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7 Department of Biology, College of Arts and Sciences, Najran University, Najran, Kingdom of Saudi

Arabia

* Correspondence: Email: khaledma sd@hotmail.com.
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1. Introduction

Mathematical modeling of the spread of infectious diseases has attracted much attention of
researchers in various disciplines. The importance of the modeling is that it has become an important
tool in understanding the dynamics of diseases and in the decision-making process with regard to
rapid intervention programs in controlling and limiting the spread of these diseases [1–7]. Until
mathematical tools are employed, real-world problems were modeled by means of an abstract model.
These mathematical models contain basic variables and relationships corresponding to the observed
and recorded phenomena and behavior. Due to the fact that the theory of differential equations is not
sufficient to describe and model many real-world and complex problems, the critical importance of
fractional differential equations appears in modeling these issues in recent years [8–18]. Furthermore,
owing to its many widespread applications, scientists and researchers have significantly attracted the
attention toward fractional differential equations. Accordingly, many models of differential equations
containing fractional differentiation and fractional integration have been developed. And the fact that,
for many fractional differential equations, it is difficult to find the exact solutions, so it has become
very important to develop and update numerical methods so that we can find approximate and
numerical solutions to many of these equations [19–28].

The Adams-Bashforth predictor-corrector method has been proposed [29–35], as a great and
powerful numerical method which is capable of providing a numerical solution of fractional
differential equations. The method can be used for linear as well as nonlinear fractional differential
equations.

In this paper, we derive and discuss the numerical solutions of the fractional-order model of the
human immune response to influenza A virus (IAV) infection by using the method that was proposed
in [36] , which combines the fundamental theorem of fractional calculus and the two-step Lagrange
polynomial. The authors in [37] proposed a simplified dynamical model of immune response to
uncomplicated influenza A virus (IAV) infection. This model focuses on the control of the infection
by the innate and adaptive immunity [37]. Zhang et al. [38] propped a long review on hostvirus
interaction: How host cells defend against Influenza A Virus Infection. They presented a general
description on recent work regarding different host cells and molecules facilitating antiviral defenses
against IAV infection and how IAVs antagonize host immune responses. Also, Vires et al. [39–41]
discussed in details on the factors for influenza A virus infection, Preserving Virus Motility, IL16
deficiency enhances Th1 and cytotoxic T lymphocyte response against influenza A virus infection. In
our paper, we focus on studying the effect of the change of the integer-order derivatives and
non-integer derivatives with power and exponential kernels.

The paper is organized as follows. Notations and basic definitions of fractional derivatives are given
in Section 2. In Section 3, the classical model of immune response is presented. In Section 4 and 5, the
numerical method with power and exponential laws is discussed and illustrated graphically. Finally,
conclusions are summarized in Section 6.

2. Preliminaries

In this section, we give some basic definitions and properties of fractional calculus theory [2, 3, 43,
44].
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Definition 1. If Y(t) ∈ L1(a, b), the set of all integrable functions on (a, b), and α > 0, then the
Riemann-Liouville fractional integral of order α, denoted by Jαa+ is defined by

Jαa+Y(t) =
1

Γ(α)

∫ t

a
(t − η)α−1Y(η)dη. (2.1)

Definition 2. For α > 0, the Liouville-Caputo fractional derivative of order α, denoted by LCDα
a+, is

defined by

LCDα
a+Y(t) =

1
Γ(n − α)

∫ t

a
(t − η)n−α−1DnY(η)dη (2.2)

(n − 1 < α < n; n ∈ N = {1, 2, 3, · · · }),

LCDα
a+ = Dα, (2.3)

where D = d
dt .

We next introduce the Caputo-Fabrizio-Caputo fractional integral operator of order α > 0 [45].

Definition 3. The Caputo-Fabrizio-Caputo derivative operator (CFC) with respect to t, denoted by
CFC

0Dα
η , is defined by

CFC
0D

α
ηY(t) =

M(α)
n − α

∫ t

0
exp

(
−
α(t − η)
n − α

)
DnY(η)dη (2.4)

(n − 1 < α < n; n ∈ N),

where M(α) is a normalization function such that M(0) = M(1) = 1.

Definition 4. Losada and Nieto [45] proposed the fractional integral according to the CFC as follows:

CFCJα0 Y(t) =
(1 − α)
M(α)

Y(t) +
α

M(α)

∫ t

0
Y(η)dη. (2.5)

3. Classical immune response

3.1. Mathematical formulation

In this section, we will first provide remarkably simple details about the composition and the basis
on the model of human immune response to influenza A virus (IVA) infection. For further details and
for the history of this virus infection, we refer the reader to the earlier work [37].

The human immune response model against the IVA infection has been found to be a simplified
population dynamic model consisting of the following interactions. Figure 1 shows the schematic
representation of interactions included in the model [37]. Respiratory system epithelial cells are
presumed to be present in one of these four possible states: Healthy (H), infected (I), dead (D), or
resistant (R) to infection. Total epithelial cell count (that is, H + I + D + R) is believed to be constant.
The particles of the virus (IAV) interact with and infect healthy cells. Once these virus particles die,
the infected cells release new virus particles. Proliferation of healthy cells causes regeneration and the
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proportion of dead cells decreases. APS stimulates interferon a and b (F) production which interacts
with healthy cells and converts them to a resistant state. In addition, APS stimulates the proliferation
of effector cells (E) which kill the infected cells.

