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Abstract: Compressive sampling (CS) has been commonly employed in the field of magnetic 

resonance imaging (MRI) to accurately reconstruct sparse and compressive signals. In a MR image, 

a large amount of encoded information focuses on the origin of the k-space. For the 2D Cartesian 

K-space MRI, under-sampling the frequency-encoding (kx) dimension does not affect to the 

acquisition time, thus, only the phase-encoding (ky) dimension can be exploited. In the traditional 

random under-sampling approach, it acquired Gaussian random measurements along the phase-

encoding (ky) in the k-space. In this paper, we proposed a hybrid under-sampling approach; the 

number of measurements in (ky) is divided into two portions: 70% of the measurements are for 

random under-sampling and 30% are for definite under-sampling near the origin of the k-space. 

The numerical simulation consequences pointed out that, in the lower region of the under-sampling 

ratio r, both the average error and the universal image quality index of the appointed scheme are 

drastically improved up to 55 and 77% respectively as compared to the traditional scheme. For the 

first time, instead of using highly computational complexity of many advanced reconstruction 

techniques, a simple and efficient CS method based simulation is proposed for MRI reconstruction 

improvement. These findings are very useful for designing new MRI data acquisition approaches 
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for reducing the imaging time of current MRI systems. 
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1. Introduction  

In the medical imaging field, MRI has revolutionized the diagnosis of diseases through images, 

based on the magnetic resonance phenomenon of hydrogen nuclei in tissues of imaged objects. In 

principle, objects are stimulated with radio pulses (RF) and resonator signals are received using RF 

coils. Rapid imaging in MRI is an important issue to improve the quality and resolution of images, to 

avoid the physiological effects on patients or to meet the time requirements when the imaged 

structures are dynamic. 

Lauterbur proposed to use the concept of k-space since 1973 for interpreting MR acquisition as 

Fourier encoding in 2D or 3D spaces [1]. In particular, information gathered by an MRI scanner is 

samples of the spatial Fourier change of an image. Subsequently, so as to get an image without aliasing 

artifacts, k-space samples need to fulfill the Nyquist sampling criterion. The development of parallel 

MRI (pMRI) enabled to speed up the image acquisition of MRI by utilizing an array of RF coils for 

simultaneously receiving MR signals [2,3]. Many studies tried to improve the pMRI with novel 

reconstruction algorithms such as the Generalized Autocalibrating Partially Parallel Acquisition 

(GRAPPA) [4], the multiphasic contrast-enhanced volume-interpolated sequence [5], a central elliptical 

cylinder in k-space repeating n times (keyhole) with a random acquisition (CENTRA) [6], a 

combination of contrast enhanced time robust angiography, keyhole, and viewsharing techniques [7], 

and a combination of pseudorandom sampling and temporal viewsharing [8].  

Besides the pMRI, in the field of signal processing and information theory, there is a 

breakthrough that is compressed sensing (CS)-MRI [1,9], which indicates that sparse and 

compressive signals can be recovered from a tiny amount of random measurements. CS has been 

successfully applied for MRI fast acquisition in many studies [10−14]. The common strategy of 

these approaches is to exploit the redundancy of image data for reducing the sampling rate. Thus, 

the CS-MRI enables fast image acquisition by reducing the scanning time, so that it offers many 

advantages such as reducing patient burden, motion artifacts, and contrast washout [15]. Since the 

first introduction of CS by Lustig et al. [14], many other studies have been developed using various 

sparsifying transforms and optimization algorithms. In the traditional CS-MRI methods, random 

under-sampling approaches with fixed compression ratios are simply performed for obtaining the 

sampled horizontal lines in the binary mask, which are completely based on the power law [12]. 

Interest signals can be reconstructed using nonlinear approaches such as basic pursuit (l1-BP) [1], 

orthogonal matching pursuit (OMP) [16], and non-linear gradient conjugate (NGC) [14,17] . 

