious
individuals.

state and adjoint values are then used to update the control (3.14), and the process is repeated until the
current state and adjoint and control values converge sufficiently [61]. Please see [44, 45, 52–55] for
more examples of this method implemented in epidemiological models.

To illustrate the optimal control strategies, we used parameter values that were fitted to the COVID-
19 incidence data in Jakarta and initial conditions as follows: S (0) = 10 374 231, E(0) = 10, A(0) =

10, I(0) = 10,Q(0) = 0,H(0) = 4, and R(0) = 0. For the weight factors, we chose ωi = 1 for
i = 1, . . . , 5 and υ j = 106 for j = 1, . . . , 4. It should be pointed out that these values are theoretical as
they were chosen only to illustrate the control strategies proposed in this article.

In this section, we analyzed the effect of community awareness on the dynamics of the infected
population and on how the control variables responded to each scenario. Based on our numerical
simulations in Figure 5, smaller values of m (high levels of community awareness) could reduce and
delay the outbreak occurrence. To perform the simulation, we used three values of m−1, i.e., m−1 = 0.1,
which represents a high awareness level, and m−1 = 0.01 and m−1 = 0.001 to represent the medium and
low awareness levels, respectively. The simulation results are shown in Figure 10. It can be seen that
all simulations show a similar behavior of the control trajectories in which medical mask use provides
a high intensity early in the simulation and tends to its lower bound after the outbreak has passed.
As a response, the rapid testing u2 and u3 and hospitalization u4 should start to increase to balance
the decreasing of medical mask use in the community. The cost function for the cases of m−1 = 0.1,
m−1 = 0.01, and m−1 = 0.001 are 2.49 × 106, 2.5 × 106, and 2.53 × 106. However, the numbers of
infections that can be avoided in the case when m−1 = 0.1 provides the highest results, i.e., 34 980,
while those for m−1 = 0.01 and m−1 = 0.001 are 525 and 74, respectively.
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PRCC values

Figure 9. Sensitivity index (PRCC) when measured against the reproduction number.

To analyze the effectiveness of the optimal control simulations under the effect of community aware-
ness, we used two cost-effective analysis techniques. The first technique is the infection averted ratio
(IAR), with the formula given by

IAR =
Number of infections averted

Number recovered
. (5.2)

The simulation with the highest ratio is the most cost-effective. With this formula, we calculate the
IAR for each scenario as follows:

IAR (m−1 = 0.1) =
34 980
27 500

= 2.272,

IAR (m−1 = 0.01) =
525

81 840
= 0.006,

IAR (m−1 = 0.001) =
74

81 800
= 0.0009.

Hence, as IAR (m−1 = 0.1) > IAR (m−1 = 0.01) > IAR (m−1 = 0.001), we can conclude that the
most cost-effective is the case in which m−1 = 0.1, which represents the highest level of community
awareness.

The second analysis is the average-cost-effectiveness ratio (ACER) technique with the formula
given as follows.

ACER =
Total cost produced by the intervention

Total number of infections averted
. (5.3)
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Figure 10. Effect of community awareness on control trajectories and infected population.
Figures10a–c represent m equal to 10, 100, and 1 000, respectively.
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The lowest ACER ratio is the most effective strategy. Using the above formula, the ACER value for
each scenario is given as follows.

ACER (m−1 = 0.1) =
2.49 × 106

34 980
= 71.40,

ACER (m−1 = 0.01) =
2.5 × 106

525
= 4 817,

ACER (m−1 = 0.001) =
2.53 × 106

74
= 34 189.

Hence, as ACER (m−1 = 0.1) < ACER (m−1 = 0.01) < ACER (m−1 = 0.001), we can conclude that
the most effective strategy is when m−1 = 0.1, followed by m−1 = 0.01 and m−1 = 0.001. From both of
these simulations, we can confirm the importance of community awareness to increasing the chance of
a successful COVID-19 eradication program.

