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Abstract: This manuscript presents a comparison of noise properties exhibited by two stochastic
binary models for: (i) a self-repressing gene; (ii) a repressed or activated externally regulating one. The
stochastic models describe the dynamics of probability distributions governing two random variables,
namely, protein numbers and the gene state as ON or OFF. In a previous work, we quantify noise in
protein numbers by means of its Fano factor and write this quantity as a function of the covariance
between the two random variables. Then we show that distributions governing the number of gene
products can be super-Fano, Fano or sub-Fano if the covariance is, respectively, positive, null or
negative. The latter condition is exclusive for the self-repressing gene and our analysis shows the
conditions for which the Fano factor is a sufficient classifier of fluctuations in gene expression. In this
work, we present the conditions for which the noise on the number of gene products generated from
a self-repressing gene or an externally regulating one are quantitatively similar. That is important for
inference of gene regulation from noise in gene expression quantitative data. Our results contribute to
a classification of noise function in biological systems by theoretically demonstrating the mechanisms
underpinning the higher precision in expression of a self-repressing gene in comparison with an
externally regulated one.
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1. Introduction

Gene regulation is a main feature of multicellular living organisms to ensure that proper amounts
of gene products are expressed at proper time and positions. That precision is achieved after the
molecular machinery surpassing the major challenge posed by unavoidable random fluctuations of
intracellular environment. They are caused by reactants being present in low copy numbers [1], and
have been detected experimentally by application of advanced fluorescence and microscopy techniques
to investigate the dynamics of molecular biological processes occurring in prokaryotic and eukaryotic
cells [2–5]. Noise on the amounts of gene products enables one to determine gene regulation [6]
and, because of its unavoidability, it is fair to conjecture the converse, that is, that the randomness of
many distinct gene networks is actively regulated to ensure their capability of performing a myriad of
specific cellular functions [7–10]. Indeed, when normal regulation of gene expression in metazoans
is disrupted the collective dynamics of the cells of specific tissues leads to non-lethal (for the cell)
deleterious (for the organism) behavior [11,12]. Hence, a classification of the gene regulatory strategies
enabling control of both the amounts of gene products and their noise levels can be a key for deepening
our understanding of living organisms and for speeding up synthetic biology.

In face of the diversity of dynamical regimes of gene expression such as the self-activating or
self-repressing genes or the feed-forward loop, existing classificatory efforts are useful starting
points [13]. E.g., feed-forward loops controlled by multiple transcription factors confer stronger
stability in response to environmental stimulus [14] while feedback loops permit faster
responses [15]. The negative feedback loops are employed on the control of circadian cycles and
response to DNA damage [16]. The simplest negative feedback loop is the self-repressing gene,
which enables noise reduction in gene expression [17–20]. But even the well studied self-repressing
gene, may have unexpected regimes of arbitrarily reduced noise [21] or regimes emerging only from
the stochastic nature of the intracellular biochemistry [22, 23]. Another widely recurring motif of
gene networks is the externally regulated gene. The WNT/beta-catenin pathway is an example of an
external regulating gene highly relevant for developmental biology because its conservation in all
metazoans. Upon WNT activation, beta-catenin is released, migrate to the cell nucleus where it
interacts with transcriptional factors, as TCF-4, and induces the expression of WNT target genes.
When WNT signal is OFF, beta-catenin is degraded [24]. This pathway is altered in many cancers
cells in a tumor-specific manner, it is used as a prognostic factor and demands further studies to
explore its potential therapeutic impacts [25].

Those observations indicate the existence of general principles underlying the functioning of
biological systems. That encourages the application of the theoretical machinery of stochastic
processes and Lie symmetries as an additional guide for the classification of noise regulation and gene
networks function. Such an analysis is important as it enables the classification of noise properties
related with specific gene regulatory strategies [6, 10, 26–28]. As we will show in this manuscript,
distinct gene regulatory strategies may generate equivalent noise on the number of products and
determining those regimes may be useful for parameter inference determining a given gene’s
regulatory strategy. In this manuscript we present a comparative analysis of noise behavior in the
context of the exactly solvable stochastic binary models for the self-repressing and the externally
regulating gene [29–32]. The steady state solutions are analyzed comparatively and interpretation of
the physical behavior of the two gene regulatory strategies is presented. Self-repression enables
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protein synthesis at lower fluctuation levels than the externally regulated gene even if both strategies
generate the same average number of proteins. We also analyze the conditions for which noise in
protein numbers are equivalent or similar for both gene strategies. Our results contribute for the
classification of functional noise and on the construction of synthetic circuits, being helpful for the
design of cancer therapy or diagnostics based on regulation of gene expression [25, 33]; to the
understanding of emergence of precision on the control of gene expression randomness [19, 20]; for
the inference of the topology of gene networks based on gene expression noise [34, 35]; to the
establishment of a classification of regulation of noise in gene expression accordingly with the
function of its products in a cell or network [36]. That sets the question of whether a given gene
regulatory mechanism was favoured for regulating noise in the duecourse of evolution [37–40], and
sets a “chicken and egg” type of question of what came first, noise regulation for functional
performance or the reverse?

This manuscript is organized as follows. In section 2 we briefly discuss the regulation of gene
expression and show the well-known exact solutions for the stochastic binary models for a
self-repressing gene (SRG) [30] and for an externally regulated gene (ERG) [29] that can be either
repressed or activated by transcription factors encoded in another gene. Section 3 shows the multiple
qualitatively distinctive probability distributions and corresponding moments that govern the steady
state protein numbers on both the SRG and ERG. A discussion of our results is given at section 4 and
demonstrations of our calculations are presented in the Appendix A.

2. Models and methods

Gene expression is the process by which the information encoded on DNA is converted into
functional units, as RNA and proteins. Though gene transcription and mRNA translation are key
processes of gene expression, the normal functioning of a cell requires different genes to be expressed
at proper quantities and instants. This regulation can be pre and post transcription, and even post
translation by acceleration of protein degradation for the control of cellular processes such as cell
cycle [41]. Specific DNA sequences interact with regulatory proteins to activate the binding of
RNAPolII complex to the promoter site [42,43] and transcription is initiated. Once complete, mRNAs
are transported to the cytoplasm to be translated. Translation can also be regulated by
miRNAs-mRNA interaction [44]. Such a multi-stages regulation of gene expression can be
formulated effectively in terms of their coupling whenever possible. At first, this approximated
description of gene expression appears to be very limited, but the wide diversity of qualitatively
distinct gene expression regimes enables its use on the interpretation of particular experimental
designs. Furthermore, that phenomenological approximation drives the proposition of exactly
solvable mathematical models to compute gene expression randomness.

The simplest stochastic models for gene regulation assume transcription and translation as coupled
processes and regulation of protein synthesis done by the spontaneous switching of the promoter of the
gene [29]. Self-regulation can be introduced if one of the switching rates is written as a function of the
protein numbers. As a first approximation, one may assume that the protein numbers do not change
because of the promoter switching [30]. Biologically, that condition may correspond to the expressed
protein acting as an enzyme that catalyzes the production of the actual repressor or, if it is the actual
repressor, its numbers are sufficiently large to turn negligible the effect of the binding of one protein.
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Alternatively, one may consider the change on the protein numbers by binding to the regulatory site in
the stochastic binary model for the SRG [45] which noisiness properties are fully investigated in terms
of its complete exact solutions [46]. The probability distributions obtained using these two families of
stochastic models may be very different [47,48] and searching for the most appropriate approaches for
modeling stochastic gene expression is a task to be performed with the help of experimental data [46].
For example, one may show that these simple models have the often detected bursting regime [49] as
a limit for very high synthesis rate happening at very short time interval [50] or explicitly add bursty
synthesis assuming that it is sufficiently fast in comparison with the remaining time scales involved
in protein synthesis [51]. Alternatively, one might approach the multiple nascent RNAs that give rise
to transcriptional burst by modeling the multiple RNAPol bound to the DNA as a traffic/random walk
problem on a 1D grid [52–54]. That enables the calculation of probability distributions governing
transcriptional bursts and the fluorescence intensities of probes of nascent RNAs [54]. An alternative
route for modeling stochastic gene expression is to consider transcription and translation as separate
processes without [55] or with promoter switching between ON and OFF states [56, 57].

