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Abstract: In this paper, we consider a cholera infection model with vaccination and multiple
transmission pathways. Dynamical properties of the model are analyzed in detail. It is shown that the
disease-free equilibrium is globally asymptotically stable if the basic reproduction number is less than
unity; the endemic equilibrium exists and is globally asymptotically stable if the basic reproduction
number is greater than unity. In addition, the model is successfully used to fit the real disease situation
of cholera outbreak in Somalia. We consider an optimal control problem of cholera transmission with
vaccination, quarantine, treatment and sanitation control strategies, and use Pontryagin’s minimum
principle to determine the optimal control level. The optimal control problem is solved numerically.
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1. Introduction

Cholera is a waterborne disease caused by Vibrio cholera [1]. It is well known that it can spread
rapidly in countries without clean drinking water and developed public health infrastructure [2, 3, 4].
In 2017, Somalia faced one of the largest outbreaks in history, with 78,784 suspected cases, including
1,159 related deaths. A year later, the number of suspected cases and related deaths reported in Somalia
fell due to improved disease surveillance and case management. However, a new cholera outbreak in
Somalia began in January 2019 [5].

For cholera, the interaction between environment and human is the most common pathway of
transmission, that is, human typically is infected by ingesting water or food contaminated by vibrios
from the environment [6, 7, 8]. On the other hand, close contacts with infected individuals (such as
shaking hands and hugging) can also cause human infection, which indicates that the transmission

http://http://www.aimspress.com/journal/MBE
http://dx.doi.org/10.3934/mbe.2020233


4211

route of human-to-human also exists [9]. A number of studies have shown that human-to-human
transmission has a great impact on human infection that can not be ignored [10, 11, 12].

In 2010, Tien et al. formulated a model with multiple pathways [13]. It was assumed that the
incidence rate is bilinear, indicating that the incidence rate increases with the number of infected
individuals and the concentration of vibrio in the environment. However, for environment-to-human
transmission, considering the fact that the inhibition effect from behavioral changes of susceptible
individuals and the swarming effect of vibrios, the bilinear incidence rate is unreasonable. In 2011,
based on the work in [13], by introducing a saturation incidence rate β1B/(K + B) to describe the
inhibition effect, in [9], Mukandavire et al. analyzed the following model:

Ṡ = µN − βS I −
β1S B
K + B

− µS ,

İ = βS I +
β1S B
K + B

− (γ + µ)I,

Ḃ = ξI − δB,

Ṙ = γI − µR,

(1.1)

where S , I and R stand for the densities of the susceptible, infected and removed individuals,
respectively, and B stands for the concentration of V. cholera in contaminated environment. The
parameter µ denotes the natural birth and death rates of human, β and β1 are the transmission rates of
human-to-human and environment-to-human, respectively, K is the pathogen concentration that
yields 50% chance of catching cholera, γ denotes the recovery rate, ξ is the contribution rate of each
infected individual to the concentration of V. cholera shedding from infected individuals and δ is the
net death rate of V. cholerae.

In 2010, WHO recommended the oral vaccines should be used in areas with endemic cholera [14].
Subsequently, a number of cholera models with vaccination strategy have been proposed and analysed
[15, 16, 17]. In 2015, Posny et al. proposed a new cholera model consisting of vaccination [18].
Model analysis shows that the vaccine can effectively control the spread of cholera. However, vaccine
protection is not permanent. The existing oral cholera vaccine (OCV) can provide >50% continuous
protection, lasting for 2 years in the epidemic population [14].

Motivated by the works of the WHO report [14] and Posny et al. [18], in this paper, we focus on the
influence of multiple pathways, imperfect vaccination on cholera infection, and analyze the following
model:

Ṡ = A − µS − φS −
(
βI +

β1B
K + B

)
S + ηV,

V̇ = φS −
(
βI +

β1B
K + B

)
σV − (µ + η)V,

İ =

(
βI +

β1B
K + B

)
(S + σV) − (µ + γ + d)I,

Ḃ = ξI − δB,

Ṙ = γI − µR,

(1.2)

where V stands for the density of vaccinated individuals. Vaccination rate of susceptible individuals is
φ, vaccine efficiency is σ and 1/η is the duration of vaccine protection. And other parameters have the
same biological meanings as in system (1.1).
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The initial condition of system (1.2) is