Difference from the simple conventional CS methods, recent the state-of-the-art CS methods have 

been reported with advanced reconstruction algorithms such as the structured Hankel matrix for 

solving the image quality degradation issues [18], the deep de-aliasing generative adversarial 

networks (DAGAN) can reduce aliasing artifacts [19,20] and the stochastic deep CS for improving 

the reconstruction of diffusion tensor cardiac MRI [21]. Although these advanced CS approaches 

offer undeniable advantages, the highly computational steps of the reconstruction algorithms are still 
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required. The developments of new CS techniques utilizing the well-developed reconstruction 

algorithms without increasing the computational complexity are still highly recommended, which 

will ease the clinical workflow in real MRI systems. 

More recently, other advanced techniques based on the artificial intelligence (AI) for improving 

MRI quality have been also raising attention from science societies. From the fast development of 

Generative Adversarial Network (GAN), many studies based deep learning techniques have been 

performed to obtain super-resolution quality for real-time MRI reconstruction [22−26]. However, in 

comparison with the CS, these advanced methods are considered as completely different technology, 

which are mainly based on highly computational complexity of AI algorithms. Thus CS-MRI 

techniques have still their own merits if more effort has been investigated. 

In this study, we propose a new hybrid random under-sampling approach for improving the 

CS-MRI, which combines the conventional random under-sampling with the definite sampling. With 

a same compression ratio, the total number of sampled horizontal lines is divided into two parts: (i) 

the large first part is still based on the power-law; (ii) the small second part is enhanced with the 

remaining lines that are near the origin of k-space. Because the amount of encoded information is 

concentrated at the origin of the k-space, the proposed method suggests that the amount of useful 

information will be collected more and therefore the MRI image reconstruction will be more accurate. 

Our results based simulation studies have confirmed the significant improvement of image 

reconstruction fidelity from the original under-sampling methods. The utilization of well-developed 

reconstruction algorithms in this proposed under-sampling technique also avoid the highly 

computational complexity as required in many state-of-the-art CS methods.  

2. Methodology 

2.1. MRI image acquisition 

It is supposed that m(x, y) is a 2D image of a slice in the interest object. The analogue obtained 

signal by a collected coil in k-space is expressed as follows:  
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where kx and ky are locations of the encoded information in axes x and y of the interesting slice. 

Using 2D-Fourier transform, m(x, y) can be obtained. The discrete form of Eq (1) is shown as 

follows:  
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where Nx and Ny are the total numbers of pixels along axes x and y of the slice, respectively. In this 

paper, the Cartesian trajectory is used for 2D imaging and the encoded information density of the k-

space is followed by the power-law (Figure 1). Figure 1a presents the k-space of an MR image of a 

brain slice. It can be seen that higher amplitudes of signals mainly concentrate around the origin of 

the k-space as shown by the bright domain at the center, which indicates more information is 
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distributed at the origin. In practice, the most encoded information is concentrated at the origin 

due to the low frequencies of phase coding steps and the density of the k-space follows a power 

law [12,27]. A full Cartesian sampling of the k-space followed the Nyquist criterion is indicated by 

red dots (samples) as in the Figure 1a. By applying the 2-D FFT to the signal in k-space, the MR 

image can be reconstructed as shown in Figure 1b. 

 

(a) (b) 

Figure 1. The relationship between the k-space domain and MR image. (a) Fully-

sampled k-space with samples indicated by red dots. (b) A MR image is reconstructed 

from its respective k-space by Fourier transform (F) [27]. 

2.2. Fundamental compressive sampling 

Supposed that NRx is the interest signal and it has a sparse linear representation in some domain 

with x = Φs, where NRs and 
NNR   are respectively a L-sparse vector (the exact number of 

nonzero values in s is L) and the sparsifying matrix. In addition, x is assumed to be sensed by using a 

linear system
NMR  , and then, the acquired measurements, 

MRy , are defined by y = Ψx [28]. To 

recover x from y, which also corresponds to the recovery of s from y, because the obtained 

measurements can be expressed as y = Θs, where Θ = ΦΨ as shown in Figure 2 illustrating the basic 

principle of compressive sampling technique.  