Finally, they stimulate production of the plasma cell (P). This, in turn, produces antibodies (A) to
neutralize the virus. The antigenic compatibility (S) between the virus and the antibodies currently
generated by the organism modulates the neutralization. S quantifies the interaction of the antibodies
with the virus. In order to illustrate the components of the immune response as shown in Figure 1,
we will use the previous interactions to construct a system of ten differential equations describing the
dynamics of the main variables.

dV
dt

= γV I − γVAS AV − γVHVH − αVV −
aV1V

1 + aV2V
, (3.1)

dH
dt

= bHDD(H + R)aRR − γHVVH − bHV FH, (3.2)

dI
dt

= γHVVH − bIEEI, (3.3)

dM
dt

= (bMDD + bMVV)(1 − M) − aM M, (3.4)

dF
dt

= (bF M + CF I) − bFHHF − aF F, (3.5)

dR
dt

= bHF HF − aRR, (3.6)

dE
dt

= bEM ME − abIEIE + aE(1 − E), (3.7)

dP
dt

= bPM MP + aP(1 − P), (3.8)

dA
dt

= bAP − γAVS AV − aAA (3.9)

and
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dS
dt

= rP(1 − S ). (3.10)

We impose the following initial conditions:

V(0) = v0, H(0) = h0, I(0) = i0, M(0) = m0, F(0) = f0, R(0) = r0, E(0) = e0, P(0) = p0,

A(0) = a0, S (0) = s0, (3.11)

where V,H, I,M, F,R, E, P, A and S are Viral load per epithelial cell, proportion of healthy cells,
proportion of infected cells, activated antigen presenting cells per homeostatic level, interferons per
homeostatic level of macrophages, proportion of resistant cells, effector cells per homeostatic level,
plasma cells per homeostatic level, antibodies per homeostatic level and antigenic distance,
respectively.

Figure 1. Schematic representation of interactions included in the model. The influenza virus
(IAV) is shown as red hexagon, the four different cell types are shown in cyan. Components
of adaptive immunity are shown in orange, cellular component of innate immunity in purple,
and interferon component in green. Upregulation is represented by lines terminated with
arrows and inhibition by lines terminated with bars. The inter-conversion of cell types (cyan)
is indicated by dashed arrows. Dashed ovals represent details of the mechanism ignored in
this model. Homeostatic maintenance of effector and plasma cell populations are indicated
by self-regulating loops [37].
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3.2. Description of the involved parameters

The above parameters are defined in the following table:
Table 1. Description of the involved parameters [37].

Parameter Description
γV Rate constant of influenza A virus (IAV) particles secretion per infected epithelial cells
γVA Rate constant of neutralization of IAV by antibodies
γVH Rate constant of adsorption of IAV by infected epithelial cells
αV Rate constant of nonspecific IAV removal
aV1 Rate constant of nonspecific IAV removal
aV2 Rate constant of nonspecific IAV removal per cell per CTL as the CTL response sets up
bHD Rate constant of regeneration of epithelial cells
aR Rate constant of epithelial cells virus resistance state decay
γHV Rate constant of epithelial cells infected by IAV
bHF Rate constant of epithelial cells virus resistant state induction
bIE The rate of removal of CTL per infected hepatocyte per CTL
aI Rate constant of infected epithelial cells damage by cytopathicity of IAV
bMD Rate constant of stimulation of antigen presenting cells by dead cells
bMV Rate constant of stimulation of antigen presenting cells by virus particles
aM Rate constant of stimulated state loss of antigen presenting cells
bF Interferon (IFN) production rate per APC
cF Interferon (IFN) production rate per infected cell
bFH Rate constant of epithelial cells that IFN binds
aF Rate constant of IFN’s natural decay
bEM Rate constant of stimulation of effector cells
bEI Rate constant of death of effectors by lytic interactions with infected epithelial cells
aE Rate constant of natural death of effector cells
bPM Rate constant of plasma cells production cells
aP Rate constant of natural death of plasma cells
bA Antibody production rate per plasma cells
γAV Rate constant of antibodies which binds to IAV
aA Rate constant of natural death of antibodies
r Rate constant for S variable

4. Immune response with fractional-order derivatives

In this section, we present a generalization of the numerical schemes proposed in [36] for the
fractional immune response involving the Liouville-Caputo and Caputo-Fabrizio-Caputo
fractional-order derivatives.

The fractional immune response model is obtained by replacing the classical derivative by the
operator 0Dα

t

0Dα
t V = γV I − γVAS AV − γVHVH − αVV −

aV1V
1 + aV2V

, (4.1)
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0Dα
t H = bHDD(H + R)aRR − γHVVH − bHV FH, (4.2)

0Dα
t I = γHVVH − bIEEI, (4.3)

0Dα
t M = (bMDD + bMVV)(1 − M) − aM M, (4.4)

0Dα
t F = (bF M + CF I) − bFHHF − aF F, (4.5)

0Dα
t R = bHF HF − aRR, (4.6)

0Dα
t E = bEM ME − abIEIE + aE(1 − E), (4.7)

0Dα
t P = bPM MP + aP(1 − P), (4.8)

0Dα
t A = bAP − γAVS AV − aAA (4.9)

and

0Dα
t S = rP(1 − S ). (4.10)

The numerical solution to the system given by Eqs (4.1)–(4.10) is obtained by applying the
following numerical algorithms.

