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Abstract：This study aimed to identify significant immune microenvironment-related competing 

endogenous RNA (CeRNA) regulatory axis in gastric cancer (GC). Analysis of differentially 

expressed mRNAs (DEmRNAs), miRNAs (DEmiRNAs), and lncRNAs (DElncRNAs) was 

performed for the microarray datasets. After abundance analysis of immune cell’s infiltration, 

immune-related mRNAs and lncRNAs were obtained. Meanwhile, according to the Pearson 

correlation coefficient between immune-related mRNAs and lncRNAs, the co-expression 

mRNA-lncRNA pairs were screened. Furthermore, the target genes of co-existance miRNAs were 

predicted, and miRNA-lncRNA pairs were identified. Finally, the lncRNA-miRNA and 

miRNA-mRNA relationship regulated by the same miRNA was screened. Combining with the 

co-expression relationship between lncRNA and mRNA, the CeRNA network was constructed. In 

abundance analysis of immune cell’s infiltration, a total of eight immune cells were obtained, in 

addition, 83 immune-related DElncRNAs and 705 immune-related DEmRNAs were screened. 

KEGG pathway enrichment analysis showed that these mRNAs were mainly involved in PI3K-Akt 

signaling pathway and human papillomavirus infection, while lncRNA were relevant to gastric acid 

secretion. A total of 25 miRNAs were significantly associated with immune-related mRNAs, such as 

hsa-miR-148a-3p, hsa-miR-17-5p, and hsa-miR-25-3p. From the mRNA-miRNA-lncRNA CeRNA 

network, we observed that AC104389.28─miR-17-5─SMAD5 axis and 

LINC01133─miR-17-5p─PBLD axis played a crucial role in the development of GC. Furthermore, 

resting memory CD4 T cells and plasma cells were closely associated with the pathogenesis of GC, 

and these immune cells might be affected by the key genes. The present study identified key genes 

that associated with immune microenvironment in GC, providing potential molecular targets for 

immunotherapy of GC.  
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1. Introduction 

Studies have shown that the incidence of gastric cancer (GC) is decreasing worldwide [1]. In 

2018, with the emergence of more than 1,000,000 new cases, GC becomes the fifth most common 

cancer. Besides, GC is regarded as the third leading cause of cancer death with 783,000 deaths in 

2018 [2]. For Chinese people, GC continues to be the primary cause of the cancer burden [3]. For the 

purpose to maximally reduce locoregional recurrence of advanced GC, gastrectomy and dissection of 

lymph node are the standard surgery for the treatment of GC [4]. Although the serum carbohydrate 

antigen, pepsinogen, and carcinoembryonic antigen have been used to diagnose GC, the detection 

rate is only 5% in the early stage due to lack of symptoms [5]. Therefore, the exploration of 

developmental mechanism and therapeutic targets of GC is imperative. 

In cancer development, evading immune surveillance has become a sign of biological 

competence [6]. In the cancerous tissues, the host immune system can recognize cancer cells and 

destroy them, suggesting that the evasion of tumor cells from the destruction of the immune system 

is significant in the process of tumor development [7]. The clinical course of the disease often 

determined by the ability of the tumor to evade recognition by the immune system [8]. With the 

discovery of infiltrating immune cells in various malignancies, immune parameters may have 

significance for the prognosis assessment of cancer patients [9]. Liu et al [10] revealed that immune 

cells contributed to determining the prognosis of GC, and high TCD68+/SCD68+ ratio and 

TCD8+/TFoxp3+ ratio were associated with improved overall survival, which were promising 

independent predictors for overall survival in GC. Additionally, tumor-infiltrating immune cells 

could be used reinforce the clinical outcome prediction ability of the TNM staging system and 

provide a convenient tool for treatment selection for patients with GC [11]. However, the relevant 

bio-molecular mechanisms of the immune microenvironment in GC have not been fully elucidated. 

