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Abstract: The detection of neural spikes plays an important role in studying and processing extracel-
lular recording signals, which promises to be able to extract the necessary spike data for all subsequent
analyses. The existing algorithms for spike detection have achieved great progress but there still re-
mains much room for improvement in terms of the robustness to noise and the flexibility in the spike
shape. To address this issue, this paper presents a novel method for spike detection based on the theory
of sparse representation. By analyzing the characteristics of extracellular neural recordings, a target-
driven sparse representation framework is firstly constructed, with which the neural spike signals can
be effectively separated from background noise. In addition, considering the fact that the spikes emit-
ted by different neurons have different shapes, we then learn a universal dictionary to give a sparse
representation of various spike signals. Finally, the information (location and number) of spikes in
the recorded signal are achieved by comprehensively analyzing the sparse features. Experimental re-
sults demonstrate that the proposed method outperforms the existing methods in the spike detection
problem.
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1. Introduction

Neurons are the elementary structure and functional units of nervous system. Monitoring and study-
ing the neuronal activity can provide a useful mean for understanding the interactions between neurons
and higher brain functions [1–3]. Early researches on neuroelectrophysiology have discovered that neu-
rons represent and transmit information by firing electric impulses, called action potentials or, briefly,
spikes [4–6]. According to this significant discovery, electrode intracranial recording technique has
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Figure 1. Block diagram of the extracellular neural recording system.

been widely used to collect the extracellular activity of neurons for decades [7–9].
The analysis and processing of extracellular recording signals are generally summarized as three

main steps (see Figure 1). The first and crucial step is the detection of spikes from the recorded signals,
which promises to be able to extract necessary spike data for all subsequent analyses [10]. Simply
speaking, the aim of spike detection is to accurately find and localize the occurrence of individual
spikes. To this end, in the past two decades, various algorithms have been developed with their own
advantages and drawbacks.

The early works about spike detection mainly focus on the traditional simple characteristics of
spikes. An example is the most widely used amplitude thresholding (AT). This technique only takes
signal amplitude as the feature for the identification of spikes [11, 12]. Nonlinear energy operator
(NEO) is another popular detection method, which takes into account the instantaneous energy of
the signal [13, 14]. The major attraction of these methods is their simplicity and low computational
complexity, and hence, they are easy to implement in hardware. However, it is proven that these
traditional simple characteristics based methods are sensitive to background noise.

To address this problem, researchers pay more attention on the complex structural characteristics
of spikes. Template matching (TM) [15, 16] and wavelet transform (WT) [17, 18] are the most repre-
sentative techniques. TM searches for spike events in the signal that “closely resemble” the template.
In other words, the similarity between template and the signal determines whether a spike occurs. It
has been demonstrated that TM performs much better than the simple threshold algorithms and can
identify spikes with different shapes [19]. However, it does not work well with the presence of high-
level background noise. The core idea of wavelet-based technique is to separate spike signals from
background noise based on the wavelet coefficients. Although this technique performs well even in the
high noise level, its performance is sensitive to the selected wavelet basis that is not optimal for the
spikes from different neurons.

As mentioned above, while the existing methods for spike detection have made great progress, it
is desirable to develop a more reliable spike detection method that can satisfy the following demand-
ing requirements at the same time. Firstly, it should be robust to the background noise from various
sources, such as ambient environment, recording hardware and the activities of distant neurons. Sec-
ondly, as the spikes from different neurons have different shapes, the detector should have strong flex-
ibility in the spike shape. Considering the above requirements, in this work, we propose a novel spike
detection algorithm based on the promising sparse representation theory. Combining the internal gen-
eration mechanism of neural spikes and the characteristics of extracellular neural recordings, we first
propose a target-driven sparse representation framework for extracellular recording signals. Under this
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framework, the neural spike signals can be effectively separated from background noise. In addition,
to improve the flexibility of the proposed method, a universal dictionary is learned to give a sparse
representation of various spike signals. Finally, the information (location and number) of spikes in the
recorded signal are achieved by comprehensively analyzing the sparse features.

The rest of this paper is organized as follows. Section 2 gives a brief review of relevant background
knowledge. Then, the proposed method is detailedly analyzed in Section 3. In Section 4, the proposed
method is evaluated on both synthesized and real data. Finally, the conclusion is drawn to summarize
the work of the paper in Section 5.

