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Abstract: Using the technique of edge-based compartmental modelling (EBCM) for the spread
of susceptible-infected-recovered (SIR) diseases in networks, in a recent paper (PloS One, 8(2013),
e69162), Miller and Volz established an SIR disease network model with heterogeneous infectiousness
and susceptibility. The authors provided a numerical example to demonstrate its validity but they did
not perform any mathematical analysis of the model. In this paper, we resolve this problem. Using
the nature of irreducible cooperative system in the theory of monotonic dynamical system, we prove
that the dynamics of the model are completely determined by a critical value ρ0: When ρ0 > 0, the
disease persists in a globally stable outbreak equilibrium; while when ρ0 < 0, the disease dies out in
the population and the disease free equilibrium is globally stable.

Keywords: edge-based SIR epidemic model; contact network; heterogeneous infectiousness and
susceptibility; global dynamics

1. Introduction

Appropriate mathematical models of infectious diseases are helpful to reveal the mechanism of
disease transmission and to predict the final scale of the epidemic [1]. The social contact network of a
population plays a significant role in controlling the propagation of infectious diseases [2,3]. However,
directly analyze the propagation of disease on stochastic contact networks is very difficult, one often
relies on deterministic mean-field models that are aimed at approximating some average quantities
derived from the stochastic models [4–7].

Based on the probability generating function for the degree distribution on a contact network, Volz
introduced an edge-based SIR epidemic model, which has the great advantage of having a system
with only three differential equations [8]. This method describes the SIR disease spread process with

http://http://www.aimspress.com/journal/MBE
http://dx.doi.org/10.3934/mbe.2020310


5803

heterogeneous connectivity by the contact network structure. Its core is to track the change of the
probability that the neighboring nodes around the susceptible nodes are infected. Furthermore, Miller
derived a single differential equation with only a single higher order term that governs the dynamics of
the disease [9]. Recently, using the EBCM approach for the spread of susceptible-infected-recovered
(SIR) diseases in contact networks, Miller et al. [10] derived some simple ordinary differential equation
models capturing social heterogeneity and heterogeneous contact rates while explicitly considering the
impact of partnership duration. However, the theoretical analysis of such models is usually difficult,
and their validity is usually demonstrated through numerical simulations. For an edge-based epidemic
model with large initial value, Miller [11] obtained the threshold of disease transmission and the final
infection size. Using the same method, in a recent paper [12], we established a sexually transmitted
disease model on a bidirectional contact network with large initial value and analyzed in detail the
global dynamics of the model. We refer the reader to references [13–16] and references therein for
related works in this direction.

Vaccination in disease control strategies generally reduces the susceptibility of a node of network,
but could either increase or decrease the infectiousness of a node by reducing the severity of symptoms.
Modelling a disease with heterogeneous infectiousness and susceptibility in stochastic contact network
can be seen in [17, 18]. Using the EBCM technique, in a recent paper [19], Miller and Volz proposed
an SIR model considering the heterogeneous susceptibility and infectiousness of individuals. Assume
i is a parameter measuring a node’s ability to become infected and cause infection, but that is does
not influence the contact structure of the population. Without loss of generality, we assume that the
population is divided into M types. The model proposed in [19] takes the following form:

dθi, j

dt
= −(βi, j + γ j)θi, j + βi, j

ψ′(θ̃ j)
ψ′(1)

+ γ j , i, j = 1, 2, . . . ,M,

S i = ψ(θ̃i) ,
dRi

dt
= γiIi , Ii = 1 − S i − Ri ,

S =

M∑
i=1

S iQ(i) , I =

M∑
i=1

IiQ(i) , R =

M∑
i=1

RiQ(i),

(1)

with initial value θi, j(0) = 1 and I(0) = R(0) = 0, where θ̃ j =
∑M

l=1 θ j,lQ(l). The variables and parameters
in model (1) are summarized in Table 1. For this model, the authors provided a numerical example
to confirm its validity [19]. Here, we investigate the dynamics of the model (1) through mathematical
analysis.