 Long non-coding RNA (lncRNA) has been widely investigated in a variety of diseases [12]. 

Studies have shown that lncRNAs can be regarded as potential therapeutic targets for cancer 

treatment, which regulate signal transduction pathways involved in tumor proliferation, metastasis, 

migration, apoptosis, and drug resistance [13–15]. The lncRNA has recently received increasing 

attention due to it functions as competing endogenous RNA (CeRNA) to hinder miRNA functions 

that participate in post-transcriptional regulatory networks in tumors, revealing that lncRNA and 

mRNA can hinder miRNA function by virtue of shared microRNA response elements (MREs) as 

natural miRNA sponges [16]. Growing evidences have reported the role of CeRNA in the 

development of cancer. Luan et al [17] reported that lncRNA XLOC_006390 might serve as a 

CeRNA that reversely regulated the expression of miR-331-3p and miR-338-3p, thus promoting 

cervical cancer tumorigenesis and metastasis. Additionally, previous study has indicated that CeRNA 

might serve as diagnostic biomarkers or therapeutic targets for GC [18]. Chen et al [19] revealed that 

lncRNA LINC01234 contributed to GC by competitively binding with miR-204-5p to regulated 

core-binding factor subunit beta (CBFB) expression, suggesting these genes might be considered as 

novel targets for GC diagnosis and therapy. Meanwhile, lncRNA HNF1A-AS1 induced GC 

progression by competitively binding miR-661 with cell division cycle 34 (CDC34), and provided 



3955 

Mathematical Biosciences and Engineering  Volume 17, Issue 4, 3953–3971. 

that non-coding RNA might promote the progression of GC by regulating the cell cycle [20]. 

Nevertheless, there remain insufficient comprehensive analyses on the lncRNAs and miRNAs related 

to GC on the basis of immune cells. In our study, microarray datasets of GC were downloaded from 

the public database. Then, differentially expressed mRNA (DEmRNA), differentially expressed 

miRNA (DEmiRNA), and differentially expressed lncRNA (DElncRNA) between GC tissues and 

control tissues were screened. Meanwhile, immuno-infiltration analysis was conducted to identify the 

differential immune cell subset between GC tissues and control tissues. The relationship between 

lncRNA/mRNA and immune cell was analyzed. Besides, the lncRNA-mRNA pairs and 

miRNA-lncRNA pairs were respectively predicted. Based on these interactions, the immune 

cell-related mRNA-miRNA-lncRNA CeRNA network was constructed. Importantly, the proposed 

immune-related network might allow a better understanding of the regulatory mechanism of 

CeRNA mediated by lncRNA in the pathogenesis and prognosis of GC.  

2. Materials and method 

2.1. Data source 

After a careful review of the Gene Expression Omnibus (GEO, 

http://www.ncbi.nlm.nih.gov/geo/) database [21], we finally selected four microarray datasets 

(GSE65801, GSE23739, GSE26595, and GSE30073) to screen the differentially expressed genes 

between GC tissues and normal tissues, and raw data were downloaded in October 2019. The 

microarray dataset GSE65801 [22] based on GPL14550 Agilent-028004 SurePrint G3 Human GE 

8x60K Microarray (Probe Name Version) platform was obtained from GEO database, and composed 

of the lncRNA/mRNA data of 32 GC tissues and 32 normal tissues. Among these, GC tissues were 

taken from untreated patients with primary gastric carcinomas, and who underwent D2 radical 

gastrectomy. Microarray dataset GSE23739 [23] was derived from GPL7731 platform 

(Agilent-019118 Human miRNA Microarray 2.0 G4470B (Feature Number version)), and contained 

miRNA expression data of 40 GC tissues and 40 normal tissues. The primary gastric tumors and 

adjacent normal gastric tissues were obtained from the National Cancer Centre Singapore, Singapore, 

and the Singhealth Tissue Repository. Microarray dataset GSE26595 [24] based on GPL8179 

Illumina Human v2 MicroRNA expression beadchip platform was downloaded from GEO database, 

and included miRNA data of 60 GC tissues and eight normal tissues. The clinical features of patients 

in this dataset are listed in Supplementary Table1. Furthermore, the platform for GSE30073 [25] was 

GPL13742 Agilent-015868 Human miRNA Microarray (miRBase release 9.0 Feature Number 

version)], and this dataset contained miRNA expression data of 90 GC samples and 34 normal 

samples. The clinico-pathological characteristics of patients are shown in Supplementary Table 2.  