In this manuscript we focus on the simplest class of stochastic binary models for regulation of gene
expression that are fully solvable [29–32] and provide a brief comparison with i. the approach in
which binding of the regulatory protein changes their numbers [45, 46]; ii. the bursty models [51]; iii.
the functioning of the linear approximations [58] for self-regulating genes based on the spontaneous
switching model [29]. Despite their simplicity, these models are useful building blocks [59] for the
understanding of smaller experiments and for the construction of incrementally more complex models
incorporating additional effects [49, 54]. The building blocks enable the biologists to gain a deeper
intuition on the physical behavior of the molecular components participating of regulation of gene
expression while their composition enables an integrative perspective about the dynamics of biological
processes. Additionally, they may motivate the design of experiments useful for further development
of more useful stochastic models for gene expression.

2.1. A qualitative description of regulation of gene expression

In its simplest description, regulation of gene expression may be considered as a simple ON and
OFF switching of the promoter as induced by regulatory proteins [60]. We also consider transcription
and translation as coupled processes by assuming no post-transcriptional regulation and a sufficiently
small variation on the number of proteins produced from one mRNA. Considering the randomness of
the gene expression process, we set the state of this system using two random variables (m, n), where
m = α or m = β denotes the state of the promoter as ON or OFF, and n = 0, 1, . . . indicates the number
of proteins.

The cascades of chemical reactions that comprise protein production are summarized as a minimal
set of effective reactions. The protein synthesis happens at constant rate denoted by k (or 0) when
the promoter of the gene is ON (or OFF) while ρ indicates the rate of protein loss of function. The
promoter switches from OFF to ON state at a constant rate denoted by f . Our choice for the rate of the
ON to OFF switch indicates the gene regulation strategy as ERG or SRG. We denote the ON to OFF
switching rate of the ERG by h2. The SRG has the ON to OFF switching rate is denoted by h1 and it is
a function of the number of proteins n. In its simplest approximation, we consider a linear dependence
such that we write h1n. Figure 1 shows a cartoon describing both genes.
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Figure 1. The left cartoon is a representation of a SRG while the right cartoon represents an
ERG.

The cartoon shown in Figure 1 corresponds to a set of effective chemical reactions. The left and
right effective reactions correspond to the SRG and ERG. For the SRG we denote a protein by P. The
regulatory region of the gene is denoted by R and the gene state is determined by the binding of P to
the regulatory region. The regulatory protein of the ERG is denoted by Pe. The symbols for reaction
rates appear on top of arrows indicating the reactants and products of the effective reactions.

Self-repressing gene

R
k
⇀ R + P, (2.1)

P
ρ
⇀ �, (2.2)

R + P
h1
⇀ RP, (2.3)

RP
f
⇀ R + P, (2.4)

Externally regulating gene

R
k
⇀ R + P, (2.5)

P
ρ
⇀ �, (2.6)

R + Pe
h2
⇀ RPe, (2.7)

RPe
f
⇀ R + Pe, (2.8)

Equations (2.1) and (2.5) indicate protein synthesis when the promoter state is ON while protein
degradation is indicated by Eqs (2.2) and (2.6). The gene switching from ON to OFF state is indicated
by Eqs (2.3) and (2.7) while the opposite transition is presented in Eqs (2.4) and (2.8).

2.2. Fluctuations and their quantification

Usually, the fluctuations on the amounts of gene products at a time instant t are quantified by the
Fano factor. This quantity is denoted by F , and defined as the ratio of the variance to the average
protein number, namely:

F =
〈n2〉 − 〈n〉2

〈n〉
. (2.9)

We can compute F by means of the time-dependent or steady state probabilities governing n or by
estimating expression levels in a sample of genes if, for example, a probe’s fluorescence intensity can
be measured [61]. The Fano factor is a measure of how different from a Poissonian a probability
distribution is. One may nominate a probability distribution accordingly with the value of its Fano
factor, such that, a Fano (or Poissonian) distribution has F = 1, a quasi-Fano (or quasi-Poissonian)
distribution has F ≈ 1, a super-Fano (or super-Poissonian) has F > 1, a sub-Fano (or sub-Poissonian)
has F < 1, and an infra-Fano (or infra-Poissonian) has F � 1 [21].
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The Fano factor provides a criterion to evaluate fluctuations in gene expression levels and the
moments of a distribution that must be quantified for its full characterization. For example, the
Poissonian and sub-Poissonian distributions are peaked around the average such that first and second
order moments are sufficient to roughly estimate the numbers of gene products that are governed by
them, since n is mostly within the interval [〈n〉 −

√
F 〈n〉, 〈n〉 +

√
F 〈n〉]. That may not be the case of

the super-Poissonian distributions that can have a multiplicity of shapes, for instance, the negative
binomial, bimodal, table shaped, and so on. These distributions are spread widely and the
computation of the first and second order moments is not sufficient for a rough estimate of the
numbers of gene products at a given instant. Evaluating super-Poissonian noise in gene expression
and their origins is a harder task and the use of exactly solvable mathematical models providing
probability distributions can produce further insights on understanding the mechanisms of gene
regulation.

2.3. A stochastic model for regulation of gene expression

Here we consider a well-known stochastic model for protein synthesis from a two state
promoter [29, 30]. Since the random variables of the model are n and m, the system state is
characterized by a probability distribution

Π(αn(t), βn(t)), (2.10)

where the probability of finding n proteins at time t when the gene is ON, or OFF, is indicated by αn(t),
or βn(t). The master equation governing the dynamics of the probabilities is:

dαn(t)
dt

= k(αn−1(t) − αn(t)) + ρ[(n + 1)αn+1(t) − nαn(t)] − (h1n + h2)αn(t) + fβn(t), (2.11)

dβn(t)
dt

= ρ[(n + 1)βn+1(t) − nβn(t)] + (h1n + h2)αn(t) − fβn(t). (2.12)

We assume the rates k, ρ, f , h1, and h2 to be constants during the time interval of integration of
Eqs (2.11) and (2.12). The SRG is modeled considering h1 , 0 and h2 = 0, such that the switching rate
from ON to OFF state depends on n. We assumed that n do not change with the interaction between
the protein and the gene.