The organization of this paper is as follows. In the next section, we recall the derivation process of
model (1), then we present our main results, including the derivation of the final size of an epidemic.
In section 3, we provide the detailed proof of our main theorem. Finally, in section 4, we provide two
simple scenarios for the special cases when M = 1 and M = 2 to make our results easier to understand.

2. Derivation of model (1) and its global stability results

In this section, we recall the derivation process of model (1), then we present our main results.
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Table 1. The variables and parameters used in the derivation of model (1). In these u is a test
individual: Randomly chosen from the population and modified so that it cannot infect other
individuals, although it can become infected.

Variable/parameter Definition

u A randomly chosen node prevented from
transmitting to its partners.

S/I/R The probability that u is susceptible/infected/recovered
at time t.

S i/Ii/Ri The proportion of type-i nodes who are susceptible/

infected/recovered at time t.
Q( j) The probability u is of type j.
θi, j The probability that an edge from a type- j partner v to

the test node u of type i has not transmitted
infection from v to u.

θ̃ j =
∑

l θ j,lQ(l) The probability that a random edge to u of type j
has not transmitted infection to u.

φS :i, j The probability that the partner v of a θi, j edge
is susceptible.

φI:i, j/φR:i, j The probability that the partner v of a θi, j edge is
infected/recovered but the edge has not transmitted.

P(k) The probability that a randomly chosen node has degree k.
ψ(x) =

∑
k P(k)xk The probability generating function of degree

distribution P(k).
ψ′(θ̃ j) The derived function of the probability generating

function about θ̃ j.
ψ′(1) The average degree of contact network.
βi, j The transmission rate from a type- j infected node to a

type-i node.
γ j The recovery rate of a type- j infected node.

2.1. Recalling the derivation process of model (1)

Assume the network structure is unchanged, that is the degree distribution P(k) of the network
is fixed. The nodes of the network are classified into M types according to their ability to become
infected and cause infection. Now randomly choose a test node u from the network, and assume that
the probability it is of type i is Q(i), then

∑M
i=1Q(i) = 1. It is easy to deduce the probability that the test

node u is susceptible, infected or recovered. In fact,

S =

M∑
i=1

S iQ(i), I =

M∑
i=1

IiQ(i), R =

M∑
i=1

RiQ(i),
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Figure 1. Flow diagram for an SIR network model with heterogeneous infectiousness and
susceptibility. The nodes are separated into M types by type i, but assume that i has no effect
on connectivity. Both infectiousness and susceptibility may depend on i.

where S i, Ii and Ri are respectively the probabilities that a type-i node is susceptible, infected and
recovered at time t, and therefore

S i + Ii + Ri = 1. (2)

Let θi, j denote the probability that an edge from a type- j partner v to the test node u of type-i has
not transmitted infection from v to u, and let φS :i, j be the probability v is still susceptible, φI:i, j the
probability v is infected but the edge has not transmitted, and φR:i, j the probability that v has recovered
without transmitting. Then θi, j = φS :i, j + φI:i, j + φR:i, j, and therefore,

φI:i, j = θi, j − φS :i, j − φR:i, j. (3)

Define θ̃i as the probability that a random edge to a type-i node u has not transmitted infection to u,
then θ̃i =

∑M
j=1 θi, jQ( j), and therefore,

S i =

M∑
k=1

P(k)θ̃k
i = ψ(θ̃i) (4)

and

φS :i, j =

M∑
k=1

kP(k)∑M
l=1 lP(l)

θ̃k−1
j =

ψ′(θ̃ j)
ψ′(1)