4.1. Numerical scheme for fractional immune response in LC sense

Involving the LC derivative, we have

LC
0 Dα

t V = γV I − γVAS AV − γVHVH − αVV −
aV1V

1 + aV2V
, (4.11)

LC
0 Dα

t H = bHDD(H + R)aRR − γHVVH − bHV FH, (4.12)
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LC
0 Dα

t I = γHVVH − bIEEI, (4.13)

LC
0 Dα

t M = (bMDD + bMVV)(1 − M) − aM M, (4.14)

LC
0 Dα

t F = (bF M + CF I) − bFHHF − aF F, (4.15)

LC
0 Dα

t R = bHF HF − aRR, (4.16)

LC
0 Dα

t E = bEM ME − abIEIE + aE(1 − E), (4.17)

LC
0 Dα

t P = bPM MP + aP(1 − P), (4.18)

LC
0 Dα

t A = bAP − γAVS AV − aAA (4.19)

and

LC
0 Dα

t S = rP(1 − S ). (4.20)

Now, by applying the fundamental theorem of fractional calculus on Eqs (4.11)–(4.20), we obtain

V(t) − V(0) =
1

Γ(α)

∫ t

0

(
γV I(η) − γVAS (η)A(η)V(η) − γVHV(η)H(η) − αVV

−
aV1V(η)

1 + aV2V(η)

)
(t − η)α−1dη, (4.21)

H(t) − H(0) =
1

Γ(α)

∫ t

0

(
bHDD

(
H(η) + R(η)

)
aRR(η) − γHVV(η)H(η) − bHV F(η)H(η)

)
· (t − η)α−1dη, (4.22)

I(t) − I(0) =
1

Γ(α)

∫ t

0

(
γHVV(η)H(η) − bIEE(η)I(η)

)
(t − η)α−1dη, (4.23)
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M(t) − M(0) =
1

Γ(α)

∫ t

0

((
bMDD + bMVV(η)

)(
1 − M(η)

)
− aM M(η)

)
(t − η)α−1dη, (4.24)

F(t) − F(0) =
1

Γ(α)

∫ t

0

((
bF M(η) + CF I(η)

)
− bFHH(η)F(η) − aF F(η)

)
(t − η)α−1dη, (4.25)

R(t) − R(0) =
1

Γ(α)

∫ t

0

(
bHF H(η)F(η) − aRR(η)

)
(t − η)α−1dη, (4.26)

E(t) − E(0) =
1

Γ(α)

∫ t

0

(
bEM M(η)E(η) − abIEI(η)E(η) + aE

(
1 − E(η)

))
(t − η)α−1dη, (4.27)

P(t) − P(0) =
1

Γ(α)

∫ t

0

(
bPM M(η)P(η) + aP

(
1 − P(η)

))
(t − η)α−1dη, (4.28)

A(t) − A(0) =
1

Γ(α)

∫ t

0

(
bAP(η) − γAVS (η)A(η)V(η) − aAA(η)

)
(t − η)α−1dη (4.29)

and

S (t) − S (0) =
1

Γ(α)

∫ t

0

(
rP(η)

(
1 − S (η)

))
(t − η)α−1dη. (4.30)

Equations (4.21)–(4.30) can be reformulated as follows:

V(tn+1) − V(0) =
1

Γ(α)

∞∑
m=0

∫ tm+1

tm

(
γV I(η) − γVAS (η)A(η)V(η) − γVHV(η)H(η) − αVV

−
aV1V(η)

1 + aV2V(η)

)
(tm+1 − η)α−1dη, (4.31)

H(tn+1) − H(0) =
1

Γ(α)

∞∑
m=0

∫ tm+1

tm

(
bHDD

(
H(η) + R(η)

)
aRR(η) − γHVV(η)H(η)

− bHV F(η)H(η)
)
· (tm+1 − η)α−1dη, (4.32)

I(tn+1) − I(0) =
1

Γ(α)

∞∑
m=0

∫ tm+1

tm
Big(γHVV(η)H(η) − bIEE(η)I(η)

)
(tm+1 − η)α−1dη, (4.33)
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M(tn+1) − M(0) =
1

Γ(α)

∞∑
m=0

∫ tm+1

tm

((
bMDD + bMVV(η)

)(
1 − M(η)

)
− aM M(η)

)
,

· (tm+1 − η)α−1dη, (4.34)

F(tn+1) − F(0) =
1

Γ(α)

∞∑
m=0

∫ tm+1

tm

((
bF M(η) + CF I(η)

)
− bFHH(η)F(η) − aF F(η)

)
· (tm+1 − η)α−1dη, (4.35)

R(tn+1) − R(0) =
1

Γ(α)

∞∑
m=0

∫ tm+1

tm

(
bHF H(η)F(η) − aRR(η)

)
(tm+1 − η)α−1dη, (4.36)

E(tn+1) − E(0) =
1

Γ(α)

∞∑
m=0

∫ tm+1

tm

(
bEM M(η)E(η) − abIEI(η)E(η) + aE

(
1 − E(η)

))
· (tm+1 − η)α−1dη, (4.37)

P(tn+1) − P(0) =
1

Γ(α)

∞∑
m=0

∫ tm+1

tm

(
bPM M(η)P(η) + aP

(
1 − P(η)

))
(tm+1 − η)α−1dη, (4.38)

A(tn+1) − A(0) =
1

Γ(α)

∞∑
m=0

∫ tm+1

tm

(
bAP(η) − γAVS (η)A(η)V(η) − aAA(η)

)
· (tm+1 − η)α−1dη (4.39)

and

S (tn+1) − S (0) =
1

Γ(α)

∞∑
m=0

∫ tm+1

tm

(
rP(η)

(
1 − S (η)

))
(tm+1 − η)α−1dη. (4.40)

Using the two-step Lagrange polynomial interpolation, we obtain

V(tn+1) = V(0) +
1

hΓ(α)

n∑
m=0

((
γV I(tm) − γVAS (tm)A(tm)V(tm) − γVHV(tm)H(tm)

− αVV(tm) −
aV1V(tm)

1 + aV2V(tm)

)
·

∫ tm+1

tm

(η − tm−1)
(tm+1 − η)1−αdη
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−
(
γV I(tm−1) − γVAS (tm−1)A(tm−1)V(tm−1) − γVHV(tm−1)H(tm−1)

− αVV(tm−1) −
aV1V(tm−1)

1 + aV2V(tm−1)

)
·

∫ tm+1

tm

(η − tm)
(tm+1 − η)1−αdη

)
, (4.41)

