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Abstract: A periodically forced Filippov forest-pest model incorporating threshold policy control
and integrated pest management is proposed. It is very natural and reasonable to introduce Filippov
non-smooth system into the ecosystem since there were many disadvantageous factors in pest control
at fixed time and the threshold control according to state variable showed rewarding characteristics.
The main aim of this paper is to quest the association between pests dynamics and system parameters
especially the economical threshold ET , the amplitude and frequency of periodic forcing term. From
the view of pest control, if the maximum amplitude of the sliding periodic solution does not exceed
economic injury level(EIL), the sliding periodic solution is a desired result for pest control. The Fil-
ippov forest-pest model exhibits the rich dynamic behaviors including multiple attractors coexistence,
period-adding bifurcation, quasi-periodic feature and chaos. At certain frequency of periodic forcing,
the varying system initial densities trigger the system state switch between different attractors with
diverse amplitudes and periods. Besides, parameters sensitivity analysis shows that the pest could be
controlled at a certain level by choosing suitable parameters.
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1. Introduction

Periodically perturbed issues or seasonal variations of environment have been confirmed to bring
diversity and complexity to population communities. Several seasonality parameters were analyzed in
detail by means of bifurcation diagrams demonstrated that even a relatively simple dynamic behavior
of the system with constant parameters become very complex when they were periodically perturbed
[1]. For instance, their results showed that the prey-predator system can give rise to multiple attractors
under periodically varying parameters while only one attractor was generated when the parameters in
the constant case. Moreover, the limit cycle of the unperturbed system can be converted into the quasi-
periodic one owing to the introduction of the seasonality. Abundant chaotic solutions were found in the
prey-predator ecosystem subjected to periodic forcing of the intrinsic growth rate of the prey, which in
its unforced state has a globally stable focus [2]. Incorporating periodic forcing in the prey-predator
system with age structure for predator also exhibited further quasi-periodic solution and chaotic solu-
tion [3]. The chaotic solution was detected in a seasonally perturbed ratio-dependent prey-predator sys-
tem through Lyapunov exponents, Lyapunov dimension and Poincare section [4]. Frequency lockings
and resonant patterns were observed in a spatial version of prey-predator model with the appearance of
periodic forcing and noise [5], which indicate that the phenomena may partly result from periodic forc-
ing and noise instead of deterministic factors. In article [6] it was found that the addition of periodic
forcing to the semi-Kolmogorov ecological system can produce pullback attractors.

These above results indicated that the periodic forcing usually brings systems to more complex
dynamical behaviors such as chaos, which are often undesirable attributes of the ecosystems, especially
for the ecosystems related to pest populations. Forest pests have caused huge ecological damage and
significant economic losses to forests either through the consumption of leaves or fluids by defoliators
or chewing phloem by bark beetles [7]. Most of insects rarely caused the whole tree to die directly, but
they resulted in defoliation across wide areas [8]. Other defoliators such as the eastern spruce budworm
in North America can cause a great quantity of trees dead if they were destroyed for several years [9].
Most of the literatures that deal with this issue were largely at the descriptive and phenomenological
levels. Although the association between forest damage and insects outbreak has been frequently
explored from the quantitative point of view, nevertheless the corresponding mathematical models did
not been put forward. Chen-Charpentier developed a tree-beetle system to qualitatively analyze the
effect of interaction between forest damage and pest outbreaks [10]. The constructed two-dimensional
mathematical model described the temporal dynamics of the tree-beetle system and the potential for the
existence of positive feedback between wildfire and insect outbreak disturbances, which was consistent
with the previous experimental data available. Nevertheless, this article did not further address the
multiple attractors coexistence, quasiperiodic and chaotic phenomena.

In the history of battles against pests, human combat strategies and tactics have been evolving with
the society development, becoming more and more ingenious and effective to a large extent [11]. Ini-
tially, humans used hand picking, swatting and other methods to catch pests, and later changed the
environment to eliminate pests, such as burning fields to kill insects, and using scarecrows to drive
away birds. The introduction of natural enemies to eliminate pests is an important control referred
to ”biological control”. The superiority of biological control is that biological control does not pol-
lute fields and environments, but the disadvantage is that it may cause the natural enemies outbreak.
In the 1940s, chemical control began to dominate in the control policies because of the adoptation
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of insecticide DDT, which was effective, cheap and long-lasting. Insecticides were so effective that
entomologists and pest managers even held the view that the extinction of pests was doomed. How-
ever, large-scale use of insecticides was prone to cause pests resistance to insecticides and injure some
innocent insects imprudently, the pests soon multiplied in large numbers.