, (5)

where ψ(x) =
∑

k P(k)xk is the probability generating function of degree distribution P(k). The
transmission rate βi, j from a type- j node to a type-i node and the recovery rate γi of a type-i node are
type dependent, and they are assumed to be positive. From the probability fluxes between S i, Ii and Ri

compartments (upper) and those between φS :i, j, φI:i, j and φR:i. j (lower) as shown in Figure 1, we have
that

dRi

dt
= γiIi,

dφR:i, j

dt
= γ jφI:i, j,

dθi, j

dt
= −βi, jφI:i, j. (6)
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We can derive from the last two equations in Eq (6) with initial value

φI:i, j(0) = φR:i, j(0) = 0

that φRi, j =
γ j

βi, j
(1 − θi, j). Combining Eqs (3) and (5) and the second equation of φR:i, j in Eq (6), we then

derive system (7) from the last equation of θi, j in Eq (6) (see [19] for more details). Thus, the whole
dynamics of the disease transmission are summarized by model (1).

2.2. Main results

Notice that the dynamics of model (1) is determined by the dynamics of the following subsystem:

dθi, j

dt
= −(βi, j + γ j)θi, j + βi, j

ψ′(θ̃ j)
ψ′(1)

+ γ j := Fi, j(θ) , (7)

where i, j = 1, 2, . . . ,M. Define

Ω = {θ = (θ1,1, θ1,2, . . . , θ1,M, θ2,1, . . . , θM,M) : 0 ≤ θi, j ≤ 1, i, j = 1, 2, . . . ,M}.

Then Ω is a positive invariant set of system (7). We only need to consider the dynamics of system (7)
constrained in Ω. Notice that system (7) always contains the disease free equilibrium
E0 = (1, 1, . . . , 1, 1, . . . , 1).

Let DθF(θ) = (DθFi, j)(θ) be the jacobian matrix of system (7), where

F(θ) = (F1,1, F1,2, · · · , F1,M, F2,1, · · · , FM,M)(θ),

and denote
ρ0 = max{<(λ) : λ is the eigenvalue of matrix DθF(E0)}, (8)

where DθF(E0) is the jacobian matrix DθF(θ) at E0. Our main result can be summarized in the
following theorem.

Theorem 2.1. System (7) has at most two equilibria in the region Ω. Moreover,

(a) When ρ0 < 0, then the system has only the disease free equilibrium

E0 = (1, 1, ..., 1, 1, ..., 1)

which is globally asymptotically stable in Ω.

(b) When ρ0 > 0, then the disease free equilibrium E0 becomes unstable, and another outbreak
equilibrium

E∗ =
(
θ(∗)

1,1, θ
(∗)
1,2, ..., θ

(∗)
1,M, θ

(∗)
2,1, ..., θ

(∗)
M,M

)
∈ Int Ω

appears which is globally asymptotically stable in the region Ω \ {E0}.

Remark 1. Based on Theorem 2.1, we know from model (1) that if ρ0 > 0, then after the epidemic is
over, the fraction of individuals who have never been infected is

S (∞) =

M∑
i=1

S i(∞)Q(i) =

M∑
i=1

ψ(θ̃(∗)
i )Q(i),

where θ̃(∗)
i =

∑M
j=1 θ

(∗)
i, jQ( j). Thus, the final size of an epidemic in the population is

Z = 1 − S (∞) = 1 −
M∑

i=1

ψ(θ̃(∗)
i )Q(i).
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3. Proof of Theorem 2.1

We first introduce the following lemma which is used in the proof of our main theorem.

Lemma 3.1 ( [20]). For system d
dt x = F(x), let F(x) be a C1 cooperative vector field in Rn, whose

flow φ preserves Rn
+ for t ≥ 0 and is irreducible in Rn

+. Assume that the origin is an equilibrium and
that all trajectories in Rn

+ are bounded. Suppose the matrix-valued map DF: Rn → Rn×n is strictly
antimonotone, in the sense that if x > y, then DF(x) <DF(y). Then either all trajectories in Rn

+ tend to
the origin, or else there is a unique equilibrium p ∈ Int Rn

+ and all trajectories in Rn
+ \ {0} tend to p.