2.2. Pre-preprocessing of the data 

In the expression profile analysis of the mRNA/lncRNA, the processed and standardized probe 

expression matrix file (GSE65801_series_matrix.txt) was downloaded from the GEO database; 

meanwhile, all probes sequencing in GPL14550 Agilent-028004 SurePrint G3 Human GE 8x60K 

Microarray (Probe Name Version) platform were also downloaded, and human reference genome 

(GRCh38) was obtained from GENCODE [26] database 

(https://www.gencodegenes.org/releases/current.html). All probe sequences were aligned to the 

reference genome by using seqmap software [27]. Briefly, the uniquemap probes were reserved, then, 

https://www.gencodegenes.org/releases/current.html
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using its position on the chromosome and positive and negative strand information, the genes 

corresponding to each probe were obtained according to the human gene annotation file (Release25). 

Specifically, reserving the probes with annotation information “protein_coding” as corresponding 

mRNA probes; while retaining the probes with annotation information "antisense", "sense_intronic", 

"lincRNA", "sense_overlapping", "3prime_overlapping_ncRNA", "bidirectional_promoter_lncRNA", 

"macro_lncRNA" or "processed_transcript" as the corresponding lncRNA probes. The probes 

matching to mRNA/lncRNA (Genesymbol) were retained, while probes that not matching to 

Genesymbol were removed. The average values of the different probes were selected as the final 

expression value of mRNA/lncRNA when different probes matching to the same gene.  

In the expression profile analysis of miRNA (GSE23739, GSE26595, and GSE30070), the 

original probe signal value file was downloaded from GEO database, and was preprocessed by using 

limma [28] package, including background correction, robust multi-array average normalization, and 

calculation of expression value. Additionally, the annotation file corresponding to platform was 

downloaded. Firstly, the miRNA ID was mapped to the miRNA version (v22) of the mirBase 

database (http://www.mirbase.org/）[29] to obtain the miRNA name. Then, the probes were mapped 

to miRNA. The mean value of different probes was considered as the final expression value of 

miRNA when the multiple probes corresponding to the same miRNA name, while probes without 

corresponding miRNA name were deleted.   

2.3. Differentially expressed analysis 

The classical Bayesian method in limma package (Version 3.10.3, 

http://www.bioconductor.org/packages/2.9/bioc/html/limma.html) [28] was applied to perform 

differential expression analysis, including DEmRNA and DElncRNA in GSE65801, as well as 

DEmiRNA in GSE23739, GSE26595, and GSE30073. The p value was adjusted by the 

Benjamini/Hochberg test. The screening threshold of DEmRNA and DElncRNA was adjusted p 

value < 0.05 and |log fold change (FC)| > 1, whereas the adjusted p value < 0.05 and |logFC| > 0.585 

were considered as the thresholds of DEmiRNA.  

2.4. Abundance analysis of infiltrating immune cells 

Based on the gene expression matrix, the algorithm of CIBERSORT deconvolution [30] was 

utilized to estimate the abundance of immune infiltration. The gene expression feature template was 

provided by the LM22 dataset of CIBERSORT, which contained 22 immune-related cells. After 

obtaining the infiltration abundance of 22 types of cells in each sample, the samples with p value < 

0.05 were selected. The differentially analysis was conducted by T test to explore the immune-related 

cells between GC tissues and normal tissues, and p value <0.05 was considered as statistically 

significant. Besides, ggplot2 (Version: 3.2.1) in R package was used to constitute the landscape 

histogram of the abundance of immune cell infiltration. The boxplot in R package (version 0.3.2) 

was used to constitute the violin plot of differentially infiltrated immune cells. 