Nevertheless, it is impossible to eradicate the pests completely, nor is it biologically or economically
desirable. Recently, a new comprehensive approach termed integrated pest management(IPM) has
been put forward. Integrated pest management relies heavily on natural mortality factors such as natural
enemies, whether or not adopts the chemical pesticides only after evaluating the potential interaction
among various control tactics. IPM considers all available pest control strategies including biological,
cultural and chemical action to reduce pest populations to tolerable levels when the pests reach or
exceed an economic threshold(ET ). For example, people combined chemical and biological control
methods to control aphids [12, 13], adopted IPM to eliminate the parasitoids in a host-parasitoid model
[14] and reduce the density of pests in prey-predator models [15, 16]. That is, to avoid economic loss,
the number of pests should be less than the economic injury level (EIL) where an ET is approximately
75 % or 80 % of EIL [13, 17, 18]. This shows that the main aim of IPM is to reduce the density of
pest population below the EIL, rather than eliminate it.

Threshold policy control (T PC) is a control strategy that divides the whole system into several
subsystems according to the presetting threshold [19, 20, 21], and different subsystems adopt distinct
control strategies, i.e., if the number of pest population does not reach ET , no control strategy need to
be adopted and allow the number of pests to continue to grow. If the number of pest population is larger
than ET , the corresponding control measure will be implemented, such as releasing natural enemies,
spraying pesticides and etc. In traditional biological control or pesticide-dominated control systems,
pest managers release natural enemies or spray pesticides at fixed time or by seasonality regardless of
whether the number of pests reaches ET or not. Although threshold policy control was also adopted
in the pest control systems with state-dependent impulse where the control policy was related to ET ,
it was not reasonable for people to carry out control policy and make the number of pests less than
ET instantaneously. Actually, the control strategies cannot be finished at a moment and the control
effect will take a certain period of time to appear. Consequently, a class of Filippov pest management
systems combining IPM and T PC have attracted the attention of scholars. Periodically forced Filippov
population systems by taking advantage of IPM and T PC have been considered in References [21,
22, 23]. The Filippov system is a kind of discontinuous/non-smooth system [25, 26] and applied
in mechanical systems [27, 28], prey-predator models [29, 30, 31], pest-natural enemy system [32],
braking system [33], electro-mechanical system [34], epidemic models [35, 36, 37], neuronal model
[38]. In this paper, integrated IPM with T PC, a novel Filippov forest-pest system with periodic forcing
is proposed.

The organization of this paper is as follows. In section 2, based on the classical tree-beetle model, a
periodically forced Filippov forest-pest model integrated IPM with T PC is proposed. The theoretical
preliminary of switching dynamics of the proposed system will be given in section 3. In section 4,
numerical investigations of the Filippov system are studied, which includes bifurcation analysis of the
periodic forcing amplitude γ, the periodic forcing frequency ω and economic threshold ET , four cases
of the coexisting attractors and key parameters sensitivity analysis on the dynamics of the system and
the corresponding biological significance are discussed. Concluding remarks are presented in the last
section.
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2. Model formulation

Chen-Charpentier [10] proposed the tree-beetle system model V̇(t) = rvV(t)
(
1 − V(t)

kv
− m(B)

)
,

Ḃ(t) = rbB(t)
(
1 − B(t)

kb

)
−

αB2(t)
1+βB2(t) ,

(2.1)

where V(t) represents the number of susceptible trees, rv and kv are its intrinsic growth rate and carrying
capacity, respectively. B(t) represents the density of mountain pine beetles, its intrinsic growth rate is
rb and the carrying capacity kb is assumed to depend on the amount of foliage or phloem available.
The growth of the trees is density limited as given by a logistic self-interaction without beetles. m(B)
accounts for the mortality of trees caused by the attack of beetles. The term

αB2(t)
1 + βB2(t)

is the Holling type III functional response, which defines the tree defense ability depends on the number
of beetles per tree where α = 0 denotes the trees have no defense and saturates for high number of
beetles. Based on model (2.1), Liu and Xiang et al. proposed the following forest-pest model to
elaborate the relationships of trees and pests [24] V̇(t) = rvV(t)