The contrary condition, h1 = 0 and h2 , 0, results in a model for the ERG which switching
constants indicate a random spontaneous switching between ON and OFF states. However, one may
also write the switching constants as functions of the concentrations of the regulatory transcription
factors encoded in another gene to phenomenologically indicate repression or activation. The value
of h2 is dependent on the instantaneous amounts of Pe and we approximate it to be constant under
the following assumptions: The probabilities governing the amounts of Pe reached the steady state
regime; the average amounts of Pe are large enough to ensure that small fluctuations would not change
its binding probability to the regulatory site of the gene; the fluctuations on the amounts of Pe are
within a sufficiently small range. In case of significant changes on the amounts of Pe leading to a
distinguishable regulatory landscape, we might use a piecewise integration of Eqs (2.11) and (2.12).
Hence, the rates are assumed as constant during a time interval in which the changes of regulatory
environment are negligible [33, 62].
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2.4. Marginal distributions and moments

The exact solutions for both the steady state [29, 30] and the time-dependent regime [31, 59] have
already been presented elsewhere. Here we apply the steady state solutions to compute the full and the
marginal probability distributions and their related moments for a comparative analysis of the noise
on the protein numbers produced from an ERG or a SRG. The marginal probabilities of finding the
promoter at ON or OFF state independently of the amount of proteins inside the cell are denoted by pα
and pβ, respectively, such that:

pα =

∞∑
n=0

αn and pβ =

∞∑
n=0

βn. (2.13)

The marginal probability of finding n proteins inside the cell independently of the promoter state being
ON or OFF, denoted by φn, is given by

φn = αn + βn. (2.14)

The marginal and the auxiliary p-th order moments of protein numbers n, denoted by 〈np〉, 〈np
α〉, 〈n

p
β〉

are, respectively,

〈np〉 =

∞∑
n=0

φnnp, 〈np
α〉 =

∞∑
n=0

αnnp, 〈np
β〉 =

∞∑
n=0

βnnp. (2.15)

These quantities will be useful on the calculations of the covariance between the two random variables
of the model.

2.5. Exact solutions of the model

The exact solutions of Eqs (2.11) and (2.12) were obtained recently using the generating function
technique. The generating functions of the time-dependent probabilities for the model for a SRG are
given in terms of the confluent Heun functions [32] while for the ERG these solutions are given in
terms of the confluent hypergeometric functions of the first kind [31] also known as KummerM or
WhittakerM functions ( [63], page 503). Here we focus on the steady state solutions which are also
given by KummerM functions for both the SRG [30] and the ERG [56] models. The KummerM
function is denoted by M(A,B, η), see [63], and written as a power series:

M(A, B, η) =

∞∑
n=0

(A)n

(B)n

ηn

n!
, (2.16)

where the (A)n = A(A + 1). . . . .(A + n − 1) is the Pochhammer symbol. Note that for A = B the power
series defining the KummerM function coincides with that for the exponential, hence:

M(A, A, η) = eη. (2.17)

The next Subsections present the steady state solutions for both the ERG and SRG models, which
probabilities and parameters are distinguished by superscripts e and s, respectively. The parameters
that are the same for both models have no superscripts.
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2.5.1. Externally regulating gene

The distribution Π(αe
n, β

e
n) for the ERG has three parameters, a,N, be, defined in terms of the reaction

rate constants as [56]:

a =
f
ρ
, N =

k
ρ
, be =

f + h2

ρ
. (2.18)

Here, the protein half life, ≈ 1/ρ, sets the time scale of model. The parameter a is the ratio of the OFF
to ON switching rate to the decaying rate and N is the steady state average number of proteins if the
promoter remains exclusively ON. The parameter be is the ratio of the decaying rate of the promoter
switching to steady state to the protein degradation rate.

The probabilities αe
n, βe

n, and φe
n are:

αe
n =

a
be

Nn

n!
(a + 1)n

(be + 1)n
M(a + n + 1, be + n + 1,−N), (2.19)

βe
n =

be − a
be

Nn

n!
(a)n

(be + 1)n
M(a + n, be + n + 1,−N), (2.20)

φe
n =

Nn

n!
(a)n

(be)n
M(a + n, be + n,−N), (2.21)

were obtained using their respective generating functions found in [29, 56, 59]. The marginal
probabilities of finding the gene ON or OFF are

pe
α =

a
be , pe

β =
be − a

be . (2.22)

The probability for the promoter to be ON is proportional to the switching rate from OFF to ON state
and it indicates the average fraction of time for the promoter being ON during an interval. Note,
0 ≤ pe

α ≤ 1 implies a 0 ≤ a ≤ be.

2.5.2. Self-repressing gene

The distribution Π(αs
n, β

s
n) for the SRG has the parameters a,N, as for the ERG in Eq (2.18), and the

parameters bs and z0, where:

a =
f
ρ
, N =

k
ρ
, z0 =

ρ

ρ + h1
, bs =

f
ρ + h1

+
Nρh1

(ρ + h1)2 = az0 + Nz0(1 − z0). (2.23)

These parameters are defined in terms of the protein removal rate from cytoplasm because of protein
degradation or protein binding to the regulatory region of the gene ∝ 1/(ρ + h1) [23].

The probabilities αs
n, βs

n, and φs
n, are written using the generating functions presented in [22] with

replacement of that N by Nz0 and χ = 0, such that:

αs
n =

a
bs

z0

c
(a + 1)n

(bs + 1)n

(Nz0)n

n!
M(a + n + 1, bs + n + 1,−Nz2

0), (2.24)

φs
n =

1
c

(a)n

(bs)n

(Nz0)n

n!
M(a + n, bs + n,−Nz2

0), (2.25)

βs
n = φs

n − α
s
n. (2.26)
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c = M(a, bs,Nz0(1 − z0)) is the normalization constant of the distribution. The marginal probabilities
of finding the gene ON or OFF are:

ps
α =

a
bs

z0

c
M(a + 1, bs + 1,Nz0(1 − z0)), or ps

β = 1 − ps
α. (2.27)

Since Nz0(1 − z0) is non-null and only for limiting cases of z0 → 1 or z0 → 0 it approaches zero, it
is not possible to write ps

α as a simple function of a and bs. That happens because the ON to OFF
switching rate depends of n.

Despite the convenience of writing Eqs (2.24)–(2.27) in terms of four parameters (a, bs,N, z0),
those probabilities have only three free parameters, as it happens with the ERG. In both models, the
fourth parameter is obtained as a decaying rate to steady state regime [31, 32]. That is because the
probabilities of the models for the SRG or ERG are computed using the KummerM function, which
has two parameters, respectively, (a, bs) or (a, be), and the argument depending on one additional
parameter: N in the ERG model and a combination of two parameters in the SRG, namely Nz2

0.
Therefore, one must set the constraints among a, bs, N, and zo given by Eq (2.23). We choose N to be
written as a function of the remaining parameters on the following basis. In previous studies, we
demonstrated the Lie symmetries underlying the existence of the analytical solutions of the stochastic
models for the SRG [22, 23] and the ERG [59]. Since the invariants of the so(2, 1) algebra satisfied by
the two models are bs and be, they are natural candidates to be set as constants. In the model for the
SRG, the maximum steady state protein numbers N will be given in terms of bs. The switching of the
promoter of the SRG can be characterized in terms of the parameters a and z0 with the former being
proportional to f and the latter being inversely proportional to h1. We use Eq (2.23) to obtain

N =
bs − az0

z0(1 − z0)
> 0⇒ 0 < a < bs/z0, (2.28)

where the left inequality is imposed by the requirement of positivity of N and the right hand inequalities
are because 0 < z0 < 1, see Eq (2.23).