2.5. Analysis of immune-related mRNA/lncRNA and pathway enrichment of mRNA 

Based on the obtained differential immune cells, the cor. test of R language was used to 

respectively calculate the spearman correlation coefficient between DEmRNA-immune cells and 

DElncRNA- immune cells, which conducted with the significance test. The immune-related 

http://www.bioconductor.org/packages/2.9/bioc/html/limma.html）提供的经典贝叶斯方法，分别分析两种细胞系（A375和A2058）的Vemurafenib
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mRNAs/lncRNAs were screened out with the threshold of p-value <0.05 and correlation coefficient 

|r| > 0.6.  

Utilizing the Clusterprofiler tool [31] in R package (Version:3.8.1, 

http://bioconductor.org/packages/release/bioc/html/clusterProfiler.html), Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathway enrichment analyses was performed for the immune-related 

DEmRNAs, and p value < 0.05 and count ≥ 2 were defined as the cut-off criteria.  

2.6. Co-expression analysis of mRNA/lncRNA and pathway enrichment of lncRNA  

Utilizing the cor.test of R language, the Pearson correlation coefficient between the 

immune-related mRNAs and immune-related lncRNAs was calculated and conducted with the 

significance test. The threshold value of significantly correlated mRNA-lncRNA pairs was r value > 

0.8 and p-value < 0.05. Cytoscape software (version 3.4.0, http://chianti.ucsd.edu/cytoscape-3.4.0/) [31] 

was applied to structure the co-expressed network of lncRNA-mRNA.  

Meanwhile, the mRNAs were served as the potential target genes of lncRNAs, and the KEGG 

pathway enrichment analysis of mRNA was conducted by using ClusterProfiler in R package. 

P-value < 0.05 and the number of enriched genes ≥ 2 were considered as significant enrichment 

results, which indirectly predicted the function of lncRNA. 

2.7. Target genes prediction of miRNA and pathway enrichment analysis 

The up-regulated miRNAs and down-regulated miRNAs in three sets of GSE23739, GSE26595, 

and GSE30070 datasets were respectively intersected, and miRNAs with differences in at least two 

datasets were selected for further analysis. Online tool MiRWalk3.0 [32] 

(http://mirwalk.umm.uni-heidelberg.de/search_genes/) was used to predict the target genes for the 

DEmiRNAs. The mRNA that existed at least in TargetScan or miRDB was retained. Then, these 

genes were overlapped with immune-related mRNA to obtain miRNA-mRNA pairs, and the 

miRNA-target regulatory network was constructed using Cytoscape software. Similarly, 

ClusterProfiler was used to conduct KEGG pathway enrichment analysis of the target genes in 

miRNA-mRNA relationship, which was indirectly defined as the pathway enrichment analysis 

results of miRNA. The screening threshold of significantly enriched pathways was p-value < 0.05.  

2.8. Analysis of lncRNA–miRNA relationship and construction of CeRNA network 

According to the previously obtained immune-related lncRNAs and DEmiRNAs, the Miranda 

(v3.3a) [33] software (parameters: -sc 140, -en -20), was used to obtain the miRNA-lncRNA 

relationship. Combined with the miRNA-mRNA pairs, the lncRNA-miRNA-mRNA pairs regulated 

by the same miRNA were screened. Meanwhile, based on the correlation coefficients > 0.95 of 

co-expressed lncRNA-mRNA pairs, the lncRNA-miRNA-mRNA pairs were further screened to 

establish the CeRNA network. Among these, lncRNA and mRNA with positive co-expression 

relationship regulated by the same miRNA were CeRNA with each other.  