6. Conclusion

Although specific medicine to cure infected individuals or a vaccine to protect the susceptible pop-
ulation from COVID-19 have not yet been found, various interventions have been implemented by the
government in many countries, such as social/physical distancing, rapid testing, the use of medical
masks, quarantines, and the improvement of hospitalization services. In this work, we presented two
deterministic mathematical models in the form of systems of ordinary differential equations to describe
the transmission dynamics and consider several interventions (medical masks, rapid testing, and im-
provement of medical treatment in hospitals), with and without community awareness. The first model
was constructed by dividing the human population into susceptible, exposed, asymptomatic, symp-
tomatic, quarantined, hospitalized, and recovered groups. The second model used a similar separation
of the population but involved community awareness, which decreased the infection rate whenever the
number of hospitalized and quarantined individuals increased.

Mathematical analyses showed that both models have a COVID-19-free equilibrium point, which
is locally asymptotically stable if the basic reproduction number is less than unity, and unstable other-
wise. The endemic equilibrium for the first model was shown analytically, and we found that it existed
whenever the basic reproduction number was larger than unity. The endemic equilibrium for the sec-
ond model (model with awareness), the COVID-19 endemic equilibrium, was shown numerically. The
center-manifold theorem was applied to both models to analyze the bifurcation type at a basic repro-
duction number equal to unity. We found that both models undergo forward bifurcation when the basic
reproduction number is equal to unity.

Furthermore, we used our model to fit the incidence data in the three provinces in Indonesia that
have the highest recorded COVID-19 incidence, namely, Jakarta, East Java, and West Java. Our results
suggest that West Java has the largest basic reproduction number, followed by Jakarta and East Java.
However, we found that West Java has the highest reduction in the infection rate due to ”community
awareness” as the infection rate could reduce to 90% whenever the number of reported cases increased.
In contrast, Jakarta has the lowest effect, with the reduction in infection rate at only 47%, compared
with East Java, which has a 60% infection reduction rate.

The results of the global sensitivity analysis showed that the infection rate and control rate (u1)
are the most influential parameters on the increasing number of new infections. The first rate has a
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positive relationship, and the other rate has a negative relationship. This means that increasing the
proportion of individuals who use masks results in a decrease in the number of COVID-19 infections.
The same influential parameters were also found when we measured the basic reproduction number.
Furthermore, the control rates, u2 and u3, which are rapid testing for asymptomatic and symptomatic
individuals, affect the basic reproduction number and have a negative relationship. This means that
increasing these control rates would reduce the basic reproduction number.

From the numerical simulations of the autonomous simulation, we found that increasing community
awareness not only succeeded in suppressing the level of the COVID-19 outbreak but also delayed the
occurrence time of the outbreak. Hence, we analyzed these results further using the optimal control
approach. The optimal control problem was characterized using Pontryagin’s maximum principle and
solved numerically using the forward-backward sweep method with MATLAB. Our optimal control
simulation suggests that time-dependent intervention is effective in reducing the spread of COVID-19.
Furthermore, the implementation cost for the COVID-19 eradication program is more efficient when
the community has a high level of awareness.
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A. Appendix: Proof of Lemma 1

Under the given initial conditions, from dS
dt in system (2.3), we have

dS (t)
dt

= Λ −
[
(φq + 1 − q)2 β(I(t) + σA(t)) + µ

]
S (t).

This can be re-written as
dS (t)

dt
exp P +

[
(φq + 1 − q)2 β(I(t) + σA(t)) + µ

]
S (t) exp P = Λ exp P,

where P =
∫ t

0
(φq + 1 − q)2 β(I(τ) + σA(τ))dτ + µt. Therefore,

d
dt

(
S (t) exp

{∫ t

0
(φq + 1 − q)2 β(I(τ) + σA(τ))dτ + µt

})
= Λ exp

{∫ t

0
(φq + 1 − q)2 β(I(τ) + σA(τ))dτ + µt

}
.

Hence,

S (t) exp
{∫ t

0
(φq + 1 − q)2 β(I(τ) + σA(τ))dτ + µt

}
− S (0)

=

∫ t

0
Λ exp

{∫ t

0
(φq + 1 − q)2 β(I(τ) + σA(τ))dτ + µt

}
dτ.

Therefore,

S (t) = S (0) exp
{
−

∫ t

0
(φq + 1 − q)2 β(I(τ) + σA(τ))dτ + µt

}
+ exp

{
−

∫ t

0
(φq + 1 − q)2 β(I(τ) + σA(τ))dτ + µt

}
. . .(∫ t

0
Λ exp

{∫ t

0
(φq + 1 − q)2 β(I(τ) + σA(τ))dτ + µt

}
dτ.