S (0) ≥ 0, V(0) ≥ 0, I(0) ≥ 0, B(0) ≥ 0, R(0) ≥ 0, (1.3)

and we can obtain that all solutions of system (1.2) remain positive for all t ≥ 0.
The organization of this paper is as follows. In Section 2, we show the existence of feasible

equilibria. In Section 3, we establish the global stability of each of feasible equilibria of system (1.2)
by constructing Liapunov functions. In Section 4, we consider the optimal control problem of cholera
model with vaccination, quarantine, treatment and sanitation control strategies. In order to determine
the optimal control strategy, we use Pontryagin’s minimum principle. In Section 5, the model is used
to fit the real disease situation of cholera outbreak in Somalia. Besides, we analyze the sensitivity of
the basic reproduction number and solve the resulting optimality problem numerically. Finally, a brief
discussion is given in Section 6 to end this work.

2. Equilibria and boundedness of solutions

For system (1.2), it is easy to conclude that there is always a disease-free equilibrium
E0(S 0,V0, 0, 0, 0), where

S 0 =
A(µ + η)

µ(µ + η + φ)
, V0 =

Aφ
µ(µ + η + φ)

.

Below, we first calculate the basic reproduction number R0 by using the method of the next generation
matrix [19]. Let

F =

 (
βI +

β1B
K+B

)
(S + σV)

0

 , V =

(
(µ + γ + d)I
−ξI + δB

)
.

Computing the Jacobian Matrix at E0, we have

F =

(
βS 0 + σβV0

β1S 0+σβ1V0
K

0 0

)
, V =

(
µ + γ + d 0
−ξ δ

)
.

It follows that

FV−1 =

(βS 0+σβV0
µ+γ+d +

(β1S 0+σβ1V0)ξ
Kδ(µ+γ+d)

β1S 0+σβ1V0
Kδ

0 0

)
.

We obtain:

R0 =
Aβ(µ + η + σφ)

µ(µ + γ + d)(µ + η + φ)
+

Aβ1ξ(µ + η + σφ)
µKδ(µ + γ + d)(µ + η + φ)

.

If R0 > 1, system (1.2) has a disease-free equilibrium E0(S 0,V0, 0, 0, 0) and an endemic equilibrium
E∗(S ∗,V∗, I∗, B∗,R∗), where

S ∗ =
a0(K + B∗)2 + a1(K + B∗)

a2(K + B∗)2 + a3(K + B∗) + a4
, V∗ =

Aφξ2(K + B∗)2

a2(K + B∗)2 + a3(K + B∗) + a4
,

I∗ =
δ

ξ
B∗, R∗ =

γδ

µξ
B∗,
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here
a0 = A(µ + η)ξ2,

a1 = AξσB∗(δβ + β1ξ),
a2 = βδB∗[σδβB∗ + (µ + η)ξ] + (φ + µ + η)µ,
a3 = σβ1B∗ξ[βδB∗ + (φ + µ)ξ] + β1B∗ξ[σδβB∗ + (µ + η)ξ],
a4 = σβ2

1B∗2ξ2,

and B∗ is the positive real root of the equation h(B) = 0, where

h(B) = b4B4 + b3B3 + b2B2 + b1B + b0, (2.1)

in which

b0 =k2δµξ2(µ + γ + d)(µ + φ + η)(1 − R0),
b1 =(µ + γ + d)[K2βδ2(µ + η)ξ + K2βσδ2(φ + µ)ξ + 2Kδµ(µ + φ + η)ξ2

+ Kδβ1ξ
2(µ + η) + Kσδβ1ξ

2(µ + φ)] − K2Aξβ2σδ2 − 2KAξ2βδ(µ + η + φσ)
− 2KAββ1ξ

2σδ − Aξ3β1(µ + η + φσ) − Aξ3β2
1σ,

b2 =(µ + γ + d)[K2β2σδ3 + 2Kβδ2(µ + η)ξ + 2Kβσδ2(φ + µ)ξ + δµ(µ + φ + η)ξ2

+ 2Kξββ1σδ
2 + (φ + µ)ξ2β1δσ + β1δξ

2(µ + η) + σβ2
1δξ

2] − 2kAξβ2σδ2

− 2Aξ2ββ1δσ − Aβδξ2(µ + η + φσ),
b3 =(µ + γ + d)[2Kβ2σδ3 + βδ2(µ + η)ξ + βσδ2(φ + µ)ξ + 2ββ1σδ

2ξ] − Aξσβ2δ2,

b4 =(µ + γ + d)β2σδ3.