(
1 − V(t)

kv

)
− δB(t)V(t),

Ḃ(t) = rbB(t)
(
1 − B(t)

kb

)
+ ηδB(t)V(t) − αB2(t)

1+βB2(t) ,
(2.2)

where δ represents the mortality rate of tree consumed by beetle; η is the conversion coefficient of the
beetles; ηδB(t)V(t) denotes the number of beetles additional increases after they comsumed trees. To
explore the effects of periodic forcing on population communities in this paper, when B(t) < ET , the
forest-pest system with periodic forcing term γ(1 − cosωt) is considered where the periodic forcing
follows the idea in References [2, 3, 22].

V̇(t) = rvV(t)
(
1 − V(t)

kv

)
− δB(t)V(t),

Ḃ(t) = rbB(t)
(
1 − B(t)

kb

)
+ ηδB(t)V(t) − αB2(t)

1+βB2(t) + γ (1 − cos S (t)) B(t),
Ṡ (t) = ω,

(2.3)

where S (t) = ωt, γ and ω are its amplitude and frequency of periodic forcing term. Rearrange the
second equation of model (2.3), it can be written as

Ḃ(t) =
[
rb + γ (1 − cos S (t))

]
B(t) − rb

B2(t)
kb

+ ηδB(t)V(t) −
αB2(t)

1 + βB2(t)
.

IPM strategies are adopted to control pests when the density of pest population reaches or exceeds the
economic threshold. Some anthropogenic disturbances are also considered which includes planting
trees or releasing natural enemies of pests. Compared to the entire forest, the effect of anthropogenic
disturbance is limited. Thus, when B(t) > ET , spraying pesticides and some anthropogenic distur-
bances are taken into account simultaneously, supposing that control strategies are applied, then model
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(2.3) becomes
V̇(t) = rvV(t)

(
1 − V(t)

kv

)
− δB(t)V(t) + τ(t),

Ḃ(t) = rbB(t)
(
1 − B(t)

kb

)
+ ηδB(t)V(t) − αB2(t)

1+βB2(t) + γ (1 − cos S (t)) B(t) − q1B(t),
Ṡ (t) = ω,

(2.4)

where τ(t) could be regarded as newly planted trees, q1B(t) could be viewed as the number of pests
reduced after adopting control strategy. Therefore, the Filippov system [25, 34] combines model (2.3)
and (2.4) is

V̇(t) = rvV(t)
(
1 − V(t)

kv

)
− δB(t)V(t) + ετ(t),

Ḃ(t) = rbB(t)
(
1 − B(t)

kb

)
+ ηδB(t)V(t) − αB2(t)

1+βB2(t) + γ (1 − cos S (t)) B(t) − εq1B(t),
Ṡ (t) = ω,

(2.5)

with

ε =

{
0, B(t) < ET,
1, B(t) > ET.

(2.6)

Denote H(Z) = B(t) − ET with column vector Z = (V, B, S )T , and the column vector is defined in
G = R2

+ × T 1 with T 1 = R+/2πN (N is positive integer) [39]. Models (2.5) and (2.6) describe the
T PC referred to as an on-off control. Then, it should be noted that the discontinuity boundary set
Σ = {Z ∈ G|H(Z) = 0} separates G into two regions

Ż(t) =

{
FG1(Z), Z ∈ G1,

FG2(Z), Z ∈ G2,
(2.7)

where G1 = {Z ∈ G|H(Z) < 0}, G2 = {Z ∈ G|H(Z) > 0}, the specific expressions FG1(Z) and FG2(Z)
take the form of

FG1(Z) =


rvV

(
1 − V

kv

)
− δBV

rbB
(
1 − B

kb

)
+ ηδBV − αB2

1+βB2 + γ(1 − cos S )B
ω


T

, (2.8)

and

FG2(Z) =


rvV

(
1 − V

kv

)
− δBV + τ

rbB
(
1 − B

kb

)
+ ηδBV − αB2

1+βB2 + γ(1 − cos S )B − q1B
ω


T

. (2.9)

The sliding region and sliding mode dynamics of Filippov system (2.7) can be determined by means
of the Filippov convex method [25] or the Utkin’s equivalent control method [34]. Denote

σ(Z) = 〈HZ(Z), FG1(Z)〉〈HZ(Z), FG2(Z)〉,

where 〈·〉 is the standard scalar product and HZ denotes a non-vanishing gradient of the smooth scale
function on Σ. Then, the sliding mode domain can be defined as

ΣS = {Z ∈ Σ|σ(Z) ≤ 0}.