H(tn+1) = H(0) +
1

hΓ(α)

n∑
m=0

((
bHDD

(
H(tm) + R(tm)

)
aRR(tm)

− γHVV(tm)H(tm) − bHV F(tm)H(tm)
)
·

∫ tm+1

tm

(η − tm−1)
(tm+1 − η)1−αdη

−
(
bHDD

(
H(η) + R(η)

)
aRR(η) − γHVV(η)H(η) − bHV F(η)H(η)

)
·

∫ tm+1

tm

(η − tm)
(tm+1 − η)1−αdη

)
, (4.42)

I(tn+1) = I(0) +
1

hΓ(α)

n∑
m=0

((
γHVV(tm)H(tm) − bIEE(tm)I(tm)

)
·

∫ tm+1

tm

(η − tm−1)
(tm+1 − η)1−αdη −

(
γHVV(tm−1)H(tm−1) − bIEE(tm−1)I(tm−1)

)
·

∫ tm+1

tm

(η − tm)
(tm+1 − η)1−αdη

)
, (4.43)

M(tn+1) = M(0) +
1

hΓ(α)

n∑
m=0

(((
bMDD + bMVV(tm)

)(
1 − M(tm)

)
− aM M(tm)

)
·

∫ tm+1

tm

(η − tm−1)
(tm+1 − η)1−αdη −

((
bMDD + bMVV(tm−1)

)(
1 − M(tm−1)

)
− aM M(tm−1)

)
·

∫ tm+1

tm

(η − tm)
(tm+1 − η)1−αdη

)
, (4.44)

F(tn+1) = F(0) +
1

hΓ(α)

n∑
m=0

(((
bF M(tm) + CF I(tm)

)
− bFHH(tm)F(tm) − aF F(tm)

)
·

∫ tm+1

tm

(η − tm−1)
(tm+1 − η)1−αdη −

((
bF M(tm−1) + CF I(tm−1)

)
− bFHH(tm−1)F(tm−1) − aF F(tm−1)

)
·

∫ tm+1

tm

(η − tm)
(tm+1 − η)1−αdη

)
, (4.45)

R(tm+1) = ϕ1(0) +
1

hΓ(α)

n∑
m=0

((
bHF H(tm)F(tm) − aRR(tm)

)
Mathematical Biosciences and Engineering Volume 17, Issue 5, 4942–4969.
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·

∫ tm+1

tm

(η − tm−1)
(tm+1 − η)1−αdη −

(
bHF H(tm−1)F(tm−1) − aRR(tm−1)

)
·

∫ tm+1

tm

(η − tm)
(tm+1 − η)1−αdη

)
, (4.46)

E(tm+1) = E(0) +
1

hΓ(α)

n∑
m=0

((
bEM M(tm)E(tm) − abIEI(tm)E(tm) + aE

(
1 − E(tm)

))
·

∫ tm+1

tm

(η − tm−1)
(tm+1 − η)1−αdη −

(
bEM M(tm−1)E(tm−1) − abIEI(tm−1)E(tm−1)

+ aE
(
1 − E(tm−1)

))...∫ tm+1

tm

(η − tm)
(tm+1 − η)1−αdη

)
, (4.47)

P(tn+1) = P(0) +
1

hΓ(α)

n∑
m=0

((
bPM M(tm)P(tm) + aP

(
1 − P(tm)

))
·

∫ tm+1

tm

(η − tm−1)
(tm+1 − η)1−αdη −

(
bPM M(tm−1)P(tm−1) + aP

(
1 − P(tm−1)

))
·

∫ tm+1

tm

(η − tm)
(tm+1 − η)1−αdη

)
, (4.48)

A(tn+1) = A(0) +
1

hΓ(α)

n∑
m=0

((
bAP(tm) − γAVS (tm)A(tm)V(tm) − aAA(tm)

)
·

∫ tm+1

tm

(η − tm−1)
(tm+1 − η)1−αdη −

(
bAP(tm) − γAVS (tm)A(tm)V(tm) − aAA(tm)

)
·

∫ tm+1

tm

(η − tm)
(tm+1 − η)1−αdη

)
(4.49)

and

S (tn+1) = S (0) +
1

hΓ(α)

n∑
m=0

((
rP(tm)

(
1 − S (tm)

))
·

∫ tm+1

tm

(η − tm−1)
(tm+1 − η)1−αdη −

(
rP(tm−1)

(
1 − S (tm−1)

))
·

∫ tm+1

tm

(η − tm)
(tm+1 − η)1−αdη

)
(4.50)

These integrals are evaluated directly and the numerical solutions of Eqs (4.11)–(4.20) involving
the LC derivative are given by
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V(tn+1) = V(0) +
hα

α(α + 1)Γ(α)

n∑
m=0

((
γV I(tm) − γVAS (tm)A(tm)V(tm) − γVHV(tm)H(tm)

− αVV(tm) −
aV1V(tm)

1 + aV2V(tm)

)
· χ1(n,m)

−
(
γV I(tm−1) − γVAS (tm−1)A(tm−1)V(tm−1) − γVHV(tm−1)H(tm−1)

− αVV(tm−1) −
aV1V(tm−1)

1 + aV2V(tm−1)

)
· χ2(n,m)

)
, (4.51)

H(tn+1) = H(0) +
hα

α(α + 1)Γ(α)

n∑
m=0

((
bHDD

(
H(tm) + R(tm)

)
aRR(tm)

− γHVV(tm)H(tm) − bHV F(tm)H(tm)
)
· χ1(n,m)

−
(
bHDD

(
H(η) + R(η)

)
aRR(η) − γHVV(η)H(η) − bHV F(η)H(η)

)
· χ2(n,m)

)
, (4.52)

I(tn+1) = I(0) +
hα

α(α + 1)Γ(α)

n∑
m=0

((
γHVV(tm)H(tm) − bIEE(tm)I(tm)