Note that limB→+∞ h(B) = +∞, h(0) = b0 < 0 if R0 > 1, in this case, system (1.2) has a positive
equilibrium E∗.

Let N = S + V + I + R. Then Ṅ = A − µ(S + V + I + R) − dI ≤ A − µN. It follows that

lim sup
t→+∞

N(t) ≤ A/µ.

Furthermore, we derive from the fourth equation of system (1.2),

lim sup
t→+∞

B(t) ≤ Aξ/µδ.

We therefore conclude that the set

Ω =

{
(S ,V, I, B,R) ∈ R5

+ : 0 ≤ S (t) + V(t) + I(t) + R(t) ≤
A
µ
, 0 ≤ B(t) ≤

Aξ
µδ

}
is positively invariant.

3. Global stability

In this section, we study the global stability of each of the equilibria to system (1.2). The approach
of proofs is to use suitable Lyapunov function.
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Theorem 3.1. If R0 < 1, the disease-free equilibrium E0(S 0,V0, 0, 0, 0) of system (1.2) is globally
asymptotically stable.

Proof. Define

W(t) = S 0

(
S
S 0
− 1 − ln

S
S 0

)
+ V0

(
V
V0
− 1 − ln

V
V0

)
+ I +

β1S 0 + σβ1V0

Kδ
B.

Calculating the derivative of W(t) along positive solutions of system (1.2), one has

Ẇ(t) =

(
1 −

S 0

S

) (
A − µS − φS −

(
βI +

β1B
K + B

)
S + ηV

)
+

(
1 −

V0

V

) (
φS −

(
βI +

β1B
K + B

)
σV − (µ + η)V

)
+

(
βI +

β1B
K + B

)
(S + σV) − (µ + γ + d)I

+
β1S 0 + σβ1V0

Kδ
(ξI − δB).

(3.1)

On substituting A = µS 0 + µV0, φS 0 = (µ + η)V0 into (3.1), we obtain that

Ẇ(t) = µS 0

(
2 −

S 0

S
−

S
S 0

)
+ ηV0

(
2 −

S 0V
V0S

−
V0S
S 0V

)
+µV0

(
3 −

S
S 0
−

V
V0
−

V0S
S 0V

)
+ (µ + γ + d) (R0 − 1) I

−
(β1S 0 + σβ1V0)B2

K(K + B)
≤ 0,

and Ẇ(t) < 0 for all (S ,V, I, B,R) , (S 0,V0, 0, 0, 0). Therefore, by Lyapunov’s stability Theorem [20],
the equilibrium E0 is globally asymptotically stable.

Theorem 3.2. If R0 > 1, the endemic equilibrium E∗(S ∗,V∗, I∗, B∗,R∗) of system (1.2) is globally
asymptotically stable.

Proof. Define

W1(t) = S ∗
( S
S ∗
− 1 − ln

S
S ∗

)
+ V∗

( V
V∗
− 1 − ln

V
V∗

)
+ I∗

( I
I∗
− 1 − ln

I
I∗

)
+
β1S ∗ + σβ1V∗

(K + B∗)δ
B∗

( B
B∗
− 1 − ln

B
B∗

)
.

Calculating the derivative of W1(t) along positive solutions of system (1.2), one has

Ẇ1(t) =

(
1 −

S ∗

S

) (
A − µS − φS −

(
βI +

β1B
K + B

)
S + ηV

)
+

(
1 −

V∗

V

) (
φS −

(
βI +

β1B
K + B

)
σV − (µ + η)V

)
+

(
1 −

I∗

I

) ((
βI +

β1B
K + B

)
(S + σV) − (µ + γ + d)I

)
+
β1S ∗ + σβ1V∗

(K + B∗)δ

(
1 −

B∗

B

)
(ξI − δB).