Meanwhile, the sliding mode domain ΣS can be distinguished as the following regions
(i) Escaping region: if 〈HZ(Z), FG1(Z)〉 < 0 and 〈HZ(Z), FG2(Z)〉 > 0,
(ii) Sliding region: if 〈HZ(Z), FG1(Z)〉 > 0 and 〈HZ(Z), FG2(Z)〉 < 0.
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3. Sliding region and sliding mode dynamics of Filippov system (2.7)

In this section, the sliding region and sliding mode dynamics of Filippov system (2.7) are investi-
gated. According to the definitions of σ(Z) and the switching surface H(Z) in section 2, we have

σ(Z) =
{
rbET

(
1 − ET

kb

)
+ ηδETV − αET 2

1+βET 2 + γ(1 − cos S )ET
}
·{

rbET
(
1 − ET

kb

)
+ ηδETV − αET 2

1+βET 2 + γ(1 − cos S )ET − q1ET
}
< 0, Z ∈ Σ.

(3.1)

The sliding regions exists on the discontinuity boundary Σ if the sign of the vector in subsystem S G1

is positive while in subsystem S G2 is negative. Then, the sliding region can be obtained by solving the
following inequalities related to V and S rbET

(
1 − ET

kb

)
+ ηδETV − αET 2

1+βET 2 + γ(1 − cos S )ET > 0,
rbET

(
1 − ET

kb

)
+ ηδETV − αET 2

1+βET 2 + γ(1 − cos S )ET − q1ET < 0.

The two inequalities can be combined as follows

− rb

(
1 −

ET
kb

)
+

αET
1 + βET 2 < ηδV + γ(1 − cos S ) < −rb

(
1 −

ET
kb

)
+

αET
1 + βET 2 + q1. (3.2)

Substituting S = ωt into (3.2), which can be rewritten as

Vmin(t) < V < Vmax(t),

where

Vmin(t) =
1
ηδ

(
−rb

(
1 −

ET
kb

)
+

αET
1 + βET 2 − γ (1 − cosωt)

)
,

Vmax(t) =
1
ηδ

(
−rb

(
1 −

ET
kb

)
+

αET
1 + βET 2 − γ (1 − cosωt) + q1

)
.

Therefore, the sliding segment of Filippov system (2.7) can be defined as

ΣS = {Z ∈ G|B = ET,Vmin(t) < V < Vmax(t)} .

We further introduce the sliding mode dynamics of Filippov (2.7) by employing Utkin’s equivalent
control method [34]. Since Ḣ = 0

∂H
∂t

=
∂B
∂t

= rbB
(
1 −

B
kb

)
+ ηδBV −

αB2

1 + βB2 + γ (1 − cos S ) B − εq1B = 0,

where B = ET . Then, solve the above equation with respect to ε yields

ε =
rb

(
1 − ET

kb

)
+ ηδV − αET

1+βET 2 + γ (1 − cos S )

q1
.

So the dynamics on Σs (i.e., the sliding region) can be determined by the following equations dV
dt = rvV(1 − V

kv
) − δBV +

rb(1− ET
kb

)+ηδV− αET
1+βET2 +γ(1−cos S )

q1
τ,

dS
dt = ω.

(3.3)
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Denote
A1 = − rv

kv
,

A2 = rv − δET +
ηδτ

q1
,

A3 = rbτ
q1

(
1 − ET

kb

)
− αETτ

q1(1+βET 2) +
γτ

q1
,

A4 = −
γτ

q1
.

Hence, equations (3.3) can be represented as follows{
V̇ = A1V2 + A2V + A3 + A4 cos S ,
Ṡ = ω.