)
≥ 0.

In a similar way, it can be shown that E(t) ≥ 0, A(t) ≥ 0,Q(t) ≥ 0, I(t) ≥ 0,H(t) ≥ 0, and R(t) ≥ 0.
Thus, the solution of S (t), E(t), A(t),Q(t), I(t),H(t), and R(t) of model (2.3) are non-negative for all
time t > 0. �
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Proof of Lemma 2

From model (2.3)

dN
dt

=
d(S + E + A + Q + I + H + R)

dt
= Λ − µ(S + E + A + Q + I + H + R) = Λ − µN.

Solving this, we have N(t) = Λ
µ

+
(
N(0) − Λ

µ

)
e−µt, where N(0) represents the initial conditions of the

total population. Thus, we have N(t) = Λ
µ

as t → ∞. Hence, all feasible solutions of system (2.3) enter
the region

Ω =

{
(S , E, A,Q, I,H,R) ∈ R7

+ : 0 ≤ S + E + A + Q + I + H + R ≤
Λ

µ

}
.

Therefore, it is a positively invariant set for system (2.3).

Proof of Theorem 3

For the system, it is assumed that

S = x1, E = x2, A = x3, Q = x4, I = x5, H = x6, R = x7,

dS
dt

= g1,
dE
dt

= g2,
dA
dt

= g3,
dQ
dt

= g4,
dI
dt

= g5,
dH
dt

= g6,
dR
dt

= g7.

Therefore, it can be written as

g1 = Λ − kβx1(x5 + σx3) − µx1,

g2 = kβx1(x5 + σx3) − αx2 − γ1x2 − µx2,

g3 = (1 − p)αx2 − γ2x3 − η2x3 − ξ1x3 − µx3,

g4 = pαx2 + ξx3 − γ3x5 − η1x5 − µx5,

g5 = η2x3γ4x4 − ξ2x4 − µx4,

g6 = η1x5 + ξ2x4 − γ5x6 − µx6,

g6 = γ1x2 + γ2x3 + γ3x5 + γ3x5 + γ4x4 + γ5x6 − µx7.

(A.1)

Parameter β as the bifurcation parameter is obtained by solving R0 = 1 respect to β. Next, E0 and the
bifurcation parameters are substituted into the Jacobian matrix of system (A.1). Thus, the eigenvalue
of the Jacobian matrix is obtained. Since one zero eigenvalues appear while other eigenvalues are nega-
tive, we can proceed to use the center-manifold theorem to analyze the bifurcation type of system (2.3).
Furthermore, we attempt to determine the right and left eigenvectors. To find the right eigenvector, we
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use vector ~w = (w1,w2,w3,w4,w5,w6,w7). The right eigenvector ~w is obtained as follows:

w1 =
Λ

(
µ + γ5

)
k
((
−ση1 +

(
−σ + 1

)
µ − σγ3 + γ2 + η2

)
p + σγ3 + µσ + ση1 + ξ1

)(
µ + γ4 + ξ2

)((
µ2 + (γ2 + γ4 + ξ2 + η2) µ + γ4 (γ2 + η2)

)
p + (ξ1 + η2 + γ2) ξ2 + ξ1(µ + γ4)

)
η1 − ξ2η2 (γ3 + µ) (p − 1)

,

w2 =
(µ + η1 + γ3) (µ + ξ1 + γ2 + η2) (µ + γ5) (µ + γ4 + ξ2)

((((γ2 + µ) ξ2 + (γ4 + µ) (µ + η2 + γ2)) p + (ξ1 + η2) ξ2 + ξ1 (γ4 + µ)) η1 − ξ2η2 (γ3 + µ) (p − 1))α
,

w3 = −
(µ + γ4 + ξ2) (µ + η1 + γ3) (µ + γ5) (p − 1)

(((γ2 + µ) ξ2 + (γ4 + µ) (µ + η2 + γ2)) p + (ξ1 + η2) ξ2 + ξ1 (γ4 + µ)) η1 − ξ2η2 (γ3 + µ) (p − 1)
,

w4 = −
η2 (µ + η1 + γ3) (µ + γ5) (p − 1)