(3.2)
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On substituting

A = (S ∗ + σV∗)
(
βI∗ +

β1B∗

K + B∗

)
+ µS ∗ + µV∗,

φS ∗ = σV∗
(
βI∗ +

β1B∗

K + B∗

)
+ (µ + η)V∗,

(µ + γ + d)I∗ = (S ∗ + σV∗)
(
βI∗ +

β1B∗

K + B∗

)
,

δB∗ = ξI∗

into (3.2), we have

Ẇ1(t) = (µ + βI∗)S ∗
(
2 −

S
S ∗
−

S ∗

S

)
+ ηV∗

(
2 −

S ∗V
V∗S

−
V∗S
S ∗V

)
+ (µ + σβI∗)V∗

(
3 −

S ∗

S
−

V
V∗
−

V∗S
S ∗V

)
+
β1S ∗B∗

K + B∗

(
4 −

S ∗

S
−

B∗I
I∗B
−

K + B
K + B∗

−
(K + B∗)I∗S B
S ∗B∗(K + B)I

)
+
σβ1V∗B∗

K + B∗

(
5 −

S ∗

S
−

V∗S
S ∗V

−
B∗I
I∗B
−

K + B
K + B∗

−
(K + B∗)I∗VB
V∗B∗(K + B)I

)
−

Kβ1(S ∗ + σV∗)(B∗ − B)2

(K + B∗)2(K + B)
≤ 0,

and Ẇ1(t) < 0 for all (S ,V, I, B,R) , (S ∗,V∗, I∗, B∗,R∗). Therefore, by Lyapunov’s stability Theorem
[20], the equilibrium E∗ is globally asymptotically stable.

4. Optional control strategies

We consider the optimal control problem of cholera model with vaccinate, quarantine, treatment
and sanitation control strategies:

Ṡ = A − (µ + u1(t))S −
(
β(1 − u2(t))I +

β1(1 − u3(t))B
K + B

)
S + ηV,

V̇ = u1(t)S −
(
β(1 − u2(t))I +

β1(1 − u3(t))B
K + B

)
σV − (µ + η)V,

İ =

(
β(1 − u2(t))I +

β1(1 − u3(t))B
K + B

)
(S + σV) − (µ + d + γ + u4(t))I,

Ḃ = ξI − (δ + u5(t))B,
Ṙ = (γ + u4(t))I − µR.

(4.1)

Where u1(t) is a vaccination strategy aimed to the susceptible individuals; u2(t) is a quarantine
strategy that can reduce the transmission of human-to-human; u3(t) is another kind of quarantine
strategy that can reduce the transmission of environment-to-human; u4(t) is therapeutic treatment
aimed to the infected people, u5(t) is a sanitation strategy aimed at killing vibrios in contaminated
water.
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Define a control function set as U = {ui(t) | i = 1, · · · , 5}, and X = (S ,V, I, B,R). The admissible
trajectories of set X are given by

X = {X(.) ∈ W1,1([0,T ); R5) | (1.3) and (4.1) are satisfied}.

Define

U = {U(·) ∈ L∞([0,T ]; R5) |0 ≤ ui(t) ≤ uimax ≤ 1, i = 1, · · · , 5, ∀ t ∈ [0,T ]},

where uimax (i = 1, · · · , 5) denote the upper bounds for the efforts of vaccination, quarantine strategy,
another kind of quarantine strategy, treatment and sanitation, respectively.

The objective functional

Q(X(·),U(·)) =

∫ T

0
g(X(t),U(t))dt.

The function g is called the running payoff function [20]. The objective of the optimal control problem
is to minimize the objective functional

Q(X∗(·),U∗(·)) = min
X(·),U(·)∈X×U

Q(X(·),U(·)). (4.2)

The first question that must be addressed is the existence of the optimal control pair. According to the
Filippov-Cesari existence theorem [20], we obtain the following result.

Theorem 4.1. There exists a U∗(·) such that the objective functional in (4.2) is minimized.

To apply Pontryagin’s minimum principle [21], we need to introduce the adjoint vector function
λ(t) = (λS (t), λI(t), λV(t), λB(t), λR(t)), to define the Hamiltonian:

H(X,U, λ) = g(X(t),U(t))

+ λS

(
A − (µ + u1(t))S −

(
β(1 − u2(t))I +

β1(1 − u3(t))B
K + B

)
S + ηV

)
+ λV

(
u1(t)S −

(
β(1 − u2(t))I +

β1(1 − u3(t))B
K + B

)
σV − (µ + η)V

)
+ λI

[(
β(1 − u2(t))I +

β1(1 − u3(t))B
K + B

)
(S + σV) − (µ + d + γ + u4(t))I

]
+ λB

[
ξI − (δ + u5(t))B

]
+ λR

[
(γ + u4(t))I − µR

]
.