(3.4)

A correlation equation is then defined, namely,

V̇ = A1V2 + A2V + A3 + A4 cosωt, (3.5)

where we denote the solution of equation (3.5) as V∗(t). Numerical simulation of sliding periodic
solution at low value of γ(0.2) are illustrated in Figure 1 (a) and Figure 2, respectively. The sliding
periodic solution is refers to the periodic solution completely oscillates in the sliding domain except
for finite time out of the sliding domain. In other words, the density of the trees fluctuates between
Vmin(t) and Vmax(t) and the density of pest population always does not reach and exceed the ET . In
this case, the pests are completely controllable. When the amplitude γ of periodic forcing increases
to 0.3, the density of trees still fluctuates within the expected range which is showed in Figure 1(b).
However, in Figure 1(c), when γ take the larger value 0.48, the system’s periodic solution is out of
the boundary of the sliding domain, which is not the sliding periodic solution, thus the pest population
become unpredictable and may outbreak in this case.

From Figure 1 we argue that this numerical evidence supports the fact that the larger γ, then Vmin(t)
tend to the smaller. In a biological sense, if the pests outbreak, the more trees will be destroyed and
the density of trees will be lower. The existence of sliding periodic solution of the system is vital
to achieve the pest control. If the amplitude γ of periodic forcing below a certain critical value such
as 0.48 and other parameters are fixed as Figure 1(a), the initial densities of the two populations are
random, then the system still has a sliding periodic solution depicted in Figure 2, indicating that pests
are under controllable range.

4. Complexity of the dynamic behaviors and simulation

To gain deeper understanding of the rich dynamic behaviors brought about by parameter space of
Filippov system (2.7), some special numerical cases are considered in this section. We first show the
bifurcation diagrams of key parameters (i.e., γ, ET and ω), it is observed that period-adding bifur-
cation, multiple attractors coexistence and quasi-periodic phenomenon exist in the Filippov system.
Coexisting attractors are compared through wavelet coherence, and parameter sensitivity analysis also
be provided to address the influence of parameters in biological pest control.

4.1. Bifurcation analysis of key parameters

We first choose the amplitude γ of periodic forcing term as a bifurcation parameter and fix all other
parameter values as those in Figure 3, bifurcation diagram about γ for pest population (B(t)) is showed
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Figure 1. Relation between the sliding domain and periodic solution of Filippov system
(2.7). Other parameters are fixed as rb = 1.4, kb = 10, η = 0.3, δ = 0.45, α = 5, β = 1, ET =

3, rv = 3.3, kv = 75, q1 = 0.6, τ = 0.1, ω = 0.5,(a)γ=0.2, (b) γ=0.3,(c)γ=0.48.
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Figure 2. Sliding periodic solution of Filippov system (2.7), parameters are fixed as those of
Figure 1(a).
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Figure 3. Bifurcation diagrams with respect to γ of Filippov system (2.7). Parameters are
rb = 0.4, kb = 10, η = 0.16, δ = 0.6, α = 8, β = 0.5, ET = 6.282, rv = 3.3, kv = 75, q1 =

0.6, τ = 0.1 and ω = 2.424.

in Figure 3(a). The results indicate that if 0.1 < γ < 0.6, the pest population oscillates and the local
maximum values do not exceed the ET , which is a favourable case for pest control. When γ > 0.6, the
number of pests will exceed the threshold ET at sometimes and fall below the threshold ET at other
cases, which implies the system will switch between two subsystems. If the density of pests above
ET but below EIL, the density of pests is still under controllable range. From Figure 3(b) we can find
the density of trees (V(t)) shows periodic windows and chaos rhythm similar to pests. The Filippov
system experiences stable state with period-1 to period-n and then chaos, period-n and chaos occur
alternately. Especially, it follows from Figure 3(b) that multiple attractors can coexist in the interval
around (1.1, 1.2).

Bifurcation structures of states variables about economic threshold ET are showed in Figure 4(a)
and (b), respectively. It is noted that period-adding bifurcations interchanging with regions of chaos
are observed since ET in a wide range (0, 8). Theoretically, the lower ET , the more intensive pest
control measures should be taken. However, the densities of pests and trees are affected by various
factors. When the parameter in term of pest control policy is large such as q1 = 0.6, we didn’t find the
number of pests drop dramatically as expected. Part of the reason may be that seasonal variation leads
to a sharp increase in the number of pests such as the amplitude of periodic forcing γ = 0.6. Moreover,
two attractors can coexist if ET ∈ (2.6, 3.2) or ET ∈ (6.1, 6.3). Multiple attractor coexistence indicates
that the pest outbreak patterns not only depend on the parameters of Filippov system but also the initial
densities of pests and trees.