In compressed sensing, measurement matrix, Ψ or Θ, is commonly underdetermined. One of the 

important conditions of CS is the restricted isometry property (RIP), which allows the robust 

recovery of certain input signals. The RIP condition is satisfied if the number of measurements M ≥ 

c*K*log(N/K) in which c is a constant [29]. To exactly recover x, the RIP condition is ensured. This 

is equivalent to the problem that Φ is incoherent with Ψ [30]. When this condition is satisfied, s can 

be also dependably reconstructed from y, using sparse approximation approaches, such as l1-BP [1] 

or OMP [16]. In other work, compressed sensing for MRI imaging has been successfully applied by 

designing a random measurement matrix for data acquisition [31,32]. 
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Figure 2. Illustration of basic compressive sampling principle. 

2.3. Compressed sensing in MRI  

For MR images, a high degree of the sparsity is needed because it suggests that data substance 

can be represented by a little information. One of these cases is MR angiography, where foundation 

tissue is ignored but the vessels are shown. It means that in the image domain, this kind of MR image 

is sparse. For other kinds of MR images, they are not sparse in the image domain but the transform 

domains [33]. There are several transform techniques such as the discrete wavelet transform (DWT), 

the discrete cosine transform (DCT), the fast Fourier transform (FFT), and finite difference 

operations, which can be used for representing the sparsity of these images. In this paper, we focus 

on MR images that are sparse in the wavelet and frequency domains. If the MR signal in the k-space 

is acquired with a small number of samples, the acquisition time will be reduced. Figure 3 illustrates 

realizable sampling designs that have been used in the previous studies. Both Figure 3a,b are 

classified as Cartesian sampled k-space but in Figure 3b, the number of samples is reduced twice 

(and the under-sampling ratio r is 0.5), which are different from the non-Cartesian method of radial 

under-sampling technique as shown in Figure 3c. 

 

Figure 3. Some typical sampling approaches: (a) Fully Cartesian sampled k-space; (b) 

regular Cartesian under-sampling, and (c) radial under-sampling. 
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In this study, we only focus on the 2D Cartesian sampling. It has been found that the regular 

Cartesian under-sampling will cause the artifacts to manifest as coherent copies of the image structure 

as appeared in Figure 4a. The incoherent criterion is needed for the successful image reconstruction 

using compressive sensing. Thus, an outstanding candidate is random Cartesian k-space under-

sampling, which satisfies the incoherent criterion. In this scheme, some portions of the phase-

encoding steps are arbitrarily skipped, coming about in incoherent artifacts (Figure 4b).  

The low-frequency components of Fourier basis functions, which locate at the origin of k-space, 

are highly correlated with the basic functions of most sparsifying transformations. Consequently, by 

collecting encoded information that locates around the origin of k-space, we are able to improve the 

performance of the MR image reconstruction. Because under-sampling the frequency-encoding (kx) 

dimension does not influence to the acquisition time, hence, only the phase-encoding (ky) dimension 

can be exploited in 2D Cartesian imaging. 

However, if a small value of under-sampling ratio r is applied, the quality of the reconstructed 

image will be low (see section 4) because the random Cartesian k-space under-sampling scheme will 

be lost the important portion of the phase-encoding steps around the center of k-space even that the 

center of the scheme is at the center of k-space. 

 

Figure 4. The relationship of the under-sampling k-space and the reconstructed image. (a) 

Regular under-sampling produces coherent copies of the image; (b) random under-

sampling produces incoherent artifacts as added noise [27]. 