2.6. Covariance

The model described here has two random variables, the promoter state, being ON or OFF, and the
protein number, a non-negative integer. To compute the covariance between the two coupled processes
we consider the phenomenology of the model to propose a random variable ν associated with the
promoter states. If the system reaches a stationary regime with the promoter being exclusively ON
(or OFF) the corresponding number of proteins is governed by a Poissonian distribution of average N
(or 0). In the timescale of a protein’s lifetime, those averages are the rate of synthesis of proteins when
the promoter is ON (or OFF). Therefore, one may describe the ON and OFF states of the promoter by
means of the steady state average rates of protein synthesis and we write our auxiliary random variable
as νm = N Iα(m), where Iα(m) is the indicator function defined as Iα(m) =

{
1, if m=α,
0, ifm=β

. The probability of
να = N and νβ = 0 is, respectively, pα and pβ. We denote the covariance between νm and n by ξ such
that:

ξ = 〈νm n〉 − 〈νm〉〈n〉 =

∞∑
n=0

(νααn + νββn) n − (ναpα + νβpβ)

 ∞∑
n=0

n φn

 . (2.29)
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Because of the phenomenology of νm, here on we interpret ξ as the covariance between the promoter
state and the protein numbers. Higher order mixed moments, 〈νp

m nq〉, are given by
∑∞

n=0(νp
ααn+ν

p
ββn) nq,

where p, q ∈ {1, 2, . . . }.

2.7. Quantifying fluctuations on gene expression

In a recent publication, we demonstrated that the steady state Fano factor for the model for a SRG
can be written in terms of its average protein numbers and the covariance between νm and n [21]. We
can extend that relation for the model for an ERG, such that the Eq (2.9) becomes:

F = 1 +
ξ

〈n〉
, (2.30)

where the covariance is:

ξ = N (〈nα〉 − 〈n〉pα) . (2.31)

The demonstration of these equations is included in the Appendix A.1 and it is similar to that presented
in [21].

The calculation of 〈nα〉 can be done using the exact solutions of Eqs (2.11) and (2.12). Hence,
the form of Eq (2.30) enables the classification of its related probability distribution accordingly with
the covariance ξ. The genes having a positive covariance between its protein numbers and promoter
state are in a super-Fano regime while a sub-Fano regime depends on negative covariance. The Fano
distributions are characterized by null covariance.

2.7.1. Externally regulating gene

In [56] it was shown that the average protein number for the ERG, denoted by 〈ne〉, is:

〈ne〉 = pe
αN. (2.32)

Note that for pe
α = 1 the average protein number is N, which corroborates the biological interpretation

given in Eq (2.18).
Equation (2.31) is used to compute the covariance between variables (νm, n) in the ERG such that:

ξe =
N2

be + 1
pe
α(1 − pe

α). (2.33)

This expression is obtained using Eq (2.22) and 〈ne
α〉 = a

be
1+a
1+be N which calculation is given in the

Appendix A.2. Now we can write the Fano factor for the ERG as

F e = 1 +
N

be + 1
(1 − pe

α), (2.34)

which is a linear function of the probability for the gene to be in the OFF state. The covariance for the
ERG is always non-negative and its probability distributions governing n are only Fano and super-Fano.
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2.7.2. Self-repressing gene

The average protein number expressed from the SRG is denoted by 〈ns〉, and it is [21]:

〈ns〉 = ps
αN, (2.35)

as can be noticed employing Eqs (A.2) in the Appendix and (2.27).
To compute the covariance between variables (νm, n) we use Eq (2.31) which results:

ξs = az0
N − 〈ns〉

1 − z0
− 〈ns〉2. (2.36)

This expression has been presented in [21] and here we present a more detailed demonstration in the
Appendix A.3. The Fano factor for the SRG is then written as:

F s = 1 +

[
az0

〈ns〉

N − 〈ns〉

1 − z0
− 〈ns〉

]
, (2.37)

which is a non-linear function of the parameters of the model. In the model for the SRG, the covariance
can be positive, null, and negative which results on probability distributions being super-Fano, Fano,
and also sub-Fano [21]. The later regime shows why the self-repression enables noise reduction in
gene expression.

3. Results

3.1. Correlations for external regulation and self-repression

Figure 2 shows the Pearson correlation between n and νm for both gene regulatory strategies.
Graph A shows the Pearson correlation, denoted by Pe(pα), of the model for the ERG as function of
the probability for the promoter to be ON, given by

Pe(pα) =
1

√
1 + be

√
N(1 − pe

α)
1 + be + N(1 − pe

α)
. (3.1)

For a pair of fixed (N, be) we have Pe(pα) approaching 0 as pe
α → 1 while it asymptotically approaches

1
√

1+be

√
N

1+be+N as pα → 0. The curve Pe(pα) has a reversed sigmoidal shape with asymptotic maximum
value denoted by Pe

m and half height occurring at p̂e, which are

Pe
m =

1
√

1 + be

√
N

1 + be + N
, and p̂e =

3
4 − N

1+be+N

. (3.2)

Hence, we write

3
4
< p̂e < 1⇒ Pe( p̂e) =

Pe
m

2
. (3.3)

Equation (3.2) indicates that Pe
m is bounded above at 1/

√
1 + be such that for be � 1 we have Pe

m → 0
even if N � be and it tends to one when be → 0 and N � be. Graphs B and C show, respectively,

Mathematical Biosciences and Engineering Volume 17, Issue 5, 5477–5503.



5488

the correlation as function of the probability for the promoter to be ON and as function of the average
protein number for the SRG. Lines of the same color indicate the same value for bs on both graphs. The
correlation value depends on the relation between parameters a and bs: It is zero for a = bs, it is positive
for a < bs and negative otherwise. The correlation behaves almost linearly as a function of the ON state
probability. The condition a = bs results on ps

α = z0. Graph C shows that the SRG enables the existence
of two probability distributions having the same 〈n〉 and opposite signals correlations, implying on the
possibility of protein synthesis with large or small noise while keeping a fixed average. For a given
value of z0 the maximum average protein numbers happens for a = bs and 〈ns〉 = Nz0. For bs ≥ 1
the absolute value of the maximal or minimal Pearson correlations is reduced and tends to 0. On both
Graphs B and C the correlation approaches a linear behavior for lower values of bs (see red, blue, and
green curves) while non-linear effects start to appear as we increase bs (see cyan and magenta curves).
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Figure 2. Graph A. shows the Pearson correlation as a function of probability of ON state.
Pearson correlation is defined as the ratio of the covariance (see Eq (2.33)) to the standard
deviation of n, denoted by σ, and to standard deviation of νm, which results: ξe

σ
√

N2 pα(1−pα)
.

Graph B. shows the correlation versus the probability for the SRG being ON. Graph C.
shows the correlation versus the average protein number using the same parameter values
of Graph B, where lines of the same colors have the same value for bs.

Graph A shows that the Pearson correlation for the ERG is ∼ Pe
m for most values of pα. Indeed,

the correlation is half of its maximum values when pα = p̂e and obeys Eq (3.3). Hence, the reversed
sigmoidal shape of the correlation starts decaying when the probability for the promoter to be ON is
closer to one. However, one must notice that the maximum value of the correlation is upper bounded by
(1 + be)−1/2, and for be � 1 the maximal correlation approaches zero. That corresponds to a promoter
that rapidly switches between ON and OFF states during the lifetime of proteins whose presence would
not be a readout of the state of the promoter of the gene. Besides, that may also correspond to a quasi-
Poisson regime in which F e → 1 for the case of be � N(1 − pe

α) (see Eq (2.34)). Alternatively, for the
case of very efficient protein synthesis and small probability for the gene to be ON, the gene would be
expressed in a bursty fashion [50], a regime widely detected experimentally [49]. On the other hand,
as be << 1 we have a slow switching promoter that stands ON or OFF for a time interval that is larger
than the proteins lifetime. In that case, there will be a finite number of proteins or mostly none proteins
when the promoter is ON or OFF, respectively. That result is in agreement with our calculations using
information theory where we show that binary distributions enable enhanced reliability of information
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flow in gene networks [36]. That regime corresponds to a weaker coupling between the two stochastic
processes of the binary model for gene expression.