3. Results 

3.1. Preprocess of the data 

http://chianti.ucsd.edu/cytoscape-3.4.0/
http://mirwalk.umm.uni-heidelberg.de/search_genes/
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In the GSE65801, a total of 42545 probes were downloaded from the platform. Compared to the 

genome, 32054 probes were obtained. Among these, 5159 lncRNA probes were retained, 

corresponding to 2870 lncRNA; while 24890 mRNA probes were reserved, corresponding to 16325 

mRNA. In the GSE23739, a total of 15744 probes were obtained from the platform, among these, 

11570 probes were human miRNA probes, and these probes corresponding to 713 miRNA. In the 

GSE26595, a total of 1146 miRNA probes were extracted from the platform, which corresponding to 

348 miRNA. In the GSE30070, a total of 2296 miRNA probes were obtained, which corresponding 

to 407 miRNA. Distribution of standardized data showed that the median was roughly on the same 

horizontal line (Figure 1), which could be used for the further analysis.  

 

Figure 1. The box diagram of distribution of standardized data. Blue bar represents GC 

tissues, and yellow bar represents normal tissue. 
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3.2. Differentially expressed analysis 

According to the screening criteria, a total of 1637 DEmRNAs (868 up-regulated and 769 

down-regulated) and 218 DElncRNAs (81 up-regulated and 137 down-regulated) were identified in 

GSE65801; total 218 DEmiRNAs, including 104 DEmiRNAs (60 up-regulated and 44 

down-regulated) in GSE23739, 62 DEmiRNAs (34 up-regulated and 28 down-regulated) in 

GSE26595, and 52 DEmiRNAs (27 up-regulated and 25 down-regulated) in GSE30070, were 

screened between GC tissues and normal tissues. The bidirectional clustering heatmap (Figure 2) and 

volcano map (Figure 3) of DEmRNA, DElncRNA, and miRNAs were displayed. 

3.3. Abundance analysis of immune cell infiltration 

According to the screening threshold, a total of 48 samples (24 tumor samples and 24 normal 

samples) were selected for the analysis of infiltrating abundance. The histograms of abundance of 

immune cell infiltration in each sample are shown in Figure 4A. Meanwhile, eight types of immune 

cells, including plasma cells, naive CD4 T cells, CD8 T cells, gamma delta T cells, resting memory 

CD4 T cells, M0 Macrophages, M2 Macrophages, and activated dendritic cells, had significantly 

differential infiltration between tumor and normal tissues (Figure 4B). 

 

 

Figure 2. The heat map of differentially expressed mRNAs, lncRNAs and miRNAs. Red 

indicates tumor sample, and blue indicates normal sample. 
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Figure 3. Volcano plot of differentially expressed mRNAs, lncRNAs, and miRNAs. The 

blue square represents down-regulated gene, the red triangle represents up-regulated gene, 

and the grey node represents non-significant.  

 

Figure 4. (A) The landscape histogram of infiltrating abundance of immune cell. (B) Violin 

plot for comparing cells’ proportion between the gastric cancer tissues and control tissues. 
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3.4. Analysis of immune-related mRNA/ncRNA and pathway enrichment of mRNA 

Correlation analysis was conducted between mRNA/lncRNA with eight immune cells. 

According to the threshold, a total of 83 immune-related lncRNAs and 705 immune-related mRNAs 

were screened. KEGG pathway enrichment analysis of 705 immune-related mRNA showed that a 

total of 33 pathways were obtained (Figure 5). These mRNAs were mainly involved in pathways 

such as PI3K-Akt signaling pathway, human papillomavirus infection, and Neuroactive 

ligand-receptor interaction. 

 

Figure 5. KEGG pathway enrichment analysis of immune-related mRNA. (A) The bar 

chart of immune-related mRNAs. The abscissa represents the number of enriched genes. 