3. Proposed scheme for MRI acquisition 

Random under-sampling is used to break the regularity of Cartesian k-space. As shown in 

Figure 1a, the signal intensity reduces from the focal point of k-space to the periphery. Consequently, 

it is supposed that random schemes with their sampling distributions should be dense at the center 
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and sparse at the periphery. In this paper, we concerned to two under-sampling approaches: (a) the 

traditional random under-sampling approach: It acquired Gaussian random measurements along the 

phase-encoding (ky) in the k-space (Algorithm 1); and (b) Our proposed hybrid under-sampling 

approach (Algorithm 2). The proposed hybrid under-sampling approach is implemented as follows: 

For a certain value of the under-sampling ratio r (0 < r < 1), we divide the number of measurements in 

the (ky) dimension into two portions: 70% of the measurements is for random under-sampling and 30% is 

for definite under-sampling taken near the origin of the k-space (see Algorithm 2). Because the 

amount of encoded information is concentrated at the origin of the k-space, the proposed method 

suggests that the amount of useful information will be collected more and therefore the MRI image 

recovery will be more accurate. Thus, instead of fully random under-sampling as described in the 

Algorithm 1, the proposed under-sampling described in Algorithm 2 takes the major part of 

measurements with the random pattern while the minor part of measurements is taken with a definite 

pattern without coinciding with any taken data from the random pattern (a conditional loop is 

performed by steps 4.1 to 4.4 in Algorithms 2). The advantage of our proposed algorithm is that 

encoded information near the k-space is always taken by the definite pattern. 

The traditional random under-sampling approach and the proposed hybrid one are outlined in 

Algorithm 1 and Algorithm 2, respectively. 

Algorithm 1. Random under-sampling approach for MRI acquisition 

Step 1: Set up for RF excitation 

Step 2: Establish compressive ratio, r = M/N 

Step 3: Determine the number of ky patterns and their coordinates < kx, ky > in k-space using random 

sampling based on r 

Step 4: Collect data in the k-space and store them 

Step 5: Perform recovery using NCG method. 

 

Algorithm 2. Hybrid under-sampling approach for MRI acquisition 

Step 1: Set up for RF excitation 

Step 2: Establish compressive ratio, r = M/N, select r1 (for random sampling) and r2 (for regular 

sampling), r = r1 + r2 

Step 3: Determine the number of ky patterns (N1) and their coordinates < kx, ky > in k-space using 

random sampling based on r1 

Step 4 Determine the number of ky patterns (N2) and their coordinates < kx, ky > from the center of 

k-space to the periphery based on r2 

4.1 Assign i = 1 

4.2 Choose one ky pattern from the center of k-space to the periphery  

4.3 If this pattern coincides with random sampling patterns (step 3), return to 4.2 

4.4 If this pattern does not coincide with random sampling patterns, assign i = i + 1, and jump to step 5 if 

i > N2. 

4.5 Jump to 4.2 

Step 5: Collect data in the k-space and store them 

Step 6: Perform recovery using NCG method. 

Image recovery of MRI can be implemented by using some iterative algorithms such as gradient 

descent, conjugate gradient, etc. [34,35]. These algorithms begin with an aliased MR image and 
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continuously update to remove this artifact. In these algorithms, the regularization parameter λ is 

used to trade-off between information consistency (ℓ2-norm) and the advancement of sparsity (ℓ1-

norm). In this paper, we choose a Nonlinear Conjugate Gradient (NCG) [14,17]. Assuming that m is 

the interest object, the recovered object m̂  is achieved by solving this issue: 
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where Fu is the Fourier operator, y is the obtained measurements, and Ψ is the sparsifying transform 

operator.  