)
· χ1(n,m) −

(
γHVV(tm−1)H(tm−1) − bIEE(tm−1)I(tm−1)

)
· χ2(n,m)

)
, (4.53)

M(tn+1) = M(0) +
hα

α(α + 1)Γ(α)

n∑
m=0

(((
bMDD + bMVV(tm)

)(
1 − M(tm)

)
− aM M(tm)

)
· χ1(n,m) −

((
bMDD + bMVV(tm−1)

)(
1 − M(tm−1)

)
]quad − aM M(tm−1)

)
· χ2(n,m)

)
, (4.54)

F(tn+1) = F(0) +
hα

α(α + 1)Γ(α)

n∑
m=0

(((
bF M(tm) + CF I(tm)

)
− bFHH(tm)F(tm) − aF F(tm)

)
· χ1(n,m) −

((
bF M(tm−1) + CF I(tm−1)

)
− bFHH(tm−1)F(tm−1) − aF F(tm−1)

)
· χ2(n,m)

)
, (4.55)
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R(tm+1) = ϕ1(0) +
hα

α(α + 1)Γ(α)

n∑
m=0

((
bHF H(tm)F(tm) − aRR(tm)

)
· χ1(n,m) −

(
bHF H(tm−1)F(tm−1) − aRR(tm−1)

)
· χ2(n,m)

)
, (4.56)

E(tm+1) = E(0) +
hα

α(α + 1)Γ(α)

n∑
m=0

((
bEM M(tm)E(tm) − abIEI(tm)E(tm)

+ aE
(
1 − E(tm)

))
· χ1(n,m) −

(
bEM M(tm−1)E(tm−1) − abIEI(tm−1)E(tm−1)

+ aE
(
1 − E(tm−1)

))
· χ2(n,m)

)
, (4.57)

P(tn+1) = P(0) +
hα

α(α + 1)Γ(α)
1

hΓ(α)

n∑
m=0

((
bPM M(tm)P(tm) + aP

(
1 − P(tm)

))
· χ1(n,m) −

(
bPM M(tm−1)P(tm−1) + aP

(
1 − P(tm−1)

))
· χ2(n,m)

)
, (4.58)

A(tn+1) = A(0) +
hα

α(α + 1)Γ(α)

n∑
m=0

((
bAP(tm) − γAVS (tm)A(tm)V(tm) − aAA(tm)

)
· χ1(n,m) −

(
bAP(tm) − γAVS (tm)A(tm)V(tm) − aAA(tm)

)
· χ2(n,m)

)
(4.59)

and

S (tn+1) = S (0) +
hα

α(α + 1)Γ(α)

n∑
m=0

((
rP(tm)

(
1 − S (tm)

))
· χ1(n,m) −

(
rP(tm−1)

(
1 − S (tm−1)

))
χ2(n,m)

)
. (4.60)

χ1(n,m) =
(
(n + 1 − m)α(n − m + 2 + α) − (n − m)α × (n − m + 2 + 2α)

)
, (4.61)

χ2(n,m) =
(
(n + 1 − m)α+1 − (n − m)α(n − m + 1 + α)

)
. (4.62)
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4.2. Numerical scheme for fractional immune response in CFC sense

Considering the CFC derivative, we have

CFC
0 Dα

ξV = γV I − γVAS AV − γVHVH − αVV −
aV1V

1 + aV2V
, (4.63)

CFC
0 Dα

ξ H = bHDD(H + R)aRR − γHVVH − bHV FH, (4.64)

CFC
0 Dα

ξ I = γHVVH − bIEEI, (4.65)

CFC
0 Dα

ξ M = (bMDD + bMVV)(1 − M) − aM M, (4.66)

CFC
0 Dα

ξ F = (bF M + CF I) − bFHHF − aF F, (4.67)

CFC
0 Dα

ξR = bHF HF − aRR, (4.68)

CFC
0 Dα

ξ E = bEM ME − abIEIE + aE(1 − E), (4.69)

CFC
0 Dα

ξ P = bPM MP + aP(1 − P), (4.70)

CFC
0 Dα

ξ A = bAP − γAVS AV − aAA (4.71)

and

CFC
0 Dα

ξS = rP(1 − S ). (4.72)

As in the preceding section, by applying the fundamental theorem of fractional calculus, we obtain

V(t) − V(0) =
1 − α
M(α)

(
γV I(t) − γVAS (t)A(t)V(t) − γVHV(t)H(t) − αVV(t) −

aV1V(t)
1 + aV2V(t)

)
Mathematical Biosciences and Engineering Volume 17, Issue 5, 4942–4969.
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+
α

M(α)

∫ t

0

(
γV I(η) − γVAS (η)A(η)V(η) − γVHV(η)H(η) − αVV

−
aV1V(η)

1 + aV2V(η)

)
dη, (4.73)

H(t) − H(0) =
1 − α
M(α)

(
bHDD

(
H(t) + R(t)

)
aRR(t) − γHVV(t)H(t) − bHV F(t)H(t)

)
+

α

M(α)

∫ t

0

(
bHDD

(
H(η) + R(η)

)
aRR(η) − γHVV(η)H(η) − bHV F(η)H(η)

)
dη, (4.74)

I(t) − I(0) =
1 − α
M(α)

(
γHVV(t)H(t) − bIEE(t)I(t)

)
+

α

M(α)

∫ t

0

(
γHVV(η)H(η) − bIEE(η)I(η)

)
dη, (4.75)

M(t) − M(0) =
1 − α
M(α)

((
bMDD + bMVV(t)

)(
1 − M(t)

)
− aM M(t)

)
+

α

M(α)

∫ t

0

((
bMDD + bMVV(η)

)(
1 − M(η)

)
− aM M(η)