(((µ + γ2) ξ2 + (γ4 + µ) (γ2 + µ + η2)) p + (ξ1 + η2) ξ2 + ξ1 (γ4 + µ)) η1 − ξ2η2 (γ3 + µ) (p − 1)
,

w5 =
(p (µ + η2 + γ2) + ξ1) (µ + γ4 + ξ2) (µ + γ5)

(((γ2 + µ) ξ2 + (γ4 + µ) (µ + η2 + γ2)) p + (ξ1 + η2) ξ2 + ξ1 (γ4 + µ)) η1 − ξ2η2 (γ3 + µ) (p − 1)
,

w6 = 1;

w7 =
1

−
((
µ2 + (γ2 + γ4 + ξ2 + η2) µ + γ4 (γ2 + η2)

)
p + ξ1µ + γ4 + (ξ1 + η2 + γ2) ξ2

)
η1 − ξ2η2 (γ3 + µ) (p − 1)

1
αµ

(
−µ4γ1 +

((
−γ2 − γ3 − γ4 − γ5 − ξ1 − ξ2 − η1 − η2

)
γ1 −

(
γ3 p − γ2

(
p − 1

))
α
)
µ3

+
(((
−γ2 − γ3 − γ4 − ξ1 − ξ2 − η1 − η2

)
γ5 +

(
−γ2 − γ4 − ξ1 − ξ2 − η2

)
γ3 +

(
−ξ1 − η1 − η2 − γ2

)
γ4

+
(
−ξ2 − η1

)
γ2 +

(
−ξ1 − ξ2 − η2

)
η1 −

(
ξ1 + η2

)
ξ2

)
γ1 − α

((
γ3 p +

(
1 − p

)
γ2 + pη1

)
γ5

+
(
pη2 + pγ4 + pξ2 + γ2 + ξ1

)
γ3 −

(
p − 1

)(
γ4

(
γ2 + η2

)
+ γ2

(
ξ2 + η1

))))
µ2

+
((((
−γ2 − γ4 − ξ1 − ξ2 − η2

)
γ3 +

(
−ξ1 − η1 − η2 − γ2

)
γ4 +

(
−ξ2 − η1

)
γ2 +

(
−ξ1 − ξ2 − η2

)
η1

−
(
ξ1 + η2

)
ξ2

)
γ5 −

(
γ4 + ξ2

)(
η1 + γ3

)(
γ2 + ξ1 + η2

))
γ1 − α

(((
pη2 + pγ4 + pξ2 + γ2 + ξ1

)
γ3

+
((

1 − p
)
γ2 + pη1 − η2

(
p − 1

))
γ4 +

(
η1 +

(
1 − p

)
ξ2

)
γ2 +

(
pη2 + pξ2 + ξ1

)
η1 − ξ2η2

(
p − 1

))
γ5

+ γ3
((
γ2 + ξ1 + η2

)
γ4 + ξ2

(
pη2 + γ2 + ξ1

))
−

(
p − 1

)(
γ2ξ2 + γ4

(
γ2 + η2

))
η1

))
µ

− γ5
(
α + γ1

)(
γ4 + ξ2

)(
η1 + γ3

)(
γ2 + ξ1 + η2

))
.

(A.2)

Then, we look for the left eigenvector using vector ~v = (v1, v2, v3, v4, v5, v6). The left eigenvector ~v is
obtained as follows:

v1 = 0,

v2 = 1,

v3 = −
αµσ + αση1 + ασγ3 + µ2σ + µσ η1 + µσγ1 + µσγ3 + ση1γ1 + σγ1γ3 + α ξ1 + ξ1µ + γ1ξ1

(µ pσ + pση1 + pσγ3 − µ p − µσ − pη2 − pγ2 − ση1 − σγ3 − ξ1)α
,

v4 = 0,

v5 = −
αµ + α η2 + α γ2 + α ξ1 + µ2 + µ η2 + µ γ1 + µ γ2 + ξ1µ + η2γ1 + γ1γ2 + γ1ξ1