2. Background

In this section, we briefly introduce the theory of sparse representation to provide the relevant
background for later section.

Sparse representation has received increasing interests in recent years. As a powerful signal pro-
cessing technique, it has been widely studied and successfully used in various applications, such as
recognition [20], denoising [21], reconstruction [22], segmentation [23] and so on. The major at-
traction of sparse representation is its ability to approximately represent the target signal using a
few basic elements [24]. Mathematically, suppose that y ∈ RL is the signal to be processed, and
D = [d1, d2, . . . , dN] ∈ RL×N is a given dictionary with N atoms. The sparse representation of y with
respect to D is to search for a sparse vector α = [α1, α2, . . . , αN]T ∈ RN such that

y =

N∑
i=1

αidi = Dα. (2.1)

Technically, the sparsity of α can be measured by the l0-norm of it, which is equivalent to the number
of nonzero components in α. In view of this fact, the problem of sparse representation can be cast as
the following l0-minimization problem,

α̂ = arg min
α
‖α‖0 s.t. y = Dα. (2.2)

Considering the fact that the received signal is inevitably contaminated with noise, the linear con-
straint y = Dα is often relaxed to the term ‖y − Dα‖22 ≤ ε, where ε is the error tolerance. Then, the
problem (2.2) can be rewritten as,

α̂ = arg min
α
‖α‖0 s.t. ‖y − Dα‖22 ≤ ε. (2.3)

Alternatively, α can also be obtained by

α̂ = arg min
α
‖y − Dα‖22 + λ‖α‖0, (2.4)

where λ is a nonzero constant that balances the dual objectives of minimizing both accuracy and spar-
sity.

To address the above minimization problem, researchers have made great efforts and various algo-
rithms are proposed. According to the working principle of the algorithm, the existing algorithms can
be roughly classified into two categories. The first category includes algorithms that are developed
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Figure 2. An intuitive illustration of the proposed spike detection method.

based on greedy principle and can be directly used to solve problem (2.4), such as matching pursuit
(MP), orthogonal matching pursuit (OMP) etc [25–27]. The algorithms fall into the second category
mainly take advantage of convex relaxation to replace problem (2.4) with a convex optimization prob-
lem, including basis pursuit (BP), interior-point methods, gradient methods and so on [28–30].

3. Proposed spike detection method

In this section, we present a novel method based on the theory of sparse representation for the task
of spike detection. Firstly, we build a target-driven sparse representation framework to separate the
target spike signal from background noise. Moreover, to give an effective representation of various
spikes, we further construct a universal dictionary. Finally, the information of spikes in the recorded
signal can be determined by analyzing the sparse coefficients. Figure 2 gives an intuitive illustration of
our method. Details of the proposed method are presented as follows.

3.1. Sparse model of extracellular recording signals

In general, the characteristics of extracellular recording signals can be summarized in two aspects.
Firstly, the single extracellular recording signal usually contains the spikes with different shapes and
sizes from a number of neurons near electrode tip. Secondly, the recorded signal is inevitably contam-
inated by the interference noise. In view of these facts, the recorded signal y ∈ RL can be represented
as a linear combination of target spike signal and background noise,

y = ys + yn, (3.1)

where ys is the clean spike signal, and yn represents the background noise.
It should be noted that the recorded signal contains a large number of background noise from various

sources, such as ambient environment, recording hardware and the activities of distant neurons, which
make the problem of spike detection difficult. Inspired by the theory of sparse representation, we then
take advantage of this famous technique to reduce the influence of background noise. That is

y = Dα + yn. (3.2)
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Under this framework, we intend to extract the sparse coefficients as features for the identification of
spikes. Note that its inherent assumption is that the spike signal is sparse over the dictionary, and
the noise is not sparse over the dictionary. However, we find that this assumption is difficult to be full
satisfied because of the diversity of background noise. In particular, part of noise (such as neural noise)
is potentially spike-like and may be generate a sparse projection with the dictionary. As a result, it will
result in performance degradation to a certain degree. This fact will be given a detailed explanation in
the Section 3.3.