The two bifurcation diagrams presented in Figure 5 related to the frequency ω of periodic forcing
term for the pests and trees, respectively. The value of ω can also affect the implementation of the
control strategy. Like the amplitude γ and the threshold ET , the frequency ω is not a simple linear
relationship with the densities of pests and trees. The bifurcation diagram about pest population in
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Figure 4. Bifurcation diagrams with respect to ET of Filippov system (2.7). Parameters are
rb = 0.4, kb = 10, η = 0.16, δ = 0.6, α = 8, β = 1, rv = 3.3, kv = 75, q1 = 0.6, τ = 0.1, γ = 0.6
and ω = 2.25.

Figure 5(a) shows the density of pests exhibits the phenomenon in which multiple periods and chaos
occur alternately, if the density of pests exceeds the threshold ET , and fluctuates at a high level, it is
likely to exceed the EIL, which increases the difficulty of pests control. Compared with the bifurcation
diagram in Figure 5(a), the bifurcation period of V(t) in Figure 5(b) is more complex than that of B(t)
in Figure 5(a) with the same frequency ω. In addition to bifurcation and chaos, there also exist several
multiple attractors in interval (1.8, 1.9) and (2.2, 2.8). For example, when ω = 2.422 four attractors
can coexist and if ω increases to 2.738, where the four attractors turn to three attractors. Besides,
ω = 1.824 or ω = 2.513, two attractors can coexist although their phase planes are completely distinct.
In the next subsection, the four cases of attractors coexistence mentioned above and their real biological
implications will be restated.

4.2. Attractors coexistence

For a dynamical system described by a set of autonomous ODEs, an attractor can be viewed as
a stable equilibrium point, a periodic limit cycle, or even a strange chaotic attractor. Among which
a point and a limit cycle are the most common attractors with integer dimension while an attractor
is referred to be strange if it has a noninteger dimension [40]. According to the bifurcation analysis
of Filippov system (2.7), several cases of coexisting attractors are further shown in this subsection.
When ω = 2.422, Figure 6 presents four coexisting attractors. Subfigures (a)-(c) of Figure 6 show the
first attractor, and the maximum amplitudes of the pest population and forest are 8.9317 and 40.8495,
respectively. Another attractor is shown in Figure 6(d)-(f) and the maximum amplitudes are 14.0361
and 57.2602, respectively. We use black curves and red curves represent time series diagrams of the
pest population and forest(left panel and middle panel), their corresponding phase portraits are plotted
by the blue curves(right panel). Subplots (g)-(i) and (j)-(l) of Figure 6 are the time series and phase
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Figure 5. Bifurcation diagrams with respect to ω of Filippov system (2.7). Parameters are
rb = 0.4, kb = 10, η = 0.16, δ = 0.6, α = 8, β = 1, ET = 5.5, rv = 3.3, kv = 75, q1 = 0.6, τ =

0.1 and γ = 0.59.

diagrams of other two attractors where the sliding segments showed in Figure 6(g) and (j), which means
that the pest population density would be stable at the ET for some time. The maximum amplitudes of
subfigures (g) and (h) of Figure 6 are 9.3571 and 49.8862, respectively. The maximum amplitudes as
shown in Figure 6(j) and (k) are 8.4677 and 36.7320, respectively. The phase diagram of the second
attractor is a standard limit cycle while the first, third and fourth attractors are periodic attractors with
varying degrees of amplitude attenuation. The four coexisting attractors demonstrate that the Filippov
system (2.7) with different initial values have different oscillation patterns, in other words, if the initial
densities of two populations locate at the attraction basin of their attractors, then the two populations
will be eventually stable at the corresponding attractor after a finite time.

Whenω = 2.738, three coexisting attractors are elaborated in Figure 7. Subfigures (a)-(c) and (d)-(f)
of Figure 7 are the first and second attractors, they are very similar except for a slight differ in ampli-
tude. Figure 7(g)-(i) show the third attractor where it has sliding segments at ET = 5.5. Obviously,
the three attractors are all periodic attractors. The second attractor has the local maximum amplitude
for pest population while the amplitude of the third sliding limit cycle is minimum. Therefore, if the
initial densities of two populations start at the attraction basin of the third attractor, the density of pest
population will keep at lower level compared with the other two attractors, which is desired results of
pest control.