(B) The bubble diagram of immune-related mRNAs. The abscissa represents the ratio of 

enriched genes/background genes in a certain pathway. 
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3.5. Co-expression analysis of mRNA/lncRNA and pathway enrichment of lncRNA  

The co-expression of DEmRNA and DElncRNA was performed, a total of 3558 significantly 

co-expression mRNA-lncRNA pairs, 432 DEmRNAs, and 72 DElncRNAs were obtained. The 

network of co-expressed mRNA-lncRNA pairs with Pearson correlation > 0.9 is displayed in Figure 6A.  

KEGG pathway enrichment analysis was performed on target genes of 72 lncRNAs. According 

to the threshold, 49 enriched pathways were obtained. As shown in Figure 6B, the top 10 enrichment 

pathway were exhibited. These lncRNA primarily participated in gastric acid secretion, tyrosine 

metabolism, collecting duct acid secretion, and drug metabolism-cytochrome P450. 

 

Figure 6. (A) The co-expression analysis of DEmRNAs and DElncRNAs. Red circle 

represents up-regulated mRNA, green circle represents down-regulated mRNA, pink 

diamond represents up-regulated lncRNA, and purple diamond represents 

down-regulated lncRNA. (B) KEGG pathway enrichment analysis of lncRNA in the 

co-expressed analysis. 
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Figure 7. (A) KEGG pathway enrichment analysis of miRNA. (B) The network of 

DEmiRNAs-DEmRNAs. Red circle represents up-regulated mRNAs, green circle 

represents down-regulated mRNA, yellow triangle represents up-regulated miRNAs, 

gray triangle represents down-regulated miRNAs. (C) The intersection analysis of 

DEmRNA in three databases. 
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3.6. Target genes prediction of miRNA and pathway enrichment analysis 

According to the intersection analysis, there were 28 miRNA (14 up-regulated, 14 

down-regulated) were selected at least in two databases (Figure 7C). The mirwalk3.0 was used to 

predict the target genes of 28 miRNAs, and 4088 miRNA-mRNA relationships were obtained. 

Through an intersection analysis of 705 immune-related mRNAs, 163 miRNA-mRNA pairs (25 

miRNAs and 106 mRNAs) were finally obtained (Figure 7B). Besides, KEGG pathway enrichment 

analysis of 25 miRNAs was performed, the enrichment pathways of 3 miRNA (hsa-miR-148a-3p, 

hsa-miR-17-5p, and hsa-miR-25-3p) are shown in Figure 7A. Among these, hsa-miR-17-5p was 

principally involved in ras signaling pathway and breast cancer pathways. 

3.7. Analysis of lncRNA–miRNA relationship and construction of CeRNA network 

A total of 576 lncRNA-miRNA relationship pairs were predicted which composed of 69 

lncRNAs and 27 miRNAs. Finally, a number of 206 lncRNA-miRNA-mRNA relationships were 

obtained that contained 135 lncRNA-miRNA pairs, 47 miRNA-mRNA pairs, and 122 

lncRNA-mRNA relationships. Meanwhile, Cytoscape was used to construct the CeRNA network, 

which consisted of 15 miRNAs, 27 mRNAs, and 35 lncRNAs (Figure 8). Among these, several 

mRNAs targeted by hsa-miR-17-5p, such as epidermal growth factor receptor (EGFR), E2F 

transcription factor 3 (E2F3), phenazine biosynthesis like protein domain containing (PBLD), and 

SMAD Family Member 5 (SMAD5). Moreover, lncRNAs such as LINC00534 (degree = 24), 

DRAIC (degree = 20), and AC104389.28 (degree = 18) with higher degrees, and might be 

considered as hub nodes.  