Graph B shows that as ps
α increases, the correlation for the SRG decays from a positive value to 0

when ps
α → z0 (and a → bs). As we keep increasing the ps

α, the correlation keeps diminishing and the
reduced noise regime is established, a behavior that is exclusive for the SRG. Note that on the model
for the SRG, the maximum value of the correlation is smaller than that for the ERG and it happens
for bs = 1. As discussed in a previous publication [23], the biochemical interpretation of bs is the
same of that for be. Therefore, when the two time scales of the binary model for expression of a SRG
are the same, the correlation between the promoter states and the protein numbers can reach larger
absolute values. Note, however, that in the ERG, the correlation is larger when be → 1. The stronger
coupling of the OFF switching rate caused by dependence of the number of proteins causes this weaker
correlation in comparison with the model for the ERG. Graph C unveils the degeneracy resulting from
the symmetries of the stochastic model for a SRG [22, 23], a limit that is not established when we
consider only the deterministic model for a SRG [23].

3.2. Fano and quasi-Fano probability distributions

Fano and quasi-Fano probability distributions governing protein numbers obtained from the
stochastic model for a SRG and an ERG are shown in Figure 3. Graph A shows Fano distributions
governing protein numbers expressed from a SRG, which happens when a = bs. At this limit,
Eq (2.27) becomes ps

α = z0 because the KummerM function for a = b is equal to the exponential, see
Eq (2.17), and M(A, B, η) = M(1 + A, 1 + B, η) = eη. The probabilities of finding n proteins in
Eq (2.25) become φs

n =
(N z0)n

n! exp (−N z0) which corresponds to the Poissonian distribution of average
〈ns〉 = Nz0 = bs, because N = bs

z0
as verifiable in Eq (2.28). Alternatively, one may use those relations

in Eq (2.37) to verify that F s = 1. Graph B (SRG) presents quasi-Fano probability distributions
obtained by fixing bs and taking a ≈ bs. We consider a being both larger and smaller than bs such that
the covariance will be, respectively, negative and positive. The average protein number is reduced as
we increase a because the parameter of the “Poisson” distribution is bs−az0

z0(1−z0) . Since the distributions are
single peaked, the reduction on average protein numbers implies a left displacement of the peak of the
probability distributions. Graph C (ERG) also presents quasi-Fano distributions for large be and
a ≈ be restricted to a < be. The case a = be ⇒ h2 = 0 is also shown by the magenta solid circles. It
corresponds to a non-switching promoter, i.e., it models a constitutive gene whose protein numbers
are governed by a Poissonian distribution with parameter N. The remaining distributions are
quasi-Fano with positive definite covariance and the average number of proteins increasing linearly
with a. That is because of the linear dependence between the average protein number produced from
an ERG and the probability for the promoter being ON given by Eq (2.32).

Graph A shows that the noise on the protein numbers synthesized from an SRG is the same as if
they were synthesized from a non-regulated constitutive gene, a regime that is possible for the SRG
but not for the ERG. This happens when a = Nz0 = 〈ns〉 as derived from Eqs (2.23), (2.27) and (2.35),
which in terms of the biochemical parameters, becomes

〈ns〉 =
f
ρ

=
k

ρ + h1
. (3.4)

Hence, the switching SRG behaves effectively as a constitutive gene with synthesis and degradation
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rates given by, respectively, k and ρ + h1. Furthermore, it corresponds to a “resonant” regime in which
the ON-OFF-ON average switching rate of the SRG defined as f + kh1/(ρ + h1) in [23], is equal to the
synthesis rate k as we can verify after using the relation between the reaction rates given by Eq (3.4).
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Figure 3. We consider probability distributions denoted Fano (F = 1) or quasi-Fano
(F ≈ 1). The graphs for the SRG have z0 = 0.9. Graph A has strictly Fano distributions
and for the condition a = bs the moments of the distributions are (F s, ξs, 〈ns〉, ps

α) =

(1, 0, b, z0). Graph B has quasi-Fano distributions for SRG which moments are
presented in increasing order of a as shown in legend: F s ≈ (2.8, 8.7, 3.6, 6.7, 25.9);
ξs ≈ (17.7, 207.7, 133.5, 173.3, 352.6); 〈ns〉 ≈ (9.6, 26.8, 51.4, 30.3, 14.2); ps

α ≈

(0.76, 0.62, 0.81, 0.33, 0.065). Graph C has quasi-Fano distributions for ERG with N = 50.
The moments of the distributions are presented in increasing order of a as shown in legend:
F e ≈ (1.3, 1.2, 1.1, 1.0, 1); ξe ≈ (9.9, 7.8, 5.2, 1.9, 0); 〈ne〉 ≈ (36, 40, 44, 48, 50);
pe
α ≈ (0.72, 0.80, 0.88, 0.96, 1).

Graphs B and C shows quasi-Fano probability distributions as expected if we have a ∼ b. The
model for the ERG also has the condition in which the synthesis and the switching rates are the same,
namely f + h2 = k, implying on be = N (see Eq (2.18)). However, the Fano factor for the probability
distributions at this limit is F e = 1 + N

1+N (1 − pe
α) which, for N � 1 results on F e → 2 − pe

α. Hence,
the ERG gene has no resonant limit resulting in an effectively constitutive gene expression regime as
it happens for the SRG.

3.3. Super-Fano probability distributions

Super-Fano probability distributions for both regulatory strategies are presented in Figure 4. We
select parameter values resulting on widespread probability distributions, such as the table shaped and
bimodal ones. Graph A shows probability distributions for the SRG where we take a fixed value for bs.
The choices of a or z0 help to understand their effect on probability distributions. The values of z0 are
defined such that the degradation rate is the main cause of protein removal from cytoplasm. Graph B
shows a second family of super-Fano distributions obtained for the SRG. We take two values for z0 and
vary (a, b). Graph C shows probability distributions for the ERG, with fixed value of N and multiple
values of a and be.

Figure 4, Graph A has five probability distributions. The distributions displayed in magenta and
cyan are bimodal. The green line shows a distribution approximately like a table. The blue and red
lines indicate single modal widespread distributions because of the significant probability of finding
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from zero to ≈ 100 proteins while their averages are ≈ 50. Figure 4, Graph B shows two bimodal
probability distributions, shown in blue and red. The distribution in green is table-shaped and the one
in cyan is a single modal and in both there are significant probabilities of finding from 0 to ≈ 130
proteins. The magenta distribution can be approximated as a negative binomial distribution which is a
typical distribution when one has transcriptional or translational bursts [50, 57]. Figure 4, Graph C
shows super-Fano distributions for the ERG. We assume a fixed value for N and change values of be

considering some values for a that permit us to generate probability distributions that are widespread.
The red and blue distributions are bimodal with modes centered around 50 and 0. The green
distribution is table shaped such that there is a significant probability of finding from zero to a bit
beyond N proteins. The blue distribution is one modal and it is widespread, similarly to the
table-shaped distribution. Finally we have the magenta distribution which is approximated by a
negative binomial.

The parameter values generating the probability distributions of Graphs A–C are rewritten in terms
of the kinetic constants in Eqs (2.1)–(2.8). We assume assume ρ = 0.01 min−1 and include the
approximate values of the kinetic parameters in the Table 1 following the order of the parameter
values in each caption of their corresponding Graphs. Where k, f , and h are given in min−1.

Table 1. Approximated values of the kinetic parameters on Figure 4.