The adjoint functions must satisfy

λ
′

S = −
∂H
∂S

, λ
′

V = −
∂H
∂V

, λ
′

I = −
∂H
∂I
, λ

′

B = −
∂H
∂B

, λ
′

R = −
∂H
∂R

.
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That is,

dλS

dt
= (µ + u1(t))λS +

(
β(1 − u2(t))I +

β1(1 − u3(t))B
K + B

)
(λS − λI) − u1(t)λV −

∂g
∂S

dλV

dt
= (µ + η)λV +

(
σβ(1 − u2(t))I +

σβ1(1 − u3(t))B
K + B

)
(λV − λI) − ηλS −

∂g
∂V

,

dλI

dt
= β(1 − u2(t))S (λS − λI) + σβ(1 − u2(t))V(λV − λI) + (µ + γ + u4(t) + d)λI

− ξλB − u4(t)λR −
∂g
∂I
,

dλB

dt
=
β1(1 − u3(t))S K

(K + B)2 (λS − λI) +
σβ1(1 − u3(t))VK

(K + B)2 (λV − λI) + (δ + u5(t))λB −
∂g
∂B

,

dλR

dt
= µλR −

∂g
∂R
,

(4.3)

with transversality condition

λS (T ) = λV(T ) = λI(T ) = λB(T ) = λR(T ) = 0, j = 1, 2. (4.4)

Moreover, the characterizations of the optimal controls are based on

∂H
∂ui

= 0, i = 1, · · · , 5.

In order to explore the sensitivity of the cost function to the optimal control solution, we consider two
different cost functions for the running payoff function g(X(t),U(t)). If we choose the running payoff

function

g1(X(t),U(t)) = I +
C11

2
u1(t)2 +

C21

2
u2(t)2 +

C31

2
u3(t)2 +

C41

2
u4(t)2 +

C51

2
u5(t)2, (4.5)

where Ci1(i = 1, · · · , 5) are the weight constants for the control strategies. The C11u2
1/2, C21u2

2/2,
C31u2

3/2, C41u2
4/2, C51u2

5/2 define the appropriate costs function associated with these controls [20].
We can obtain that

ũ11 =
(λS 1 − λV1)S

C11
, ũ21 =

βS I(λI1 − λS 1) + σβVI(λI1 − λV1)
C21

,

ũ31 =
β1S B(λI1 − λS 1) + σβ1VB(λI1 − λV1)

C31(K + B)
, ũ41 =

(λI1 − λR1)I
C41

,

ũ51 =
λB1B
C51

.

(4.6)

In addition, if we choose another running payoff function

g2(X(t),U(t)) = I + C12

(
u1(t) + u1(t)2

)
+ C22

(
u2(t) + u2(t)2

)
+ C32

(
u3(t) + u3(t)2

)
+ C42

(
u4(t) + u4(t)2

)
+ C52

(
u5(t) + u5(t)2

)
,

(4.7)
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where Ci2(i = 1, · · · , 5) are the weight constants for the control strategies. C12

(
u1(t) + u1(t)2

)
,

C22

(
u2(t) + u2(t)2

)
, C32

(
u3(t) + u3(t)2

)
, C42

(
u4(t) + u4(t)2

)
, C52

(
u5(t) + u5(t)2

)
define the appropriate

costs function associated with these controls [23]. We can obtain that

ũ12 =
(λS 2 − λV2)S −C12

2C12
, ũ22 =

βS I(λI2 − λS 2) + σβVI(λI2 − λV2) −C22

2C22
,

ũ32 =
β1S B(λI2 − λS 2) + σβ1VB(λI2 − λV2) −C32

2C32(K + B)
, ũ42 =

(λI2 − λR2)I −C42

C42
,

ũ52 =
λB2B −C52

2C52
.

(4.8)

Where λS j, λV j, λI j, λB j, λR j( j = 1, 2) satisfy the equations (4.3) and (4.4). Based on this fact, we obtain
ũi j(i = 1, · · · , 5, j = 1, 2). Further, we have

u∗i j = max[0,min(̃ui j, uimax)].

Next, in Section 5, we apply the forward-backward sweep method to solve it numerically [15, 20].

5. Numerical simulations

In this section, system (1.2) is used to fit the real disease situation of cholera outbreak in Somalia.
Besides, we analyze the sensitivity of R0. As mentioned in Section 4, the optimal control problem
needs to be solved by numerical simulation, we will show the numerical result. In addition, we list the
values of parameters in Table 1.