 

 

Figure 8. The CeRNA network. Red circle represents up-regulated mRNAs, green circle 

represents down-regulated mRNA, yellow triangle represents up-regulated miRNAs, 

gray triangle represents down-regulated miRNAs, pink diamond represents up-regulated 

lncRNA, purple diamond represents down-regulated lncRNA. 
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4. Discussion 

Despite the decreased incidence of GC, the prognosis of GC remains poor. Recently, the 

introduction of modern immunotherapy, especially the use of immune checkpoint inhibitors, has 

improved the prognosis of many types of cancers [34]. Therefore, understanding the complex 

relationship between host’s immune microenvironment and tumors, as well as the immune-related 

molecular mechanisms that lead to development and progression of tumor will be helpful to identify 

prognostic immune markers. In this study, we found eight types of immune cells were closely 

associated with the development of GC, such as CD8 T cells, naïve CD4 T cells, resting memory 

CD4 T cells, gamma delta T cells, M0 Macrophages, and M2 Macrophages. A total of 83 

immune-related lncRNAs and 705 immune-related mRNAs were obtained. KEGG pathway 

enrichment analysis showed that these mRNAs were mainly involved in PI3K-Akt signaling pathway 

and human papillomavirus infection, while lncRNA were relevant to gastric acid secretion. 

Meanwhile, 25 miRNAs were significantly associated with immune-related mRNAs, such as 

hsa-miR-148a-3p, hsa-miR-17-5p, and hsa-miR-25-3p. From the mRNA-miRNA-lncRNA CeRNA 

network, we observed that AC104389.28─miR-17-5─SMAD5 axis and 

LINC01133─miR-17-5p─PBLD axis played crucial roles in the development of GC. 

Drosophila mothers against decapentaplegic (SMADs) gene had three subclasses, 

[receptor-regulated SMADs (R-SMADs), common mediator SMADs, and inhibitory SMADs], 

which had been found in mammals [35]. R-SMADs could be subdivided into two subtypes according 

to the process of phosphorylation, which could be generated by transforming growth factor-beta or 

by bone morphogenetic protein. Via probably up-regulated R-SMADs (SMADs1, 5, 8), BMP 

mediated apoptosis actively in the limb of embryonic [36]. The study also showed that SMAD5 was 

mediated apoptosis of gastric epithelial cells caused by H. pylori infection [37]. In GC cells, 

apoptosis was generally inhibited, although proliferation was still accelerating [37]. MiR-17-5p was 

belonged to miR-17-92 cluster [38]. Compared with normal tissues, the expression level of 

miR-17-5p was higher in pancreatic cancer, colorectal cancer, glioma, hepatocellular carcinoma, 

basal cell carcinoma, and GC [38]. By targeting p21 and tumor protein p53-induced nuclear protein 

1(TP53INP1), lack of miR-17-5p would influence the growth of AGS cells, in which cell cycle was 

arrested and apoptosis was increased. Whereas overexpression of miR-17-5p promoted the 

progression of cell cycle and inhibited the apoptosis of GC cells [39]. In our study, SMAD5 was 

down-regulated, while miR-17-5p was up-regulated in GC tissues compared with control tissues. 

Meanwhile, miR-17-5p was bound to lncRNA AC104389.28. Moreover, we observed that SMAD5 

and AC104389.28 were associated with the resting memory CD4 T cells. Rohr-Udilova and 

colleague [40] reported the relationship between resting memory CD4 T cells and hepatocellular 

carcinoma (HCC), indicating the number of this immune cell was increased in HCC tissues 

compared with health tissues. Furthermore, Jiang et al [41] showed that resting memory CD4 T cells 

were relevant to the prognosis of GC, and it was significantly higher in the high-risk group compared 

with the low-risk group. Taken together, a hypothesis was presented that AC104389.28 might 

function as a CeRNA in regulating SMAD5 expression of GC through competitively binding to 

miR17-5p, and SMAD5 played important role in the development of GC by affecting the number of 

resting memory CD4 T cells.  

PBLD, also termed as mitogen-activated protein kinase activator with WD-40 repeats (MAWD) 

binding protein, was identified from a human liver cDNA library firstly [42]. The transcription 

activated by TGF-β was inhibited by MAWD, which contributed to protein/protein interactions [43]. 
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More recently, the study proved that down-regulated PBLD could cause gastric carcinogenesis [44]. 