Graph A (N, k, f , h) Graph B (N, k, f , h) Graph C (k, f , h)
(80, 0.8, 10−2, 10−4) (10, 0.1, 4 × 10−3, 10−4) (0.5, 3 × 10−3, 2 × 10−3)
(100, 1, 10−2, 10−4) (40, 0.4, 6 × 10−3, 10−4) (0.5, 5 × 10−3, 5 × 10−3)
(100, 1, 8 × 10−3, 10−4) (60, 0.6, 2 × 10−2, 10−4) (0.5, 10−2, 10−2)
(60, 0.6, 8 × 10−3, 2 × 10−4) (90, 0.9, 2 × 10−2, 10−3) (0.5, 1.5 × 10−2, 1.5 × 10−2)
(40, 0.4, 8 × 10−3, 3 × 10−4) (200, 2, 3 × 10−2, 10−3) (0.5, 0.017, 0.183)

The super-Fano distributions of Graph A have the OFF to ON switching rate of the order
of 10−2 min−1 which is the same order of the effective ON to OFF switching rate, hk

ρ+h [23] and of the
degradation rate of the proteins. That causes the probability distributions to be bi-peaked as the
biochemical processes are slower. The super-Fano distributions of Graph B have the effective ON to
OFF switching rate given in min−1 approximated by (10−3, 4 × 10−3, 6 × 10−3, 9 × 10−2, 0.2) presented
in increasing order of N. For the maximal N the effective rate of ON to OFF switching is almost a
hundred times larger than the corresponding OFF to ON switching rate. Note that the synthesis rate a
hundred times larger than the degradation, which can be considered as a very efficient protein
production process. At that limit the promoter remains mostly OFF and the distribution approaches a
negative binomial as occurs in bursty protein synthesis [50]. The super-Fano distributions of Graph C
show that the stochastic binary model for the ERG having kinetic parameters of the same order as that
for a SRG will generate proteins governed by similar probability distributions. That similarity may
become a confusing element on the inference of gene regulation based on noise in gene expression.
Perhaps, this problem is only theoretical significance, if the differences on the probability
distributions generate fluctuations on protein numbers lying within the detection limits of biological
systems. About 40% of E. coli genes are self-repressed [30] and it would be interesting to determine
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whether this is because of the wider possibility of ranges of stochastic gene expression regimes
enabled by the SRG or if a downstream regulated gene can detect the particularities on the
fluctuations of the protein numbers generated by either the ERG or SRG.
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Figure 4. We consider super-Fano probability distributions (a < b). In Graph A (SRG) the
parameters are indicated inside graph and the moments of the distributions are given in the
same order of the values for pairs (a, z0) within the graph: F s ≈ (9.8, 14.7, 21.3, 11.2, 7.8);
ξs ≈ (472.3, 808.4, 1225.9, 310.5, 139.8); 〈ns〉 ≈ (53.7, 58.9, 60.4, 30.5, 20.5); ps

α ≈

(0.66, 0.58, 0.50, 0.49, 0.49). In Graph B (SRG) z0 is 0.99 for the three smallest values
of bs and for the remaining two values of bs we have z0 = 0.9. The moments are presented
in increasing order of bs: F s ≈ (1.4, 1.1, 1, 0.98, 0.98); ξs ≈ (17.5, 4.7, 0, −0.3, −0.2);
〈ns〉 ≈ (47, 35, 20, 14, 7); ps

α ≈ (0.75, 0.82, 0.9, 0.93, 0.97). Graph C has super-Fano
distributions for ERG with N = 50. The moments of the distribution are presented in
increasing order of a: F e ≈ (14.3, 13.5, 9.3, 7.3, 3.2); ξe ≈ (400, 312.5, 208.3, 156.3, 9.3);
〈ne〉 ≈ (30, 25, 25, 25, 4.3); pe

α ≈ (0.6, 0.5, 0.5, 0.5, 0.085).

3.4. Sub-Fano probability distributions

Sub-Fano and Fano probability distributions for protein numbers produced from the SRG and Fano
factors versus the probability for the gene being ON or versus average protein numbers are presented
in Figure 5, Graph A shows sub-Fano probability distributions having Fano factor ≈ 0.5. To enable a
comparison we superpose each sub-Fano with a Fano distribution having the same average protein
number with thinner and equally colored lines. The difference on the Fano factor of the two
distributions increases with 〈n〉/2 and turns the curves more distinguishable. In the Figure 5,
Graphs B and C were constructed using the same parameters and share the same key code. The
graphs show that a 0.5 Fano factor is an asymptotic noise regime for the SRG which can be achieved
for an arbitrary average protein number and with ps

α approaching zero. Note that the Fano factor
approaches one as ps

α increases, as expected for a gene which is at ON state the majority of time.
Then we have the infra-Fano regime, for an average protein number equals to one and having ps

α

approaching zero as the Fano factor gets arbitrarily lower [21].
In the Table 2, the parameter values generating the probability distributions of Graph A are rewritten

in terms of the kinetic constants in Eqs (2.1)–(2.4). A fixed z0 = 5× 10−4 implies a h ∼ 20 min−1 if we
assume ρ = 0.01 min−1. For each pair of sub-Fano and Fano probability distributions having the same
average, a pair (a, bs) results on the following approximate values of the kinetic parameters, where k
and f are given in min−1 and K indicates the equilibrium binding affinity of the regulatory protein.
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Figure 5. Graph A are Fano and sub-Fano probability distributions. The Fano distributions
have thinner lines and we considered distributions having the same average protein
numbers to establish a comparison. The values of a in increasing order of bs are ≈
(833, 1667, 3333, 5000, 6667) and all distributions have z0 = 5 × 10−4. The moments of the
sub-Fano distributions in increasing order of bs are: F s ≈ (0.50, 0.51, 0.51, 0.51, 0.52);
ξs ≈ (−4.2, −8.1, −15.9, −23.8, −31.6); 〈ns〉 ≈ (8.4, 16.5, 32.8, 49.0, 65.3); ps

α ≈

(0.050, 0.049, 0.049, 0.049, 0.048); for the Fano distributions we have F s = 1, ξs = 0,
ps
α = 5 × 10−4 and the same average protein numbers as for the sub-Fano distributions to

which they are superposed. Graphs B and C , respectively, show the Fano factor as function
of the probability for the SRG being ON and of the average protein number. The parameters
(a, bs) have the same values on both graphs such that for L1, L2, L3, L4, and L5 we respectively
have (500, 0.01), (500, 0.05), (500, 0.1), (500, 0.5), and (500, 2).

Table 2. Values of the kinetic parameters on Figure 5A.

bs Sub-Fano (N, k, f ,K = f /h) Fano (N, k, f ,K = f /h)
0.5 (167.1, 1.7, 8.3, 2.4) (103, 10.0, 5 × 10−3, 4 × 103)
1 (333.2, 3.3, 16.7, 1.2) (2 × 103, 20.0, 10−2, 2 × 103)
2 (667.3, 6.7, 33.3, 0.6) (4 × 103, 30.0, 2 × 10−2, 103)
3 (1000.5, 10.0, 50.0, 0.4) (6 × 103, 60.0, 3 × 10−2, 7 × 102)
4 (1333.7, 13.3, 66.7, 0.3) (8 × 103, 80.0, 4 × 10−2, 5 × 102)

The order of K for the sub-Fano distributions are K ∼ 1 while they are of the order of 103 on the
Fano ones. The OFF to ON switching rates on the sub-Fano distributions are typically a hundred times
faster than those of the Fano ones. On the other hand, the effective OFF to ON switching rate, hk

ρ+h ,
given in min−1 for the sub-Fano and the Fano distributions are approximately (1.7, 3.3, 6.7, 10, 13.3)
and (10., 20., 40., 60., 80.), respectively, for each value of bs given in crescent order accordingly with
the captions. Therefore, the effective ON to OFF switching rate is almost ten times faster on the Fano
distributions. When we compare effective switching rates between the two promoter states, we note
that the sub-Fano processes have an ∼ 10× faster OFF to ON transition while it is ∼ 10−3× slower for
Fano ones. That causes the ON state probabilities in the sub-Fano regime, and hence the duration of the
ON state, to be about a hundred times longer than in the Fano one. The synthesis rate values provide
the compensatory effect to ensure that the two noise regimes will have the same average number of
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products. Graph C shows that the asymptotic Fano factor for the sub-Fano regime happens for a wide
range of values of average protein numbers. Graph B shows that the asymptotic Fano factor happens for
smaller ON state probabilities in combination with larger values of the synthesis rate. This parameter
regime of SRG is qualitatively distinct from the ERG, as the latter would be in the bursty limit of gene
expression [50].