α (µ pσ + pση1 + pσγ3 − µ p − µσ − pη2 − pγ2 − ση1 − σγ3 − ξ1)
,

v6 = 0,

v7 = 0.
(A.3)
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We find that the value of the eigenvector v1 = 0, v4 = 0, v6 = 0, and v7 = 0; thus, there is no need to
determine partial derivatives of g1, g4, g6, and g7. Therefore, we will determine derivatives of g2, g3,
and g5 to obtain the values ofA and B. The non-zero g2, g3, and g5 derivatives are as follows:

∂2g2

∂x1∂x3
=

∂2g2

∂x3∂x1
=

µ (µ + ξ1 + γ2 + η2) (µ + η1 + γ3) (µ + α + γ1)σ
(− (p − 1) (µ + η1 + γ3)σ + (γ2 + µ + η2) p + ξ1)αΛ

∂2g2

∂x1∂x5
=

∂2g2

∂x5∂x1
=

µ (µ + ξ1 + γ2 + η2) (µ + η1 + γ3) (µ + α + γ1)
(− (p − 1) (µ + η1 + γ3)σ + (γ2 + µ + η2) p + ξ1)αΛ

.

∂2g2

∂x3∂β
=

∂2g2

∂β∂x3
=

kΛσ

µ
,

∂2g2

∂x5∂β
=

∂2g2

∂β∂x5
=

kΛ

µ
,

Therefore,A and B are obtained as follows:

A =

3∑
k,i, j=1

vkwiw j
∂2gk

∂xi∂x j
(0, 0)

= v2w1w3
∂2g2

∂x1∂x3
+ v2w1w5

∂2g2

∂x1∂x5
+ v2w3w1

∂2g2

∂x3∂x1
+ v2w5w1

∂2g2

∂x5∂x1

= −
2 (µ + γ5)2 (µ + γ4 + ξ2)2 (µ + α + γ1)2 (µ + η1 + γ3)2 (µ + ξ1 + γ2 + η2)2

Λ ((((µ + γ2) ξ2 + (γ4 + µ) (γ2 + µ + η2)) p + (ξ1 + η2) ξ2 + ξ1 (γ4 + µ)) η1 + ξ2η2 (γ3 + µ) (1 − p))2 α2

< 0.

B =

3∑
k,i=1

vkwi
∂2gk

∂xi∂β
(0, 0)

= v2w3
∂2g2

∂x3∂β
+ v2w5

∂2g2

∂x5∂β

=
(µ + γ4 + ξ2) k (µ + γ5) Λ ((1 − p) (µ + η1 + γ3)σ + (γ2 + µ + η2) p + ξ1)

((((γ2 + µ) ξ2 + (γ4 + µ) (µ + η2 + γ2)) p + (ξ1 + η2) ξ2 + ξ1 (γ4 + µ)) η1 + ξ2η2 (γ3 + µ) (1 − p)) µ
> 0

(A.4)

BecauseA < 0 and B > 0, there is a forward bifurcation at R0 = 1 for model (2.3).

Proof of Theorem 5

For the system, it is assumed that

S = x1, E = x2, A = x3, Q = x4, I = x5, H = x6, R = x7,

Mathematical Biosciences and Engineering Volume 17, Issue 6, 6355–6389.



6386

dS
dt

= g1,
dE
dt

= g2,
dA
dt

= g3,
dQ
dt

= g4,
dI
dt

= g5,
dH
dt

= g6,
dR
dt

= g7.

Therefore, it can be written as

g1 = Λ − k
(
β0 − β1

x6 + x4

m + x6 + x4

)
x1(x5 + σx3) − µx1,

g2 = k
(
β0 − β1

x6 + x4

m + x6 + x4

)
x1(x5 + σx3) − αx2 − γ1x2 − µx2,

g3 = (1 − p)αx2 − γ2x3 − u3x3 − ξ1x3 − µx3,

g4 = pαx2 + ξx3 − γ3x5 − u2x5 − µx5,

g5 = u3x3γ4x4 − ξ2x4 − µx4,

g6 = u2x5 + ξ2x4 − γ5x6 − µx6,

g6 = γ1x2 + γ2x3 + γ3x5 + γ3x5 + γ4x4 + (γ5 + u4)x6 − µx7.