Table 1. Table of biologically relevant parameter values (week).

Parameter Description Value Source
A Constant birth rate 7342 [5]
φ Vaccinate rate of susceptible 4.2836 × 10−3 fitting
β Transmission rate of human-to-human 4.3771 × 10−10 fitting
β1 Transmission rate of environment-to-human 0.5959 × 10−4 fitting
K Concentration of V. cholera in environment 106 [8]
µ Natural death rate of human 0.00038 [5]
η Waning rate of vaccinate 0.0104 [14]
σ Reduction rate of vaccine efficacy 0.5 [14]
γ Recovery rate of infected individuals 1.5 [8]
d Cholera mortality 0.006 [5]
ξ Rate of release of V. cholerae 70 [8]
δ Natural death rate of V. cholera 0.197 [8]

Initial values Description Value Source
S (0) Initial susceptible population 12316000 [22]
V(0) Initial vaccinated population 0 [22]
I(0) Initial infected population 192 [22]
B(0) Initial concentration of vibrios 205740 fitting
R(0) Initial recovered population 147 fitting
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5.1. Data fitting

In this subsection, we use system (1.2) to fit the real disease situation of cholera outbreak in
Somalia. The new cholera outbreak in Somalia began in January 2019, and the first round of oral
cholera vaccination (OCV) activity started on June 22, 2019, the 25th week of 2019, so our numerical
simulation starts from the 25th week of 2019.

In addition, the data we obtained is the cumulative number of cases since December 2017, so our
initial case number is 7,994 [22]. By using the Markov Chain Monte Carlo method, we can get fitting
results (see Figure 1). It is shown that the solutions of system (1.2) are in good agreement with the
actual cholera cases, which verifies the rationality of the model established in this paper.
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Figure 1. Cumulative cases in Somalia between weeks 25 and 39 of 2019, in which the red
dots represent the reported data, the blue curve is the solution of model (1.2).

5.2. Sensitivity analysis

In this subsection, we use the Latin hypercube sampling (LHS) method to analyze the sensitivity
of R0 [24]. Through the analysis of LHS samples, we obtain the Partial Rank Correlation Coefficients
(PRCC) with respect to R0 (see Figure 2). It is easy to see that β1, ξ, η, β, σ are positive correlative
variables with R0; and φ, γ are negative correlative variables with R0.
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Figure 2. Tornado plot of partial rank correlation coefficients in respect to R0.
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5.3. Optimal control solution

In this subsection, we will show the optimal control results. Based on empirical values, we set
u1max = 0.7, u2max = 0.9, u3max = 0.6, u4max = 0.5, u5max = 0.8, respectively. Meanwhile, we assume that
the costs for vaccination, treatment, quarantine and sanitation per unit of time is roughly the same.

We first consider the running payoff function g1(X(t),U(t)). The following set of values for the cost
parameters

C11 = 1, C21 = 1, C31 = 1, C41 = 1, C51 = 1. (5.1)

The optimal control solution is shown in Figure 3(a). The vaccination strategy u1(t) can be reduced 80
weeks later from the beginning of the cholera break, and the quarantine strategy u2(t), treatment
strategy u4(t) and sanitation strategy u5(t) should be maintained in the whole process. Another
quarantine strategy u3(t) should be gradually increased over 1 weeks and maintained at a high level
until 90 weeks.

Next, we consider the running payoff function g2(X(t),U(t)). The following set of values for the
cost parameters

C12 = 1, C22 = 1, C32 = 1, C42 = 1, C52 = 1. (5.2)

Similarly, the optimal control solution is shown in Figure 3(b). The vaccination strategy u1(t) can
be reduced 40 weeks later from the beginning of the cholera break, and the quarantine strategy u2(t),
treatment strategy u4(t) should be maintained in the whole process. Another quarantine strategy u3(t)
should be gradually increased over 10 weeks and maintained at a high level until 90 weeks. In addition,
the sanitation strategy u5(t) is not recommended.
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Figure 3. The graph trajectories of five optimal control strategies based on different running
payoff function, in which (a) g1(X(t),U(t)) with the cost parameter (5.1), (b) g2(X(t),U(t))
with the cost parameter (5.2).