Proof. The jacobian matrix DθF(θ) of system (7) is

DθF(θ) =


D1,1

1,1 D1,1
1,2 ... D1,1

1,M D1,1
2,1 ... D1,1

M,M

D1,2
1,1 D1,2

1,2 ... D1,2
1,M D1,2

2,1 ... D1,2
M,M

D1,3
1,1 D1,3

1,2 ... D1,3
1,M D1,3

2,1 ... D1,3
M,M

... ... ... ... ... ... ...

DM,M
1,1 DM,M

1,2 ... DM,M
1,M DM,M

2,1 ... DM,M
M,M


, (9)

where i, j, l, m = 1, 2 . . . ,M, and when i = l,

Di, j
l,m = Di, j

i,m =
∂Fi, j

∂θi,m
=



− (βi,i + γi) + βi,i
ψ′′(θ̃i)
ψ′(1)

Qi, m = i,

βi,i
ψ′′(θ̃i)
ψ′(1)

Ql, m , i

 =
∂Fi,i

∂θi,l
, i = j,

− (βi, j + γ j), m = j,

0, m , j

 , i , j,

when i , l,

Di, j
l,m =

∂Fi, j

∂θl,m
=

βi, j
ψ′′(θ̃ j)
ψ′(1)

Qm, l = j,

0, l , j.

The off-diagonal elements of DθF(θ) are non-negative, and it is easy to check that DθF(θ) is strongly
connected* when βi, j > 0. Thus, system (7) is a irreducible cooperative system in Ω [20]. Consequently,
when ρ0 < 0, the equilibrium E0 is locally asymptotically stable, and when ρ0 >0, the equilibrium E0

is unstable.
To prove the global results of system (7) in Ω applying Lemma 3.1, we make the coordinate

transformation ϑi, j = 1 − θi, j, under which system (7) becomes

dϑi, j

dt
= −(βi, j + γ j)ϑi, j − βi, j

ψ′(ϑ̃ j)
ψ′(1)

+ βi, j := Fi, j(ϑ), (10)

where i, j = 1, 2, · · · ,M, and ϑ̃ j =
∑M

l=1(1 − ϑ j,l)Q(l) = 1 −
∑M

l=1 ϑ j,lQ(l). Notice that Ω is still the
positive invariant set of system (10), and the disease free equilibrium E0 is now transformed into the
zero equilibrium E0 of system (10), where

E0 = (ϑ1,1, ϑ1,2, ..., ϑ1,M, ϑ2,1, ..., ϑM,M) = (0, 0, ..., 0, 0, ..., 0).
*The definition of strongly connected and irreducible cooperative systems, refer to [20].
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Denote F (ϑ) = (F1,1,F1,2, · · · ,F1,M,F2,1, · · · ,FM,M)(ϑ). Noticing that F (ϑ) = −F(1M2 − ϑ), we can
deduce that

DϑF (E0) = DθF(E0),

where DϑF (E0) is the jacobian matrix DϑF (ϑ) of system (10) at E0. Moreover, from Lemma 3.1 we
know that E0 is locally asymptotically stable when ρ(DθF(E0)) ≤ 0, and unstable when ρ(Dθ(E0)) > 0.

We first consider the global stability results of system (10). Notice the following:

(a) System (10) is still an irreducible cooperative system in the bounded region Ω as

DϑF (ϑ) = −DθF(θ)|θ=1M2−ϑDϑ(1M2 − ϑ) = DθF(θ)|θ=1M2−ϑ.

(b) DϑF (ϑ) is strictly antimonotone in Ω. Since ψ(θ̃i) and ψ′′(θ̃i) are both monotone increasing
functions with respect to θi, j in the bounded region Ω, and therefore both ψ(ϑ̃i) and ψ′′(ϑ̃i) are
monotone decreasing functions of ϑi, j in Ω due to the relationship ϑ̃i = 1 −

∑M
j=1 ϑi, jQ( j). By

comparison, we can check that when ϑ1 < ϑ2, we have DϑF (ϑ1) > DϑF (ϑ2).