To address this problem, we here construct two different dictionaries to express ys and yn, respec-
tively, that is

ys = Dsαs, yn = Dnαn, (3.3)

where αs is a sparse vector specific to spike signal ys and αn is a sparse vector specific to noise signal yn.
Moreover, Ds and Dn are dictionaries associated with sparse vectors αs and αn, respectively. Therefore,
(3.1) can be further written as

y = Dsαs + Dnαn. (3.4)

Note that with the help of coupled dictionaries, the noise is prone to be absorbed by the noise dictio-
nary. Therefore, the sparse vectors αs and αn can capture the difference between the spike signal and
background noise. When a spike occurs in the recorded signal y, it will lead to a large coefficient in
αs. On the contrary, if there is no spike in y, the nonzero coefficients are mainly scattered in αn. In this
way, we can determine whether there is a spike in the recorded signal.

3.2. Dictionary construction

As stated in [31, 32], the dictionary learned from data always results in better performance than the
off-the-shelf dictionaries. In view of this fact, in this work, we use the real data as template to construct
the necessary dictionaries Ds and Dn.

Since the subject of this work is to detect spikes in the recorded signal, we try to find a signal
dependent dictionary to represent and discriminate spike signals. With this consideration, we make
use of the similarity of the spike signals, and propose to directly use spike waveforms to form the
dictionary Ds. In this work, we utilize the classical K-means algorithm [33] to learn the dictionary Ds

from the precollected spike data, that is Ds = [c1, c2, . . . , cK], where {ci}
K
i=1 denotes the K clustering

centers. In summary, there are two mainly advantages with the application of K-means algorithm.
Firstly, it will produce a compact dictionary only with a few atoms, which results in the decrease of
computational burden in the subsequent sparse optimization. Secondly, it maintains the diversity of
atoms, and ensures that the suitable atom can be properly found and assigned to each spike to be
distinguished.

Different from the construction of Ds, we use the structural features of the signal as atoms to con-
struct the dictionary Dn. Similarly, we first extract large numbers of noise signal segments from the
recorded signals to construct the necessary noise data. Note that the length of noise signal segments is
set to the size of neural spikes. Then, the K-SVD algorithm [34] is introduced to extract the structural
features of the collected noise samples, and denoted by u1, u2, . . . , uNn . With these structural features,
dictionary Dn can be obtained and formulated as Dn = [u1, u2, . . . , uNn].

Mathematical Biosciences and Engineering Volume 17, Issue 4, 4257–4270.
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Figure 3. Sparse coding of the recorded signals. (a) The recorded signal with a spike seg-
ment and a noise segment. (b) Sparse coefficients of noise segment with respect to Ds. (c)
Sparse coefficients of noise segment with respect to [Ds,Dn]. (d) Sparse coefficients of spike
segment with respect to Ds. (e) Sparse coefficients of spike segment with respect to [Ds,Dn].

3.3. Sparse feature extraction

In this subsection, we will show how to extract sparse coefficients of the recorded signal with
respect to the learned dictionaries. Due to the limitation of atom size, the recorded signal is piecewise
processed with a sliding window. In addition, the length of the sliding window should correspond to
the size of atoms.

Let yk be the kth segment of the recorded signal y. Based on the equation (3.4), yk can be represented
as

yk = Dsαs
k + Dnαn

k

=
[

Ds Ds
] [ αs

k
αn

k

]
= Dαk, (3.5)

where D is the combination of dictionaries Ds and Dn, and αk is the column vector consisted of αs
k and

αn
k . Meanwhile, αk can be can be estimated by

α̂k = arg min
αk
‖αk‖0 s.t. ‖yk − Dαk‖

2
2 ≤ ε. (3.6)

To address above optimization problem, we use MP algorithm as the solver for its simplicity and
easy implementation. Figure 3 gives an intuitive illustration of sparse coefficient distribution. From
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Figure 3(c) and (e), it can be seen that the spike in the signal will induce a large coefficient in αs
k. By

contrast, if no spike occurs in the signal, the numerical values of coefficients will be small and mainly
locate in αn

k . Therefore, we take the maximum coefficient of αs
k as the feature to distinguish the spike

from background noise. In order to facilitate subsequent analysis, we save the maximum coefficient
αkMax into a new vector Z, i.e., Z(k) = αkMax. After applying the same operation to all segments, the
coefficient signal Z is finally obtained.