To evaluate the performance of proposed methods, the normalized error is used to compare the 

error between the recovered object and the initial object. Assuming that m is an N × M initial object 

and m̂ is the recovered object. The normalized error 𝜀 can be expressed as follows: 
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Another performance index, the universal image quality index (Q), is also used for evaluating 

the proposed under-sampling method as introduced by Wang and Bovik [36]. This index represents 

the distortion based on three different components: Loss of correlation, luminance distortion, and 

contrast distortion. The Q index is defined as: 
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         (5) 

where x and y are the mean of the original image and the reconstructed one, respectively; 2
x  and 

2
y  

are the variances of x  and y ; and xy  is the covariance between x  and y . The Q index varies 

between −1 and 1 (Q index reaches to 1 if two images are identical). 

4. Numerical simulation results and discussions 

4.1.  Numerical simulation results 

To illustrate the advantage of the proposed method, the compression ratio r of 0.15 is first 

selected for evaluating the ε from reconstructed images of both two methods. The data source used in 

the numerical simulation is original brain MR slice with a 128 × 128 image size as shown in Figure 5.  



4056  

Mathematical Biosciences and Engineering  Volume 17, Issue 4, 4048−4063. 

 

Figure 5. The original brain MR slice image. 

Figures 6 and 7 present the binary masks that illustrate the random under-sampling implemented 

in the k-space based on the power-law using the traditional and proposed approaches. In the 

traditional approach, with the compression ratio r of 15%, the total number of sampled horizontal 

lines in the binary mask is rounded to 21 (horizontal bright lines as seen in Figure 6). Differently, in 

the proposed approach, the compression ratio r of 15% is divided into two parts: 11.5% for the 

traditional compression ratio r1 and 4.5% for the definite compression ratio r2. Thus, the numbers of 

traditional and definite sampled horizontal lines in the binary mask are rounded to 16 and 5, 

respectively (Figure 7). It means that, in the proposed approach, there are four sampled horizontal 

lines which are always taken around the origin of k-space for this compression ratio. 

 

Figure 6. The binary mask point for illustrating the random under-sensing implemented 

in the k-space using the traditional approach for a compression ratio of 15%. The bright 

horizontal lines are taken samples in the ky dimension. 
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Figure 7. The binary mask point for illustrating the under-sensing implemented in the 

k-space using the proposed approach with the same 15% of compression ratio (but 11.5% 

of traditional compression ratio and 4.5% of proposed compression ratio). The bright 

horizontal lines are taken samples in the ky dimension. 

The histograms of the traditional random under-sampling and the hybrid approaches are shown 

in Figure 8. They both have the Gaussian shape that agrees with the literature. It can be seen that our 

proposed approach is more focused on the central area of the k-space than the previous one. 

 

Figure 8. Normalized histograms of sampling lines are taken in the traditional random 

and hybrid under-sampling approaches. The hybrid method (red dash line with squares) 

shows a denser distribution of samples around the center of k-space than the traditional 

random method (black solid line with circles). 

Figure 9 presented the reconstructed brain MR slice images using the traditional and the 
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proposed approaches with under-sampling ratios of 0.15, 0.25, and 0.35. It can be seen that the 

reconstruction quality of the hybrid under-sampling approach is noticeably better than the previous 

one with the under-sampling ratios of 0.15 and 0.25. However, at the under-sampling ratios of 0.35, 

the reconstruction quality between two methods is more or less the same. 

 Random under-sampling approach Hybrid under-sampling approach 

r = 0.15 

  

r = 0.25 

  

r = 0.35 

  

Figure 9. The reconstructed brain MR slice images using the traditional and the proposed 

approaches for different under-sampling ratios of 0.15, 0.25, and 0.35. 

Figure 10 presents the averaged values of the ε calculated by 100 simulations of the traditional 

method and the newly proposed method for different compression ratios (r) from 0.05 to 0.5. It can 

be seen that the ε calculated by the new method is significantly lower than the value calculated by the 

traditional method, especially at the compression ratio of 0.15. However, there is almost no difference in 

the ε value between the proposed and traditional methods for r from 0.35 to 0.5. Figure 11 shows the 

results of the Q index comparison. We can see that, for compression ratios that are less than 0.35, the 

image reconstructed by the proposed approach offers a better value of Q than that reconstructed from 

traditional one.  