4. Discussions and conclusions

Theoretical models furnish a useful machinery for biologists on the description and understanding
of intracellular phenomena. Exhaustive search based on experiments are labor-intensive and
expensive, as occurs in analysis of gene expression pathways [64, 65], and enables the construction of
knowledge whose gaps can be fulfilled by the use of quantitative models. For instance, the conclusion
that the TGF-beta pathway is a negative feedback loop was reached after the model analysis indicate
consistence with observed data [66]. Besides, those experiments generate a plethora of experimental
data which analysis demands bioinformatics tools to build gene networks based on gene expression,
previously known networks, and correlations [34]. Re-analysis of these results applying stochastic
models for gene expression could lead us to more accurate information about the dynamics and the
topology of gene networks.

Gene switching have been characterized as an important source of noise in quantities of gene
products when, for example, transcription or translation occurs in bursts [4, 5, 67, 68]. Transcriptional
bursts occur when a gene switches between ON and OFF states standing shortly ON while it is
efficiently transcribed and longly OFF when transcripts decay [4, 5, 50, 57]. Translational bursts are
the result of efficient translation of small numbers of mRNA copies among other effects [69].
Equation (2.30) and graphs of Figure 2 are showing that the coupling between two originally
Poissonian stochastic processes may result in super-Fano distributions governing protein numbers.
That condition occurs when one has a positive covariance ξ. Figure 2A shows this as the condition for
all parameter values of the stochastic model for the ERG despite the occurrence of quasi-Fano
distributions for the limits pe

α → 1 and be � N(1 − pe
α). The SRG, however, has a null covariance for

a = bs, corresponding to the “resonant” condition in which the protein synthesis and the promoter
switching rates are the same. Hence, one may have a SRG that behaves effectively as a constitutive
gene despite the switching of its promoter between ON and OFF states. At this limit, ps

α = z0 implies
on the average duration of the ON state of the promoter to be equals to the fraction of proteins
removed from cytoplasm by degradation [23]. Hence, one may design (or find) a switching gene
behaving as a constitutive one, that is, a gene which protein numbers would behave equivalently while
performing their function. However, since the SRG is switching, one may change, for example, the
degradation rates of proteins or their binding affinity to the regulatory site of the gene to promote a
wider range of epigenetic variation. That approach may have practical implications, for example, on
the design of therapeutic strategies based on regulation of gene expression [33] and developing a
strategy to characterize the regulation of a gene would be important.

The model for the SRG also shows the possibility of an additional noise regime taking place when
the covariance assumes negative values. Here we show that ξs < 0 for a > b, as indicated at Figure 2B
or in previous papers [21–23]. The occurrence of a low noise regime occurs only for the SRG as
observed experimentally, e.g., [17, 19, 20]. That is a surprising result as we have a coupling between

Mathematical Biosciences and Engineering Volume 17, Issue 5, 5477–5503.



5495

stochastic processes that enables noise reduction instead of amplification [70].
One may also compare Figsures 2B,C, and verify that when we deal with a multi state gene,

evaluation of only average protein number of the SRG is not sufficient to characterize its dynamics.
The calculation of the Fano factor also helps on the characterization of the gene’s switching
dynamics. For example, the classification of the noise on the protein numbers as super-Fano, a Fano
or a sub-Fano gives us an indication about the relation between the probability for the promoter of the
gene to be ON and z0, the fraction of proteins removed by degradation. The Pearson correlation is
negative for ps

α > z0; it is null for ps
α = z0; it is positive for ps

α < z0 and the corresponding distributions
governing the protein numbers will be, respectively, sub-Fano; Fano; super-Fano.

Although Eq (2.30) helps on understanding noise reduction mathematically, a biological picture is
necessary for interpreting the conditions satisfied by the fast switching SRG in a sub-Fano regime. For
example, to obtain cyan colored sub-Fano probability distribution of Figure 5A we used the following
parameter values: bs = 3, a = 5 × 103, z0 = 5 × 10−4. For simplicity, we define ρ = 1 which
implies the time scale of the model to be roughly given in terms of the protein mean life time. The
remaining kinetic parameter values can be obtained by algebraic calculations and they are k = 103,
f = 5 × 103, and h1 = 2 × 103. Note that the gene will perform thousands of switches during the
mean life time of a protein. Furthermore, the proportion of time during which the gene remains ON
is about 5% as given on captions of Figure 5. Therefore, during the mean life of a protein there will
be an average net synthesis of only ≈ 50 proteins with a plethora of fast gene switching between ON
and OFF states, and slow protein degradation. That is analogous to conditions recently observed in the
context of transcription [71] and analysis of the symmetries of the model for the SRG reveal this as a
non-degenerated regime, that is, it is not possible to have a super-Fano distribution for those parameter
values [23].

The quantification of noise in gene expression by means of the Fano factor enables one to infer the
behavior of the protein source. For example, constitutive genes can be represented as Poissonian
birth-death processes which would generate Fano probability distributions on the number of gene
products. Previous works dedicated to analysis of transcriptional burst have used Fano factor to infer
burst size [55, 57] as the result of the gene switching between a short duration ON state associated
with very efficient transcription followed by a long duration OFF state [5, 50]. However, as we show
in Figure 4, the Fano factor may not be sufficient for characterizing a probability distribution. The
super-Fano regime enables a diversity of shapes for the probability distributions. Furthermore, in case
of a SRG even Fano processes may still be caused by gene switching instead of constitutive
expression such that measuring promoter activity in terms of its probabilities of being ON and OFF is
important for characterization of its expression dynamics.

The exclusive occurrence of the sub-Fano, and specially the infra-Fano, regimes on the stochastic
model for the SRG is a theoretical demonstration of how this strategy enables a more precise control
of gene expression [19–21]. The sub-Fano regime, having for example F ≈ 0.5 may occur for a wide
range of average protein numbers as shown in Figure 5. The difference on how spread is this
distribution in comparison with the Fano one poses the question on how susceptible biological
systems are to random fluctuations. Inspection indicates that the difference between Fano and
sub-Fano distributions with the same average protein number is small. Hence, we may ask whether
this difference is sufficiently big to be detected by genes being regulated by those proteins and,
eventually, drive random fluctuations on cellular phenotypes.
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The noise reduction enabled by self-repression, as indicated by the exclusivity of the sub-Fano
regime for the SRG has practical implications. For example, let us consider the search of approximate
solutions for the SRG based on the stochastic model for the ERG [58]. In a previous article an
alternative model for the SRG was proposed [45] and its complete steady state exact solutions
presented later [46]. If one rephrases the parameters of the alternative model for the SRG as a = σu,
b = σu