(A.5)

Parameter β0 as the bifurcation parameter is obtained by solving R∗
0 = 1 respect to β0. Next, E0 and the

bifurcation parameters are substituted into the Jacobian matrix of system (A.5). Thus, the eigenvalue
of the Jacobian matrix is obtained. Since the zero eigenvalues appear while other eigenvalues are neg-
ative, we can proceed to analyze the bifurcation type of our model using the center manifold theorem.
Furthermore, we determine the right and left eigenvectors. To find the right eigenvector, we use the
vector ~w = (w1,w2,w3,w4,w5,w6,w7). The right eigenvector ~w is obtained as follows:

w1 = −
(µ + γ5 + u4) (µ + γ4 + ξ2) (µ + γ3 + u2) (µ + γ2 + u3 + ξ1) (α + µ + γ1)

(((µ + γ2) ξ2 + (γ4 + µ) (γ2 + µ + u3)) p + (u3 + ξ1) ξ2 + ξ1 (γ4 + µ)) u2 + u3ξ2 (γ3 + µ) (1 − p)
,

w2 =
(µ + γ5 + u4) (µ + γ4 + ξ2) (µ + γ3 + u2) (µ + γ2 + u3 + ξ1)

((((µ + γ2) ξ2 + (γ4 + µ) (γ2 + µ + u3)) p + (u3 + ξ1) ξ2 + ξ1 (γ4 + µ)) u2 + u3ξ2 (γ3 + µ) (1 − p))α
,

w3 =
(µ + γ4 + ξ2) (µ + γ5 + u4) (µ + γ3 + u2) (1 − p)

(((µ + γ2) ξ2 + (γ4 + µ) (γ2 + µ + u3)) p + (u3 + ξ1) ξ2 + ξ1 (γ4 + µ)) u2 + u4ξ2 (γ3 + µ) (1 − p)
,

w4 =
u3 (µ + γ5 + u4) (µ + γ3 + u2) (1 − p)

(((µ + γ2) ξ2 + (γ4 + µ) (γ2 + µ + u3)) p + (u3 + ξ1) ξ2 + ξ1 (γ4 + µ)) u2 + u3ξ2 (γ3 + µ) (1 − p)
,

w5 =
(µ + γ4 + ξ2) ((γ2 + µ + u3) p + ξ1) (µ + γ5 + u4)

(((µ + γ2) ξ2 + (γ4 + µ) (γ2 + µ + u3)) p + (u3 + ξ1) ξ2 + ξ1 (γ4 + µ)) u2 + u3ξ2 (γ3 + µ) (1 − p)
,

w6 = 1;
(A.6)
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w7 =
1((

µ2 + (γ2 + γ4 + u3 + ξ2) µ + γ4 (γ2 + u3)
)

p + (γ2 + u3 + ξ1) ξ2 + ξ1 (γ4 + µ)
)