An illustrative example of two periodic attractors is shown in Figure 8 when ω = 1.824. The
oscillation periods of two coexisting attractors are 10.3 and 13.8, respectively. In particular, the sliding
segments appear in Figure 8(a). If the other parameters are identical to those in Figure 5, the system
trajectory will follow one of the two attractors and switch from one to another according to different
initial values. The other case of two coexisting attractors is shown in Figure 9 supposing ω = 2.513,
they are also periodic attractors. The time series and phase diagrams of the two coexisting attractors are
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Figure 6. Four coexisting attractors with different initial values. ω = 2.422, other parameters
are fixed as those of Figure 5.
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Figure 7. Three coexisting attractors with different initial values. ω = 2.738, other parame-
ters are fixed as those of Figure 5.
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Figure 8. Two coexisting attractors with different initial values. ω = 1.824, other parameters
are fixed as those of Figure 5.

similar to the second and the third attractors of Figure 7. The oscillation periods of these two attractors
are both 5.

The relationship between the time series of two coexisting attractors can be compared by time
frequency space through wavelet coherence. Figure 10 present the wavelet coherence for the pests and
forests of two coexisting attractors of Figure 8. The wave coherence of the two coexisting attractors
of Figure 9 is depicted in Figure 11. As shown in Figure 10, the significance level regions at a level
of about 5% are denoted by the black contour lines. Lighter shadows indicate that edge effects can
distort the picture. A color scale shows strong or weak power for specific time and period. The arrows
indicate the phase difference between the two coexisting attractors where the left arrows indicate phase
and the right arrows indicate anti-phase, the upward arrows indicate that the first attractor leads the
second attractor, and the downward arrows indicate that the second attractor leads the first attractor
[41, 42, 43].

4.3. Parameter sensitivity analysis

In this subsection, we also choose ET , γ and ω as varying parameter and fix other parameters to
analyze the effects of key parameters on the dynamics of Filippov system (2.7). Note that the periodic
attractor with smaller amplitude can switch to a larger amplitude of periodic attractor if the threshold
ET change from 5 to 6.5 which showed in Figure 12(a) and Figure 12(b). From the perspective of
pest control, a larger threshold ET allows a certain amount of pest grow over a larger range without
adopting excessive pest control strategies. However, the pests may outbreak or be difficult to control
since the threshold is at a critical value leading to quasi-periodic feature such as Figure 12(c) where
ET = 7.

The Filippov system (2.7) exhibits sliding periodic orbits indicated in Figure 13(a)-(c) when γ = 0.5
and the pest population density always over the ET . The transition from the periodic motion to another
periodic motion can be noticed in Figure 13 (d)-(f) when the amplitude γ increase to 0.59.
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Figure 9. Two coexisting attractors with different initial values. ω = 2.513, other parameters
are fixed as those of Figure 5.

Figure 10. Wavelet coherence of the two coexisting attractors in Figure 8. (a) Wavelet co-
herence between the time series of the pests of two attractors, (b) wavelet coherence between
the time series of the forests of two attractors.
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Figure 11. Wavelet coherence of the two coexisting attractors in Figure 9. (a) Wavelet co-
herence between the time series of the pests of two attractors, (b) wavelet coherence between
the time series of the forests of two attractors.
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Figure 12. Sensitivity analysis of different ET on Filippov system (2.7). Parameters are
rb = 0.4, kb = 10, η = 0.16, δ = 0.5, α = 6, β = 1, rv = 3.3, kv = 75, q1 = 0.6, τ = 0.1, ω = 0.4
and γ = 0.2. (a-c) ET = 5; (d-f) ET = 6.5; (g-i) ET = 7.

Mathematical Biosciences and Engineering Volume 17, Issue 4, 4328–4347.



4343

760 780 800 820 840

5

5.5

6

6.5

7

t

P
e
s
t

(a)

760 780 800 820 840

5

10

15

t

F
o
re

s
t

(b)

5 5.5 6 6.5 7

5

10

15

Pest

F
o
re

s
t

(c)

760 780 800 820 840

2

4

6

8

t

P
e
s
t

(d)

760 780 800 820 840
0

10

20

30

40

t

F
o
re

s
t

(e)

2 4 6 8
0

10

20

30

40

Pest

F
o
re

s
t

(f)

Figure 13. Sensitivity analysis of different γ on Filippov system (2.7). Parameters are rb =

0.4, kb = 10, η = 0.16, δ = 0.5, α = 6, β = 1, rv = 3.3, kv = 75, q1 = 0.6, τ = 0.1, ET = 5 and
ω = 0.4. (a-c) γ = 0.5; (d-f) γ = 0.59.