1+σb
+ σb

1+σb

ρu
1+σb

and z0 = 1
1+σb

, it is possible to write ρu = b−az0
z0(1−z0) , where the parameters are written

in the time scale of the protein degradation rate. The synthesis at the ON state, the promoter switching
from ON to OFF state, and from OFF to ON state are denoted by, respectively, ρu, σb, and σu and the
remaining parameters are set as ρb = θ = 0. Then, if we set a > b + ε with ε being a small number, the
alternative SRG will also generate sub-Fano distributions which may not be well approximated by the
qualitatively different super-Fano distributions generated by the model for the ERG. That happens if
the differences between the distributions become biologically relevant, i.e., if the differences are
detectable by the biological systems being affected by those proteins. An experiment to detect such a
precision limits would be welcome. A similar analysis can be carried out for the stochastic binary
bursty models for the SRG [51] and their linear approximations [58]. In a bursty model, the
probabilities governing the protein numbers will be mostly super-Fano unless the bursting size b
approaches 1, which would result on the non-bursty model discussed here. In a bursty model, the
noise reduction is interpreted in terms of the capacity of a given gene regulatory strategy to reduce the
Fano factor (or variance, relative deviation, or any other quantity) in relation to its value whether
protein synthesis were carried out as unregulated bursts. The latter implies a Fano factor given by
1 + b. One may show that for the bursty SRG, the Fano factor may be < 1 + b and, at that limit, the
linear approximation for the SRG is not satisfactory because its Fano factor will be only > 1 + b.
Again, it would be interesting to design an experiment to investigate the conditions for the biological
systems to distinguish between those two limits.

The infra-Fano regime revisited here in Figure 5 also points to an additional unexpected result:
The possibility of an arbitrarily low noise regime even when only few molecules are interacting. Such
a regime appears when the ON to OFF state switching rate is so big that even a small number of
proteins is enough to induce the switching to the OFF state. That has been approached in the context
of a prokaryotic cell previously [21] and an effective reproduction of these conditions in an eukaryotic
cell would be challenging. Further research to determine the mechanisms necessary for such a reliable
epigenetic silencing of a gene might require the addition of effective reactions such as mediator
molecules [72, 73]. A theoretical formalization of the occurrence of the sub-Fano regime would also
be welcome and is beyond the scope of this manuscript.

The exact solutions for Eqs (2.11) and (2.12) are given in terms of special functions, either Heun
or Kummer, which are the “parents” of several special functions. Applications of the Heun functions
are still rare and it is fair to consider them as the state of the art on the field of exact solutions for
physical models [74]. Therefore, we may state that the quantitative description of more complex
biological systems will motivate the development of advanced machinery to complement the toolbox
of Theoretical Biology. That will deepen our understanding of the functioning of living systems and
provide insights for further developments of synthetic biology. One example is the analysis of the self-
repressing system when cooperative binding takes place [39, 75, 76]. In that case, numerical solutions
given by recursive relations are used [75,76] because of the increased order of the ODEs governing the
steady state generating functions of the SRG. Higher order ODEs are harder to be solved, but finding
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analytical closed forms solving these models is not hopeless. For example, [76] indicates that in case
of self-repression by a dimer we would have h1n → h1n(n − 1) in Eqs (2.11) and (2.12). Application
of the generating function techniques as in [30] would lead to a third order ODE which we would
attempt to solve using special cases of solutions for third order ODEs based on the hypergeometric
functions [77].
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A. Appendix: demonstrations

A.1. Demonstration of Eq (2.30)

To demonstrate that
F = 1 +

ξ

〈n〉
,

we need to express σ2 = 〈n2〉−〈n〉2 = 〈n〉+ξ, with ξ being the covariance between νm = N I1(m) and n.
We start summing Eqs (2.11) and (2.12) and dividing the resulting expression by ρ such that at the

steady state limit we have:

0 = N(αn−1 − αn) + [(n + 1)φn+1 − nφn], (A.1)

where we used N = k/ρ and φn = αn + βn as given by Eqs (2.18) and (2.14).
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Now we multiply Eq (A.1) by n, and apply the operator
∑∞

n=0, which results on:

〈n〉 = pαN, (A.2)

obtained using Eqs (2.13) and (2.15) for p = 1. Then we multiply Eq (A.1) by n2, and apply the
operator

∑∞
n=0, which results on:

〈n2〉 = 〈n〉 + N 〈nα〉, (A.3)

obtained using Eqs (2.13) and (2.15). To calculate 〈n2〉 we need to obtain an expression for N 〈nα〉
which can be done by means of the covariance ξ.

The covariance is ξ = 〈νm n〉 − 〈νm〉 〈n〉 and we may compute 〈νm〉 as:

〈νm〉 = ναpα + νβpβ = N pα = 〈n〉,

where we used να = N and νβ = 0 and Eq (A.2). Next, we compute

〈νm n〉 =

∞∑
n=0

n (νααn + νββn) = N
∞∑

n=0

nαn = N〈nα〉,

where we used Eq (2.29) for p = q = 1, να = N, νβ = 0, and Eq (2.15). Hence, if we use Eq (A.3) we
write that

N〈nα〉 = ξ + 〈n〉2 ⇒ 〈n2〉 − 〈n〉2 = σ2 = 〈n〉 + ξ.

A.2. Computation of 〈ne
α〉

In [59] we indicated how to compute the moments of the distribution in terms of the generating
functions of the probabilities αe

n, βe
n, and φe

n but we did not compute the closed expressions for the
auxiliary moments 〈ne

α〉 and 〈ne
β〉 in Eq (2.15). The generating function for the probabilities αe

n [29, 56,
59] can be written as:

αe(z) =
a
be M(a + 1, be + 1,N(z − 1)). (A.4)

The auxiliary moment 〈ne
α〉 is obtained using the first derivative of αe(z) which results:

〈ne
α〉 =

dαe(z)
dz

∣∣∣∣∣
z=1

=
a
be

1 + a
1 + be N. (A.5)

Here we used the identity d
dηM(A, B, η) = A

BM(A + 1, B + 1, η) (see formula 13.4.8 in [63]).

A.3. Computation of ξs

The procedure for computation of the moments of the distribution for the SRG from the generating
functions of the probabilities αs

n, βs
n, and φs

n is the same of the ERG [59]. In our previous
publications [21–23] we did not compute the closed expressions for the auxiliary moments 〈ns

α〉 and
〈ns

β〉 defined in Eq (2.15). The generating function for the probabilities αs
n [21–23, 30] can be written

as:

αs(z) =
a
bs

z0

c
M(a + 1, bs + 1,Nz0(z − z0)). (A.6)
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As in subsection A.2, the auxiliary moment 〈ns
α〉 is obtained using the first derivative of αs(z) evaluated

at z = 1, which results:

〈ns
α〉 =

a
bs

z0

c
1

1 − z0
[bsM(a, bs,Nz0(1 − z0)) + (bs − Nz0(1 − z0)M(a + 1, bs + 1,Nz0(1 − z0))] . (A.7)

Here we used the identity d
dηM(A + 1, B + 1, η) = 1

η

[
BM(A, B, η) + (η − B)M(A + 1, B + 1, η)

]
with

η = Nz0(z − z0) (see formula 13.4.14 in [63]). Recall that c = M(a, bs,Nz0(1 − z0)) and using
Eqs (2.23) and (2.27) one may rewrite the Eq (A.7), after some manipulation, as follows:

〈ns
α〉 =

az0

1 − z0
(1 − ps

α). (A.8)

Now we can write ξ from Eq (2.31) for the SRG as ξs = N
(

az0
1−z0

(1 − ps
α) − 〈n〉ps

α

)
which becomes

Eq (2.36) after a rearrangement.
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