According to Lemma 1, either all trajectories in Ω tend to the zero equilibrium E0 of system (10), or
else there is a unique equilibrium

E∗ =
(
ϑ(∗)

1,1, ϑ
(∗)
1,2, . . . , ϑ

(∗)
1,M, ϑ

(∗)
2,1, . . . , ϑ

(∗)
M,M

)
∈ Int Ω

and all trajectories in Ω \ E0 tend to E∗. These, together with the local stability results of E0, indicates
that when ρ0 < 0, E0 is globally asymptotically stable in Ω, and when ρ0 > 0, it becomes unstable and
the equilibrium E∗ is globally asymptotically stable in Ω \ E0.

Now let E∗ = 1M2 − E∗, then E∗ ∈ Int Ω is the unique outbreak equilibrium of system (7). Based
on the arguments above, we deduce that when ρ0 < 0, E0 is globally asymptotically stable in Ω, and
when ρ0 > 0, it becomes unstable and the outbreak equilibrium E∗ is globally asymptotically stable in
Ω \ E0. The proof of Theorem 2.1 is thus completed.

�

Remark 2. Theorem 2.1 provides a theoretical basis for the prevention and control of heterogeneous
infectious and heterogeneous infectious diseases. For example, vaccination generally reduces the
susceptibility of a node in community, then the population can be divided into those who have or have
not received vaccination. The results of our analysis can be used to analyze the effectiveness of
vaccination strategies.

4. Two simple scenarios

Scenario 4.1. In the special case when M = 1, i.e., there is only one type of node in contact network,
system (7) is reduced to the model established in Miller [9]:

dθ1,1

dt
= −(β1,1 + γ1)θ1,1 + β1,1

ψ′(θ1,1)
ψ′(1)

+ γ1. (11)

Here E0 = (1) and ρ0 = −(β1,1 + γ1) + β1,1
ψ′′(1)
ψ′(1) . Moreover, ρ0 = 0 can be equivalently written as

β1,1

(β1,1+γ1)
ψ′′(1)
ψ′(1) = 1. Define

R0 =
β1,1

(β1,1 + γ1)
ψ′′(1)
ψ′(1)

. (12)
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Then R0 is the basic reproduction number of the disease. Notice that R0 ≤ 1 if and only if ρ0 ≤ 0. We
have the following result.

Corollary 1. System (11) has at most two equilibria in the region

Ω = {θ1,1 : 0 ≤ θ1,1 ≤ 1}.

Moreover,

(a) When R0 ≤ 1, then the system has only the disease free equilibrium E0 which is globally
asymptotically stable in Ω.

(b) When R0 > 1, then the disease free equilibrium E0 is unstable, and the outbreak equilibrium
E∗ = (θ(∗)

1,1) ∈ Int Ω appears and it is globally asymptotically stable in the region Ω \ {E0} = {θ1,1 :
0 ≤ θ1,1 < 1}.

Proof. We only need to prove that when R0 = 1 (i.e., ρ0 = 0), E0 = (1)1×1 is globally asymptotically
stable. In fact, denote

F1,1(θ1,1) = −(β1,1 + γ1)θ1,1 + β1,1
ψ′(θ1,1)
ψ′(1)

+ γ1.