Similarly, it is found from Figure 14 that the population densities of system (2.7) seem to be sensitive
to the parameter ω. Although there exists both sliding periodic solutions when ω = 0.2 and ω = 0.6,
the amplitude, period and phase diagram vary greatly. The sliding time in per-period of Figure 14(a)
when ω = 0.2 keep longer than that of Figure 14(d) when ω = 0.6. When there is a little change for ω,
such as ω = 0.68, the state of system (2.7) will be transferred from periodic transition to quasi-periodic
solution which showed in Figure 14(g)-(i).

5. Discussion

In this paper, non-smooth bifurcations, multiple attractors coexistence, quasi-periodic phenomenon
and chaotic dynamics are investigated for the Filippov forest-pest model with periodic forcing. The
classical beetle-tree model studied the effects of intrinsic growth rate, mortality and other parameters on
the dynamic behaviors of the system. Our model mainly focused on the influence of external factors
such as economic threshold and periodic forcing on the system. The phenomena such as period-
adding bifurcations, quasi-periodic feature, multi attractor coexistence that our model exhibits were
not discussed in the classical beetle-tree model. Considering economic threshold can avoid taking
single pest control policy, when the density of pests does not reach the economic threshold, biological
control and other methods with less environmental pollution can be adopted. When the density of pests
reaches or exceeds the economic threshold, spraying insecticides can be used to control the outbreak
of pests, so as to reduce the frequency of pest control and the dosage of insecticides.

From the results of theoretical analysis and numerical simulation, it is observed that sliding periodic
solution can completely oscillate in the sliding domain. Once the system has sliding segments, which
can reveal that the pest population density would be stable at the ET for some time. As long as the
maximum amplitude of pest population does not exceed EIL, the sliding periodic solution is an ideal
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Figure 14. Sensitivity analysis of different ω on Filippov system (2.7). Parameters are
rb = 0.4, kb = 10, η = 0.16, δ = 0.5, α = 6, β = 1, ET = 6, rv = 3.3, kv = 75, q1 = 0.6, τ = 0.1
and γ = 0.59. (a-c) ω = 0.2; (d-f) ω = 0.6; (g-i) ω = 0.68.

state for pest control, that is, to allow pests to grow in a certain range. Nevertheless, in most cases, the
periodic solution does not necessarily locate in the sliding domain. Bifurcation diagrams with respect
to the economic threshold ET , the amplitude γ, the frequencyω of periodic forcing term clarify that the
Filippov system could have very complex dynamics including alternating period-adding bifurcations
and chaos regions. In our paper, the feature of period-adding bifurcation is not strictly increased from
period-k to period-(k + 1), but may be from period-k to period-(k + n). Note that there exist several
cases of coexisting attractors in term of the parameter ω and the number of attractors varies from two
to four. For instance, when ω = 2.422, four periodic attractors coexist. The coexistence of multiple
attractors shows that the state of the system depends not only on the parameters but also on the initial
value. For pest control, even with the same intrinsic growth rate, mortality rate and other system
parameters, different initial densities of pests and trees will trigger diverse pests outbreak patterns such
as multiple periodic attractors with different amplitude and frequency. The wavelet coherence for the
pests and forests of two coexisting attractors when ω = 1.824 and ω = 2.513 are presented to further
distinguish the phase difference between the time series of two populations of coexisting attractors.
Furthermore, sensitivity analysis about the key parameters ET , the periodic forcing amplitude γ and
the periodic forcing frequency ω reveal that the overall trend was that the higher the setting ET and γ,
the higher the maximum pest density, that is, the number of pests is large. However, there is a complex
relationship between ω and the density of pests, which may be caused by the periodicity of the forcing
term. Therefore, in order to keep the pests at a low level, we need to take control measures when the
pest density reaches at the critical ET . It’s hoped that the analysis presented here will prove beneficial
in studies of pests control problems.
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