As shown in Figure 3, the values obtained on the optimal control analysis is sensitive to the
selected cost function. Therefore, there are different optimal control measures when considering
different cost functions. Further, based on the optimal control measures, we can get the effects of the
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control strategies for the infected individuals. In order to make a comparison, we consider the effects
of without any control measures (see Figure 4(a), Figure 5(a)). It is well known that vaccination is a
effective measure for cholera prevention and control in a short term. In the following, we explore the
influence of vaccine control alone for the infected individuals (see Figure 4(b), Figure 5(b)). By
Figure 4 and Figure 5, we can conclude that combining multiple control strategies are most likely to
yield the best results in fighting cholera, and the vaccine has a significant control effect on cholera.
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Figure 4. The graph trajectories of I(t) based on the running payoff function g1(X(t),U(t))
with the cost parameter (5.1).
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Figure 5. The graph trajectories of I(t) based on the running payoff function g2(X(t),U(t))
with the cost parameter (5.2).

Therefore, with sufficient costs, vaccination should be combined with other prevention and control
strategies to achieve better control in complex emergencies and endemic areas, as recommended by
WHO in 2010. With limited costs, only vaccination strategy can control cholera to a great extent.
Therefore, vaccination strategy is a feasible and effective method for countries such as Somalia and
Yemen with high cholera prevalence and poor economy.

6. Discussion

In this paper, a cholera infection model with vaccination and transmission pathway has been
discussed. Here, the total human population is divided into four subpopulation such as susceptible
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individuals, infected individuals, recovered individuals and vaccinated individuals. In addition, the
vibrios in contaminated environment is introduced in the model. Furthermore, the global
asymptomatic stability of the disease-free equilibrium and the endemic equilibrium have been
completely established by using the Lyapunov’s Stability Theorem. If R0 < 1, the disease-free
equilibrium is globally asymptomatically stable. If R0 > 1, the endemic equilibrium is globally
asymptomatically stable.

In our paper, we consider the saturation incidence rate to describe the environment-to-human
transmission way of cholera. However, if the incidence rate is considered as traditional bilinear, the
system (1.2) becomes:

Ṡ = A − µS − φS − (βI + β1B) S + ηV,

V̇ = φS − (βI + β1B)σV − (µ + η)V,
İ = (βI + β1B) (S + σV) − (µ + γ + d)I,
Ḃ = ξI − δB,

Ṙ = γI − µR.

(6.1)

In the following, we use the system (6.1) to fit the number of cases in Somalia from 25 to 39 weeks in
2019, and the parameter values obtained are shown in case 1 of Table 2. Further, the fitting results of
systems (1.2) and (6.1) are shown in Figure 6(a). By calculating, we obtain the sum-of-squares error
of system (1.2) is 6493.4, and that of system (6.1) is 16822. Therefore, it could be more practical to
consider the saturation incidence rate to describe the environment-to-human transmission pathway to
some extent.

Table 2. List of parameters.

Parameter Case 1 Case 2 Source
A 7342 - [5]
φ 0.5135 × 10−3 4.2836 × 10−3 fitting
β 2.4712 × 10−10 4.3771 × 10−10 fitting
β1 0.0540 × 10−9 0.5959 × 10−4 fitting
µ 0.00038 - [5]

B(0) 189340 205740 fitting
R(0) 155 146 fitting

If we remove the growth and death rate, the system (1.2) becomes:

Ṡ = −φS −
(
βI +

β1B
K + B

)
S + ηV,

V̇ = φS −
(
βI +

β1B
K + B

)
σV − ηV,

İ =

(
βI +

β1B
K + B

)
(S + σV) − (γ + d)I,

Ḃ = ξI − δB,

Ṙ = γI.

(6.2)

The parameter values are shown in case 2 of Table 2, and the results of system (1.2) and system (6.2)
are shown in Figure 6(b). From Figure 6(b), we see that there is a small difference in our fitting results.
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Further, by calculating, we obtain that the sum-of-squares error of system (6.2) is 6481.3, which is
close to system (1.2). The reason is that in the 14 weeks of fitting, the growth and death changes
of individuals can be ignored. However, the threshold that determines whether a disease is prevalent
changes with the growth and death rate. Compared with system (6.2), our model can more accurately
describe the spread of cholera, and have more realistic representations of biological cholera infection.
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Figure 6. Cumulative cases in Somalia between weeks 25 and 39 of 2019, in which the red
dots represent the reported data, the blue curve is the solution of system.
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