We compute that
dF1,1(θ1,1)

dθ1,1
= −(β1,1 + γ1) + β1,1

ψ′′(θ1,1)
ψ′(1)

< 0

for θ1,1 ∈ [0, 1) due to ρ0 = 0. Thus, F1,1(θ1,1) is strictly monotonically decreasing on the interval [0, 1]
with F1,1(1) = 0 and therefore E0 = (1) is the unique equilibrium of system (11). It then follows from
dθ1,1

dt > 0 that for any solution with initial value θ1,1(0) ∈ [0, 1), E0 is globally asymptotically stable in
Ω = [0, 1]. The proof is thus completed. �

Scenario 4.2. In the special case when M = 2, i.e., there have two difference type of node in contact
network, system (7) takes the form:

dθ1,1

dt
= −(β1,1 + γ1)θ1,1 + β1,1

ψ′(θ̃1)
ψ′(1)

+ γ1 := F1,1(θ) ,

dθ1,2

dt
= −(β1,2 + γ2)θ1,2 + β1,2

ψ′(θ̃2)
ψ′(1)

+ γ2 := F1,2(θ) ,

dθ2,1

dt
= −(β2,1 + γ1)θ2,1 + β2,1

ψ′(θ̃1)
ψ′(1)

+ γ1 := F2,1(θ) ,

dθ2,2

dt
= −(β2,2 + γ2)θ2,2 + β2,2

ψ′(θ̃2)
ψ′(1)

+ γ2 := F2,2(θ) .

(13)

Here E0 = (1, 1, 1, 1). The jacobian matrix DθF(θ) of system (13) at E0 is

DθF(E0) =


−41,1(1) β1,1

ψ′′(1)
ψ′(1)Q(2) 0 0

0 −(β1,2 + γ2) β1,2
ψ′′(1)
ψ′(1)Q(1) β1,2

ψ′′(1)
ψ′(1)Q(2)

β2,1
ψ′′(1)
ψ′(1)Q(1) β2,1

ψ′′(1)
ψ′(1)Q(2) −(β2,1 + γ1) 0

0 0 β2,2
ψ′′(1)
ψ′(1)Q(1) −42,2(1)

 ,
where 4i,i(1) = (βi,i + γi) − βi,i

ψ′′(1)
ψ′(1)Q(i), i = 1, 2. Define ρ0 as in Eq (8). We have the following result.
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Corollary 2. System (7) has at most two equilibria in the region

Ω = {θi, j : 0 ≤ θi, j ≤ 1, i, j = 1, 2}.

Moreover,

(a) When ρ0 < 0, then the system has only the disease free equilibrium E0 which is globally
asymptotically stable in Ω.

(b) When ρ0 > 0, then the disease free equilibrium E0 is unstable, and the outbreak equilibrium

E∗ =
(
θ(∗)

1,1, θ
(∗)
1,2, θ

(∗)
2,1, θ

(∗)
2,2

)
∈ Int Ω

appears and it is globally asymptotically stable in the region Ω \ {E0}.

Remark 3. From Scenario 1 we know that for the special case when M = 1, the disease free
equilibrium E0 = (1) is globally asymptotically stable (GAS) when ρ0 = 0 (i.e., R0 = 1), but we can
not prove that a similar result holds for the special case when M = 2. We guess the disease free
equilibrium E0 of model (1) is also GAS for all M , 1. We leave it as an open problem.

5. Discussions and conclusions

Considering the fact that the individuals may have different susceptibility and infectiousness to the
disease spreading in the population, in a recent paper [19], Miller and Volz proposed an SIR disease
network model (i.e., model (1)) with heterogeneous infectiousness and susceptibility. The authors
have provided a numerical example to demonstrate its validity but its mathematical analysis remain
unsolved. In this paper, with the aid of the nature of irreducible cooperative system in the theory of
monotonic dynamical system, we prove that the dynamics of the model are completely determined by
a critical value ρ0: When ρ0 > 0, the disease persists in a globally stable outbreak equilibrium; while
when ρ0 < 0, the disease dies out in the population and the disease free equilibrium is globally stable.

Notice that it is assumed that in model (1) the random network considered is statically fixed and
does not take into account the influence of new nodes, deleted nodes and other factors on the network.
This is an approximation of the reality. More proper and reasonable model should consider these facts
and be based on dynamic random networks. Moreover, how to characterize the epidemic process of
heterogeneous infectious networks through numerical simulation is also a challenging problem. We
leave all these for our future consideration.
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