)
dη, (4.76)

F(t) − F(0) =
1 − α
M(α)

((
bF M(t) + CF I(t)

)
− bFHH(t)F(t) − aF F(t)

)
+

α

M(α)

∫ t

0

((
bF M(η) + CF I(η)

)
− bFHH(η)F(η) − aF F(η)

)
dη, (4.77)

R(t) − R(0) =
1 − α
M(α)

(
bHF H(t)F(t) − aRR(t)

)
+

α

M(α)

∫ t

0

(
bHF H(η)F(η) − aRR(η)

)
dη, (4.78)

E(t) − E(0) =
1 − α
M(α)

(
bEM M(t)E(t) − abIEI(t)E(t) + aE

(
1 − E(t)

))
+

α

M(α)

∫ t

0

(
bEM M(η)E(η) − abIEI(η)E(η) + aE

(
1 − E(η)

))
dη, (4.79)

P(t) − P(0) =
1 − α
M(α)

(
bPM M(t)P(t) + aP

(
1 − P(t)

))
+

α

M(α)

∫ t

0

(
bPM M(η)P(η) + aP

(
1 − P(η)

))
dη, (4.80)
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A(t) − A(0) =
1 − α
M(α)

(
bAP(t) − γAVS (t)A(t)V(t) − aAA(t)

)
+

α

M(α)

∫ t

0

(
bAP(η) − γAVS (η)A(η)V(η) − aAA(η)

)
dη, (4.81)

and

S (t) − S (0) =
1 − α
M(α)

(
rP(t)

(
1 − S (t)

))
+

α

M(α)

∫ t

0

(
rP(η)

(
1 − S (η)

))
dη, (4.82)

where M(α) is a normalization function such that M(0) = M(1) = 1.
We now complete the procedure with one equation and, for the remaining equations, we repeat the

same procedure to get the final constructions of approximation iteration. First, we let t = tn+1

S (tn+1) − S (0) =
1 − α
M(α)

(
rP(tn)

(
1 − S (tn)

))
+

α

M(α)

∫ tn+1

0

(
rP(η)

(
1 − S (η)

))
dη. (4.83)

Then t = tn and

S (tn) − S (0) =
1 − α
M(α)

(
rP(tn−1)

(
1 − S (tn−1)

))
+

α

M(α)

∫ tn

0
Big(rP(η)

(
1 − S (η)

))
dη. (4.84)

Thus, in view of Eqs (4.83),(4.84), we obtain

S (tn+1) = S (tn) +
1 − α
M(α)

((
rP(tn)

(
1 − S (tn)

))
−

(
rP(tn−1)

(
1 − S (tn−1)

)))
+

α

M(α)

∫ tn+1

tn

(
rP(η)

(
1 − S (η)

))
dη. (4.85)

In view of the Lagrange polynomial interpolation, and by integrating the following expressions, we
obtain ∫ tn+1

tn

(
rP(η)

(
1 − S (η)

))
dη =

3h
2

((
rP(tn)

(
1 − S (tn)

)))
−

h
2

((
rP(tn+1)

(
1 − S (tn+1)

)))
. (4.86)

After some manipulation, we have the following expression:

S (tn+1) = S (tn) +
(1 − α

M(α)
+

3αh
2M(α)

)(
rP(tn)

(
1 − S (tn)

))
−

(1 − α
M(α)

+
αh

2M(α)

)(
rP(tn−1)

(
1 − S (tn−1)

))
. (4.87)

Following the same procedure as in the case of LC, we find that
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V(tn+1) = V(tn) +
(1 − α

M(α)
+

3αh
2M(α)

)(
γV I(tn) − γVAS (tn)A(tn)V(tn) − γVHV(tn)H(tn)

− αVV(tn) −
aV1V(tn)

1 + aV2V(tn)

)
−

(1 − α
M(α)

+
αh

2M(α)

)(
γV I(tn−1) − γVAS (tn−1)A(tn−1)V(tn−1) − γVHV(tn−1)H(tn−1)

− αVV(tn−1) −
aV1V(tn−1)

1 + aV2V(tn−1)

)
. (4.88)

H(tn+1) = H(tn) +
(1 − α

M(α)
+

3αh
2M(α)

)(
bHDD

(
H(tn) + R(tn)

)
aRR(tn)

− γHVV(tn)H(tn) − bHV F(tn)H(tn)
)

−
(1 − α

M(α)
+

αh
2M(α)

)(
bHDD

(
H(tn−1) + R(tn−1)

)
aRR(tn−1)

− γHVV(tn−1)H(tn−1) − bHV F(tn−1)H(tn−1)
)
, (4.89)

I(tn+1) = I(tn) +
(1 − α

M(α)
+

3αh
2M(α)

)(
γHVV(tn)H(tn) − bIEE(tn)I(tn)

)
−

(1 − α
M(α)

+
αh

2M(α)

)(
γHVV(tn−1)H(tn−1) − bIEE(tn−1)I(tn−1)

)
, (4.90)

M(tn+1) = M(tn) +
(1 − α

M(α)
+

3αh
2M(α)

)((
bMDD + bMVV(tn)

)(
1 − M(tn)

)
− aM M(tn)

)
−

(1 − α
M(α)

+
αh

2M(α)

)((
bMDD + bMVV(tn−1)

)(
1 − M(tn−1)

)
− aM M(tn−1)

)
, (4.91)

F(tn+1) = F(tn) +
(1 − α

M(α)
+

3αh
2M(α)

)((
bF M(tn) + CF I(tn)

)
− bFHH(tn)F(tn) − aF F(tn)

)
−

(1 − α
M(α)

+
αh

2M(α)

)((
bF M(tn−1) + CF I(tn−1)

)
− bFHH(tn−1)F(tn−1)

− aF F(tn−1)
)
, (4.92)