Figure 3 also gives an intuitive explanation about the effectiveness of noise dictionary Dn. From
Figure 3(b), it can be seen that if we only use spike dictionary Ds to build the sparse model, the
background noise may still yields a sparse projection with respect to Ds. However, the results in Figure
3(c) demonstrate that by introducing the noise dictionary Dn, the coefficients of noise mainly locate in
the projection of Dn. Moreover, from Figure 3(d)-(e), it can also be seen that the noise is prone to be
absorbed by the noise dictionary. Therefore, we can conclude that the combination of spike dictionary
Ds and noise dictionary Dn contributes to the improvement of detection performance.

3.4. Spike discrimination

In order to detect the occurrence of spikes, an amplitude threshold is necessary to be set. If the
coefficient of the resulting signal Z exceeds the threshold, a neural spike is identified. In this work, the
threshold is determined based on the statistical characteristics of the resulting signal Z, and is set as
follows:

Thr = b ×

√∑N
n=1(Z(n) − Z̄)2

N − 1
, (3.7)

where Z̄ is the mean of output signal Z, and b is a constant (3 ≤ b ≤ 5) that scale the threshold.

4. Experimental results

In this section, we report our experimental results of applying the proposed method into spike
detection. The proposed method is firstly tested on synthesized data to verify the flexibility in the
spike shape and the superior detection ability at different noise levels. And then we apply the propose
method to real extracellular recording signals.

Experimental data: Both synthesized and real data are used to verify the performance of the
proposed spike detection method.

(1) Synthesized extracellular recording signals: The synthesized signal consists of two types of
signals: target spike trains and background noise. In each spike train, spike events are randomly placed
based on Poisson distribution with a certain refractory period. Background noise is extracted from real
recorded signals. In order to make a more intuitive explanation, we show an example of synthesized
extracellular signal generation in Figure 4.

(2) Real data: It is collected from the prefrontal cortex of mice when performing a working mem-
ory task [35]. All acquisition and processing procedures were accomplished by the institute of Neu-
roscience, Chinese Academy of Sciences. The recorded signals are high-pass filtered at 250 Hz by a
digital Butterworth filter and sampled at 40 kHz.

Evaluation criteria: Hit rate (HR) and false rate (FR) are used as the criteria to measure the per-
formance of the algorithms. HR measures the detection accuracy and FR represents the error between

Mathematical Biosciences and Engineering Volume 17, Issue 4, 4257–4270.
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Figure 4. Synthesis of the test signal. (a) Four contributing spike trains. (b) Signal com-
ponents. (c) Synthesized test signal, which is the linear sum of signal components shown in
(b).

ground truth and detection result. The higher HR and lower FR indicates better performance of the
spike detection method. These two criteria are defined as follows [36]:

HR =
Nc

Nt
× 100%, FR =

N f

Nd
× 100%, (4.1)

where Nc is the number of correctly detected spike events (true positive), Nt is the total number of true
spike events recorded in the signal, N f is the number of falsely detected spike events (false positive)
and Nd is the total number of spike events detected by the method.

4.1. Experiments on synthesized data

4.1.1. Flexibility Analysis

In this subsection, an experiment is first carried out to verify the flexibility of our method. To
this end, we use about 100 neural spikes (not included in spike data for dictionary construction) to
synthesize a set of test signals, in which each test signal only contains one neuron’s spike train. In
addition, we add different levels of background noise to the synthesized signals, and the noise level
ranges from 0.10 to 0.45.

Figure 5 shows the average performance of the proposed method, including average HR, average
FR and the corresponding deviations (Dev). As observed from Figure 5, the proposed method performs
with higher HR and lower FR under all different scenarios. Furthermore, it can be seen that the standard
deviation values obtained by the proposed method for all the cases are always small, which means that
the performance of the proposed method is steady and believable. These facts indicate that the proposed
method has good generalization performance and is able to detect distinct spike trains effectively.

4.1.2. Performance Comparison

To verify the superior detection ability of the proposed method, we compare it with three classical
algorithms (AT, NEO and TM mentioned in Section 1) and two latest ones (SWT [37] and NLWD [18]).

Mathematical Biosciences and Engineering Volume 17, Issue 4, 4257–4270.
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Figure 5. Quantitative analysis of the proposed method in detecting distinct spike trains. (a)
Average hit rate. (b) Average false rate. Sign “I” denotes the corresponding devitation.