To evaluate the time complexity of the proposed under-sampling method, the processing times 

of both under-sampling methods are estimated for comparison. The averaged processing time of each 

under-sampling approach is shown in Table 1, which indicates that the processing time of the 

proposed method is only marginally higher than the processing time of the conventional random 

method. Thus, our proposed under-sampling method can be considered as not increasing the time 

complexity of the algorithmic processes. 
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Figure 10. The dependence of the normalized average error ε (averaged by 100 times) on 

the under-sampling ratio r for the proposed (red square dash line) and traditional (black 

round solid line) methods. 

 

Figure 11. The dependence of the Q-index (averaged by 100 times) on the under-

sampling ratio r for the proposed (red square dash line) and traditional (black round solid 

line) methods. 
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Table 1. The algorithmic processing time (in second) of two under-sampling approaches. 

 Algorithmic processing time (in second) 

Under-sampling ratio 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

Random method 31.2 34.8 31.2 32.4 32.9 31 34.1 30.5 33.5 31.7 

Proposed method 35.6 31.8 32.8 32.6 34.1 34 32.1 31.9 31.7 34.8 

4.2. Discussions 

The compressed sensing reconstruction implements sparsity of the solution to suppress the 

incoherent aliasing artifacts and maximizes data consistency between the solution and the available 

under-sampling data. As shown in Figure 10, the average error of the proposed method decreased by 2.19 

times (about 55%) compared to the traditional method at the compression ratio of 0.15. The Q-indexes of 

both methods described in Figure 11 also confirm the improvement of the proposed under-sampling 

approach with a maximum Q-index value of about 77% enhancement. At the compression ratio of 0.25, 

the proposed method decreased by 1.66 times to the traditional method. It can be explained that the 

traditional method samples the k-space followed by the power law, which has a similar energy 

distribution as the energy distribution of the k-space. The energy distribution of the k-space is 

followed by the Gauss distribution, so more high-energy points are located around the center of the 

k-space. When r is smaller than 0.35, only a few lines of k-space are sampled. The proposed method 

will outweigh the traditional method because more lines that are near the center of k-space are taken. 

However, when r is higher than 0.35, the number of sampling lines of k-space for both the traditional 

and proposed methods are more or less the same, but the sampled lines of the traditional method will 

match better with the energy distribution of the k-space. To prove the efficiency of the proposed 

under-sampling algorithm, both under-sampling methods are repeatedly simulated with an original 

knee MR image of the same size. The simulation results (not shown in the main text) have indicated 

consistent findings. The proportion of the random under-sampling over the define sampling one for the 

proposed under-sampling method is also investigated to find out the optimal proportion of 70 and 30% 

for the random and definite sampling patterns respectively. Moreover, the estimation of algorithmic 

processing time of the proposed under-sampling method confirms that this proposed approach does 

not increase the computational complexity for processing as compared to the traditional random 

method (Table 1).  

5. Conclusions 

For the first time, a simple and efficient under-sampling approach based simulation is suggested 

in this paper for quality improvements of MRI image reconstruction using compressive sensing. 

Based on the fact that more information is concentrated at the origin of the k-space, instead of using 

the traditional random under-sampling approach that samples the phase-encoding (ky) in the k-space 

followed by a power-law, we propose to use a large portion of the phase-encoding (ky) in the k-space 

in the traditional way of sampling and strengthen the rest in sampling around the origin of k-space. 

Therefore, the more amount of useful information is permanently collected for reconstructing and 
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imaging. The numerical simulation consequences have exhibited the efficiency of the appointed 

scheme. The obtained result of this study also indicates that instead of requiring the highly 

computational complexity of reconstruction algorithms, our proposed under-sampling method still has 

its own merits, which are able to be applied for reducing the image acquisition time of MRI systems. 
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