R(tn+1) = R(tn) +
(1 − α

M(α)
+

3αh
2M(α)

)(
bHF H(tn)F(tn) − aRR(tn)

)
−

(1 − α
M(α)

+
αh

2M(α)

)(
bHF H(tn−1)F(tn−1) − aRR(tn−1)

)
, (4.93)
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R(tn+1) = R(tn) +
(1 − α

M(α)
+

3αh
2M(α)

)(
bHF H(tn)F(tn) − aRR(tn)

)
−

(1 − α
M(α)

+
αh

2M(α)

)(
bHF H(tn−1)F(tn−1) − aRR(tn−1)

)
, (4.94)

E(tn+1) = E(tn) +
(1 − α

M(α)
+

3αh
2M(α)

)(
bEM M(tn)E(tn) − abIEI(tn)E(tn) + aE

(
1 − E(tn)

))
−

(1 − α
M(α)

+
αh

2M(α)

)(
bEM M(tn−1)E(tn−1) − abIEI(tn−1)E(tn−1) + aE

(
1 − E(tn−1)

))
, (4.95)

P(tn+1) = P(tn) +
(1 − α

M(α)
+

3αh
2M(α)

)(
bPM M(tn)P(tn) + aP

(
1 − P(tn)

))
−

(1 − α
M(α)

+
αh

2M(α)

)(
bPM M(tn−1)P(tn−1) + aP

(
1 − P(tn−1)

))
, (4.96)

and

A(tn+1) = A(tn) +
(1 − α

M(α)
+

3αh
2M(α)

)(
bAP(tn) − γAVS (tn)A(tn)V(tn) − aAA(tn)

)
−

(1 − α
M(α)

+
αh

2M(α)

)(
bAP(tn−1) − γAVS (tn−1)A(tn−1)V(tn−1) − aAA(tn−1)

)
. (4.97)

5. Numerical simulations

In this section, we present numerical simulations of the model given by the systems given by Eqs
(4.1)–(4.10), and (4.63)–(4.72). We study the dynamical behavior of the model for variation of the
integer-order derivative and non-integer α. The basis of the selection of the parameter values are shown
in [37]. In our investigation, we have concentrated upon the case that the host has no dead, infected or
resistant cells, no interferon molecules, and no activated APC so that h0 = 1, i0 = m0 = f0 = r0 = 0).
The initial levels of effectors, plasma cells, and antibodies are assumed to be at the homeostatic values
(that is, e0 = p0 = a0 = 1) [42]. The initial antigenic compatibility is s0 = 0.1 and the initial virus
particle v0 = 0.01. Now our focus is on studying the effect of the change of the integer and non-integer
derivatives on the behaviour of the numerical solutions. For the the effects of biological behaviour for
this model [42].

First of all, in Figure 2, we clarify the comparison between the solutions presented in this paper
with those derived by using known numerical methods such as finite difference methods (FDM) in the
case of α = 1. Of course, the numerical solutions based on the two operators LC and CFC in the
case when α = 1 are identical, so the comparison will be done once. We set the initial and parameter
values as v0 = 0.01, h0 = 1, i0 = 0, m0 = 0, f0 = 0, r0 = 0, e0 = 1, p0 = 1, a0 = 1, s0 = 0.1
γV = 510, γVA = 6192/10, γVH = 102/100, αV = 17/10, aV1 = 100, aV2 = 23000, bHD = 4, aR =

1, γHV = 34/100, bHF = 1/100, bIE = 66/1000, aI = 15/10, bMD = 1, bMV = 37/10000, aM = 1, bF =
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250000, cF = 2000, bFH = 17, aF = 8, bEM = 83/10, bEI = 272/100, aE = 4/10, bPM = 115/10, aP =

4/10, bA = 43/1000, γAV = 1462/10, aA = 43/1000 and r = 3/100000. These initial values and
parameters were taken as in [37].

From Figure 2 it is clear that our results are consistent with those derived by the known numerical
method as well as those with the results in [37]. Now we focus on the fraction α values which are
the aim of our paper. Figures 2 and 3 illustrate the behavior of the numerical solutions based on the
LC and CFC operators, respectively. In Figure 3 the numerical solutions based on the LC operators
are displayed against time (days) for the initial values v0 = 0.2, h0 = 0.1, i0 = 0.01, m0 = 0.01, f0 =

0, r0 = 0.1, e0 = 2, p0 = 0.4, a0 = 1, s0 = 0.1 and for the same parameter values as those in Figure 2.
In Figure 4 the numerical solutions based on the CFC operator are plotted against time for the similar
data as in Figure 4. Figure 5 shows the behavior of the numerical solutions based onto the LC and CFC
operators with α = 0.9.

We note from Figure 5 that the two solutions exhibit the same behavior at the time of getting started
and also at the steady state as t approaches to a large time.

6. Conclusions

In our present investigation, we have considered the model of immune response to uncomplicated
influenza A virus (HIV) infection, the discussion of which was initiated in [1]. The novelty of the
presented work is in the construction of a new algorithm for the fractional-order system of human
immune against HIV infection. To the best our knowledge, this is the first study for this fractional-
order model. Here, in this paper, we have replaced the ordinary derivative by the Liouville-Caputo
(LC) and Caputo-Fabrizio (CFC) fractional-order derivatives. We have constructed the scheme for
these operators according to the fundamental theorem of fractional calculus and the two-step Lagrange
polynomials. Numerical simulations are carried out by using these schemes.

The accuracy of the numerical solutions was verified for our usage of the proposed method by
closely comparing our numerical solutions with the numerical solutions resulting from the use of the
computer program package, Mathematica, and also with those in [37]. Excellent agreement has been
found. The behavior of the numerical solutions for LC and CFC are also illustrated graphically.

Some useful highlights of our present investigation are being itemized below.