u2 + u4ξ2 (γ3 + µ) (1 − p)
1
αµ

(
−γ1µ

4 +
((
−γ2 − γ3 − γ4 − γ5 − u2 − u3 − u4 − ξ1 − ξ2

)
γ1 +

(
−pγ3 − γ2

(
1 − p

))
α
)
µ3

+
(((
−γ2 − γ4 − γ5 − u3 − u4 − ξ1 − ξ2

)
γ3 +

(
−γ2 − γ5 − u2 − u4 − u4 − ξ1

)
γ4

+
(
−γ2 − u3 − u3 − ξ1 − ξ2

)
γ5 +

(
−γ2 − u2 − u3 − ξ1 − ξ2

)
u4 +

(
−γ2 − u2 − u3 − ξ1

)
ξ2

− u2
(
γ2 + u3 + ξ1

))
γ1 + α

((
−pγ4 − pγ5 − pu3 − pu4 − pξ2 − γ2 − ξ1

)
γ3 +

(
γ2 − u3

)(
1 − p

)
γ4

+
(
−pu3 − γ2

(
1 − p

))
γ5 +

(
−pu3 − γ2

(
1 − p

))
u4 + γ2

(
u2 − ξ2

)(
1 − p

)))
µ2

+
((((
−γ2 − γ5 − u3 − u4 − ξ1

)
γ4 +

(
−γ2 − u3 − ξ1 − ξ2

)
γ5 +

(
−γ2 − u3 − ξ1 − ξ2

)
u4

− ξ2
(
γ2 + u3 + ξ1

))
γ3 +

((
−γ2 − u2 − u3 − ξ1

)
γ5 +

(
−γ2 − u2 − u3 − ξ1

)
u4 − u2

(
γ2 + u3 + ξ1

))
γ4

+
((
−γ2 − u2 − u3 − ξ1

)
ξ2 − u2

(
γ2 + u3 + ξ1

))
γ5 +

((
−γ2 − u2 − u4 − ξ1

)
ξ2 − u2

(
γ2 + u3 + ξ1

))
u4

− ξ2u2
(
γ2 + u3 + ξ1

))
γ1 + α

(((
−pγ5 − pu4 − γ2 − u3 − ξ1

)
γ4 +

(
−pu3 − pξ2 − γ2 − ξ1

)
γ5

+
(
−pu3 − pξ2 − γ2 − ξ1

)
u4 − ξ2

(
pu3 + γ2 + ξ1

))
γ3 +

((
−pu2 +

(
γ2 − u3

)(
1 − p

))
γ5

−
(
−pu2 +

(
γ2 + u3

)(
1 − p

))
u4 − u2

(
γ2 + u3

)(
1 − p

))
γ4 −

((
pu2 +

(
γ2 + u3

)(
1 − p

))
ξ2

− u2
(
pu3 + γ2 + ξ1

))
γ5 −

((
pu2 +

(
γ2 + u3

)(
1 − p

))
ξ2 − u2

(
pu4 + γ2 + ξ1

))
u4 − γ2u2ξ2

(
1 − p

)))
µ

−
(
γ5 + u4

)(
ξ2 + γ4

)(
γ3 + u2

)(
γ2 + u3 + ξ1

)(
γ1 + α

))
.

(A.7)

Then, we determine the left eigenvector using vector ~v = (v1, v2, v3, v4, v5, v6). The left eigenvector ~v is
obtained as follows:

v1 = 0,

v2 = 1,

v3 = −
αµσ + ασγ3 + ασ u2 + µ2σ + µσγ1 + µσγ3 + µσ u2 + σγ1γ3 + σγ1u2 + α ξ1 + µ ξ1 + γ1ξ1

(µ pσ + pσγ3 + pσ u3 − µ p − µσ − pγ2 − pu3 − σγ3 − σ u2 − ξ1)α
,

v4 = 0,

v5 = −
αµ + α γ2 + α u3 + α ξ1 + µ2 + µ γ1 + µ γ2 + µ u3 + µ ξ1 + γ1γ2 + γ1u3 + γ1ξ1

α (µ pσ + pσγ3 + pσ u3 − µ p − µσ − pγ2 − pu3 − σγ3 − σ u2 − ξ1)
,

v6 = 0,

v7 = 0.
(A.8)

We find the values of the eigenvector v1 = 0, v4 = 0, v6 = 0, and v7 = 0; thus, there is no need to
determine a partial derivative of g1, g4, g6, and g7. Therefore, we will determine derivatives of g2, g3,
and g5 to get the valuesA and B. The non-zero g2, g3, and g5 derivatives are as follows:

∂2g2

∂x1∂x3
=

∂2g2

∂x3∂x1
=

µ (µ + γ3 + u3) (µ + γ2 + u4 + ξ1) (α + µ + γ1)σ
αΛ ((1 − p) (µ + γ3 + u3)σ + (γ2 + µ + u4) p + ξ1)

Mathematical Biosciences and Engineering Volume 17, Issue 6, 6355–6389.
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∂2g2

∂x1∂x5
=

∂2g2

∂x5∂x1
=

µ (µ + γ3 + u3) (µ + γ2 + u4 + ξ1) (α + µ + γ1)
αΛ (− (p − 1) (µ + γ3 + u3)σ + (γ2 + µ + u4) p + ξ1)

∂2g2

∂x3∂x4
=

∂2g2

∂x6∂x3
= −

kβ1Λσ

mµ
,
∂2g2

∂x3∂x6
=

∂2g2

∂x6∂x3
= −

kβ1Λσ

mµ
∂2g2

∂x5∂x6
=

∂2g2

∂x6∂x5
= −

kβ1Λσ

mµ
Thus,A and B are obtained as follows:

A =

3∑
k,i, j=1

vkwiw j
∂2gk

∂xi∂x j
(0, 0)

= v2w1w3
∂2g2

∂x1∂x3
+ v2w1w5

∂2g2

∂x1∂x5
+ v2w3w1

∂2g2

∂x3∂x1
+ v2w5w1

∂2g2

∂x5∂x1

= −
((2 (µ + γ5 + u4)2 (µ + γ4 + ξ2)2 (µ + γ3 + u2)3 (µ + γ2 + u3 + ξ1)2 (α + µ + γ1)2 (1 − p)σ(

(1 − p) (µ + γ3 + u2)σ + (γ2 + µ + u3) p + ξ1
)

1(
(((µ + γ2) ξ2 + (γ4 + µ) (γ2 + µ + u3)) p + (u3 + ξ1) ξ2 + ξ1 (γ4 + µ)) u2 + u3ξ2 (γ3 + µ) (1 − p)

)2
Λα2

)
+

(2 (µ + γ5 + u4)2 (µ + γ4 + ξ2)2 (µ + γ3 + u2)2 (µ + γ2 + u3 + ξ1)2 (α + µ + γ1)2 ((γ2 + µ + u3) p + ξ1)
(1 − p) (µ + γ3 + u2)σ + (γ2 + µ + u3) p + ξ1

1
(((µ + γ2) ξ2 + (γ4 + µ) (γ2 + µ + u3)) p + (u3 + ξ1) ξ2 + ξ1 (γ4 + µ)) u2 + u3ξ2 (γ3 + µ) (1 − p)

)
+( 2 (µ + γ4 + ξ2) (µ + γ5 + u4)2 (µ + γ3 + u2)2 (1 − p)2 u3kβ1Λσ(((

µ2 + (ξ2 + γ4 + γ2 + u3) µ + γ4 (γ2 + u3)
)

p + ξ1(µ + γ2) + (u3 + ξ1 + γ2) ξ2
)

u2 + u3ξ2 (γ3 + µ) (1 − p)
)

1
mµ

)
+

( 2 (µ + γ4 + ξ2) (µ + γ5 + u4) (µ + γ3 + u2) (1 − p) kβ1Λσ((
µ2 + (ξ2 + γ4 + γ2 + u3) µ + ξ2γ2 + γ4 (γ2 + u3)

)
p + ξ1µ + (u3 + ξ1) ξ2 + ξ1γ4

)
u2

1
mµ

)
+

(2 u3 (µ + γ5 + u4)2 (µ + γ3 + u2) (1 − p) (µ + γ4 + ξ2) ((γ2 + µ + u3) p + ξ1) kβ1Λ

mµ
1

((((µ + γ2) ξ2 + (γ4 + µ) (γ2 + µ + u3)) p + (u3 + ξ1) ξ2 + ξ1 (γ4 + µ)) u2 + u3ξ2 (γ3 + µ) (1 − p))2

)
+

2 (µ + γ4 + ξ2) ((γ2 + µ + u3) p + ξ1) (µ + γ5 + u4) kβ1Λ

((((µ + γ2) ξ2 + (γ4 + µ) (γ2 + µ + u3)) p + (u3 + ξ1) ξ2 + ξ1 (γ4 + µ)) u2 + u3ξ2 (γ3 + µ) (1 − p))

)
< 0.

B =

3∑
k,i=1

vkwi
∂2gk

∂xi∂β0
(0, 0)

= v2w3
∂2g2

∂x3∂β0
+ v2w5

∂2g2

∂x5∂β0

=
((1 − p) (µ + γ3 + u2)σ + (γ2 + µ + u3) p + ξ1) k (µ + γ5 + u4) Λ (µ + γ4 + ξ2)

µ ((((µ + γ2) ξ2 + (γ4 + µ) (γ2 + µ + u3)) p + (u3 + ξ1) ξ2 + ξ1 (γ4 + µ)) u2 + u3ξ2 (γ3 + µ) (1 − p))
> 0

(A.9)
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BecauseA < 0 and B > 0, there is a forward bifurcation appear for model (3.3) at R∗
0 = 1.
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