Spike 1 Spike 2 Spike 3 Spike 4 Spike 5

Figure 6. Spike templates used to synthesize the test signals.

In addition, we also make a comparison with a widely used sparse denoising method (SOLD) [38]. In
order to make a fair comparison, the parameters of each method are properly tuned so as to achieve the
best possible result. Considering the fact that the accuracy of spike detection will directly impact all
subsequent analyses, we here define the “best possible result” as high HR and least possible FR.

Since the microelectrode generally picks up the electrical activities from more than one neuron, we
analysis the performance of the algorithm with more realistic synthesized signals. In this experiment,
we use five most representative spikes (see Figure 6) to generate the target spike trains in the test
signals. For each noise level, the average results over 50 trials are obtained for all methods.

The performance comparisons of seven methods are shown in Figure 7. From Figure 7(b), it can
be seen that the FR of the proposed method is less than those of other methods, which implies that
the proposed method is more accurate. On the other hand, the results in Figure 7(a) demonstrate that
the proposed method achieves higher HR compared with the other six methods, especially with the
presence of high-level noise. It should be mentioned that our method still maintains over 63% HR
even if the noise level increases to 0.45, whereas the HR of other six methods is less than 55%. These
findings indicate that the proposed method is able to detect more spikes from the recorded signal, which
contributes to extracting more neurons’ information for future researches.
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Figure 7. Performance comparison of seven spike detection methods. (a) Average hit rate.
(b) Average false rate.

4.2. Experiments on real data

As we know, real neural signals always differ from synthesized signals due to many uncontrollable
internal or external factors. Therefore, in this subsection, we use real data to test the performance of
the proposed method. The detailed description of the real signals can be seen Experimental data.

In fact, it is hard to evaluate the performance of a spike detection method with real recorded signals
because the ground truth information (such as the number and locations of spike events) is unknown to
us. In order to test the performance of the proposed method on the real signals, the first task is to obtain
the ground truth information for error measurement. To this end, two experienced EEGers are invited
to locate the spike events in real signals. It should be noted that only the signal waveforms which are
labeled by both EEGers are recognized as spike events.

In order to make an intuitive analysis, all spike detection methods are first applied to a slice of real
recorded signal and the outputs are shown in Figure 8. For better observation, the true spikes in the
original signal are labeled with blue asterisks, and the spikes detected by the method are labeled with
red circles. From Figure 8, we can see that the proposed method can effectively identify spike events
from background noise. In addition, we further compare the proposed method with other established
ones on several real recorded signals and present the results in Table 1. It can be seen that the proposed
method performs much better than other six ones. Therefore, we can conclude that the performance of
the proposed method is superior to other established ones.
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Figure 8. An example of testing seven methods using real extracellular recording signal. (a)
Real extracellular recording signal with 8 labeled spikes. (b)-(h) show the detection results
using the AT, NEO, TM, SWT, NLWD, SOLD and the proposed method, respectively. The
sign “*” denotes the true spike in the signal, and the sign “o” denotes the spike detected by
the method.
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Table 1. Detection results of seven different methods applied to real extracellular recording
signals.

Methods AT NEO TM SWT NLWD SOLD Proposed

Sig 1
HR 90.53 93.49 94.67 96.44 97.63 99.32 100

FR 3.18 2.47 1.84 1.81 1.18 0.76 0.00

Sig 2
HR 83.09 90.67 92.13 93.59 93.59 97.79 99.41

FR 13.89 8.79 9.71 9.07 6.41 3.23 0.87

Sig 3
HR 86.15 90.31 91.35 92.04 94.46 97.96 99.65

FR 9.12 5.09 4.69 3.697 3.19 1.81 0.00

5. Conclusions

In this work, a novel method based on sparse representation was introduced for high accuracy spike
detection. The proposed method mainly focused on how to improve the robustness to noise and the
flexibility in the spike shape. To this end, we learned the dictionaries from the precollected datasets
to give a sparse and comprehensive representation of the extracellular recording signals. Under the
constructed sparse representation framework, sparse coefficients can be used as the features for the
discrimination of spikes. Experimental results on both synthesized extracellular neural recordings and
real data demonstrated that the proposed method outperforms the existing methods in terms of both
robustness and flexibility.
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