• The proposed methods have many applications and are widely used because of their good
properties in the process of approximation.
• The methods used include a numerical technique with high accuracy, which is easy to use for

other problems as well.
• The numerical solutions have the same behaviour when the order of the derivative varies from

non-integer order to integer order.
• For future work, it is possible to extend these studies to the fractal-fractional derivatives involving

different operators.
• For the interest and motivation for further researches on the subject of this paper, we have chosen

to cite a number of recently-published related works [4–6, 25–27, 46–52] .
• These recent works proposed and made use of many different methods and techniques for solving

various families of fractional differential equations.
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Figure 2. Graph of the comparison between the numerical solutions based on LC and CFC
operators and the numerical solutions based on FDM for α = 1, v0 = 0.2, h0 = 0.1, i0 =

0.01, m0 = 0.01, f0 = 0, r0 = 0.1, e0 = 2, p0 = 0.4, a0 = 1, s0 = 0.1 γV = 510, γVA =

6192/10, γVH = 102/100, αV = 17/10, aV1 = 100, aV2 = 23000, bHD = 4, aR = 1, γHV =

34/100, bHF = 1/100, bIE = 66/1000, aI = 15/10, bMD = 1, bMV = 37/10000, aM = 1, bF =

250000, cF = 2000, bFH = 17, aF = 8, bEM = 83/10, bEI = 272/100, aE = 4/10, bPM =

115/10, aP = 4/10, bA = 43/1000, γAV = 1462/10, aA = 43/1000 and r = 3/100000. Red
color: LC(CFC) solutions; blue color: FDM solutions.
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Figure 3. Graph of the numerical solutions against t using the LC operator for α = 0.8, v0 =

0.01, h0 = 1, i0 = 0, m0 = 0, f0 = 0, r0 = 0, e0 = 1, p0 = 1, a0 = 1, s0 = 0.1
γV = 510, γVA = 6192/10, γVH = 102/100, αV = 17/10, aV1 = 100, aV2 = 23000, bHD =

4, aR = 1, γHV = 34/100, bHF = 1/100, bIE = 66/1000, aI = 15/10, bMD = 1, bMV =

37/10000, aM = 1, bF = 250000, cF = 2000, bFH = 17, aF = 8, bEM = 83/10, bEI =

272/100, aE = 4/10, bPM = 115/10, aP = 4/10, bA = 43/1000, γAV = 1462/10, aA =

43/1000 and r = 3/100000.
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Figure 4. Graph of the numerical solutions against t using the CFC operator for α =

0.8, v0 = 0.01, h0 = 1, i0 = 0, m0 = 0, f0 = 0, r0 = 0, e0 = 1, p0 = 1, a0 = 1, s0 = 0.1
γV = 510, γVA = 6192/10, γVH = 102/100, αV = 17/10, aV1 = 100, aV2 = 23000, bHD =

4, aR = 1, γHV = 34/100, bHF = 1/100, bIE = 66/1000, aI = 15/10, bMD = 1, bMV =

37/10000, aM = 1, bF = 250000, cF = 2000, bFH = 17, aF = 8, bEM = 83/10, bEI =

272/100, aE = 4/10, bPM = 115/10, aP = 4/10, bA = 43/1000, γAV = 1462/10, aA =

43/1000 and r = 3/100000.
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Figure 5. Graph of the numerical solutions against t using the CFC operator for α = 0.9, v0 =

0.3, h0 = 1, i0 = 0, m0 = 0, f0 = 0, r0 = 0, e0 = 1, p0 = 1, a0 = 1, s0 = 0.1 γV = 510, γVA =

6192/10, γVH = 102/100, αV = 17/10, aV1 = 100, aV2 = 23000, bHD = 4, aR = 1, γHV =

34/100, bHF = 1/100, bIE = 66/1000, aI = 15/10, bMD = 1, bMV = 37/10000, aM = 1, bF =

250000, cF = 2000, bFH = 17, aF = 8, bEM = 83/10, bEI = 272/100, aE = 4/10, bPM =

115/10, aP = 4/10, bA = 43/1000, γAV = 1462/10, aA = 43/1000 and r = 3/100000. Red
color: LC solutions; blue color: CFC solutions.
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8. M. A. Khan, S. W. Shah, S. Ullah, J. F. Gómez-Aguilar, A dynamical model of asymptomatic
carrier zika virus with optimal control strategies, Nonlinear Anal. Real World Appl., 50 (2019),
144–170.

9. M. A. Taneco-Hernández, V. F. Morales-Delgado, J. F. Gómez-Aguilar, Fractional Kuramoto-
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19. K. M. Saad, K. M. Khader, J. F. Gómez-Aguilar, D. Baleanu, Numerical solutions of the fractional
Fisher’s type equations with Atangana-Baleanu fractional derivative by using spectral collocation
methods, Chaos, 29 (2019), 023116.

20. M. M. Khader, K. M. Saad, Numerical treatment for studying the blood ethanol concentration
systems with different forms of fractional derivatives, Int. J. Modern Phys. C., 31 (2020), 1–13.
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48. H. M. Srivastava, H. Günerhan, B. Ghanbari, Exact traveling wave solutions for resonance
nonlinear Schrödinger equation with intermodal dispersions and the Kerr law nonlinearity, Math.
Methods Appl. Sci., 42 (2019), 7210–7221.

49. H. M. Srivastava, F. A. Shah, R. Abass, An application of the Gegenbauer wavelet method for the
numerical solution of the fractional Bagley-Torvik equation, Russian J. Math. Phys., 26 (2019),
77–93.

50. H. M. Srivastava, R. S. Dubey, M. Jain, A study of the fractional-order mathematical model of
diabetes and its resulting complications, Math. Methods Appl. Sci., 42 (2019), 4570–4583.
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