Through inhibiting TGF-β1-induced Epithelial-Mesenchymal Transition (EMT), the growth and 

invasion in GC cell-lines were negatively regulated by PBLD [43]. Meanwhile, the previous study 

showed that miR-17-5p had a pro-proliferative function in the development of cancer cells which 

was highly regulated in GC tissues [45]. In this study, miR-17-5p was regulated by lncRNA 

LINC01133. We also found both PBLD and LINC01133 were connected with plasma cells. Plasma 

cells provided protective immunity against recurring sources of infection [46]. Previous study found 

that multiple myeloma was characterized by the cloning and amplification of malignant plasma 

cells [47]. Although there was no literature directly reported the relationship between plasma cells 

and GC, the role of plasma cells in the development of cancer cannot be ignored. Therefore, we 

predicted that LINC01133 might function as a CeRNA in regulating PBLD expression of GC 

through competitively binding to miR-17-5p, and these genes might affect the plasma cells in 

GC tissues. 

5. Conclusion 

In conclusion, a series of bioinformatics analyses were conducted with immune 

microenviroment in GC patients. Several CeRNA mechanisms were proposed in this study. 

AC104389.28 might function as a CeRNA in regulating SMAD5 expression through competitively 

binding to miR-17-5p. Meanwhile, LINC01133 might affect the expression of PBLD with the 

competitively binding to miR-17-5p. However, these results should be validated and supported by 

further experimental studies. 
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Supplementary 

Supplementary Table 1. The clinical features of patients in the GSE26595 n (%). 

Characteristic Group 1 

(n = 60) 

miR-196b 

high 

(n = 28) 

miR-196b 

low 

(n = 29) 

P value  HOXA10 

high 

(n = 29) 

HOXA10 

low 

(n = 28) 

P value 

Age, yr        

Median (range)   63 (32–83)  66 (34–78) 58 (32–83) 0.134 64 (34–83) 60 (32–78) 0.134 

>65  15 (52)  9 (32)  15 (52) 9 (32)  

Sex        

Male 41 (68) 19 (68) 20 (69)  0.928 18 (62)  21 (75)  0.294 

Histologic type        

Diffuse 27 (45) 9  17 0.066 8 18 0.007 

Intestinal 23 (38) 14 9  16 7  

Mixed 10 (17)  5 3  5 3  

T stage        

T1/T2   26 (43)  10 (36)  14 (48)   0.337  11 (38) 13 (46) 0.516 

T3/T4 34 (57)  18 (64) 15 (52)  18 (62)  15 (54)  

N stage        

N0/N1 36 (60)  15 (54) 19 (66)  0.358 16 (55)  18 (64)   0.483 

N2/N3 24 (40) 13 (46) 10 (34)   13 (45) 10 (36)  

AJCC stage1        

Ⅰ/Ⅱ  23 (38) 11 (39) 12 (41)   0.872 11 (38)  12 (43)   0.705 

Ⅲ/Ⅳ 37 (62)  17 (61)   17 (59)  18 (62)  16 (57)  

1. Based on the American Joint Committee on Cancer staging manual 6th edition. HOXA10: Homeobox A10; AJCC: 

American Joint Committee on Cancer. 
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Supplementary Table 2. Clinico-pathological characteristics of patients in the GSE30070. 

 Gastric cancer patient  

Training set 

Proof-of-principle test 

set (responder) 

Healthy 

volunteer 

Number 82 8  34 

Age - yr    

Median 56 56  48 

Interquartile range (44–63) (44–58) (43–57) 

Sex - no. (%)    

Male 64 (78.0%) 7 (87.5%) 23 (67.6%) 

Female 18 (22.0%) 1 (12.5%) 11 (32.4%) 

Performance status (PS) - no. (%)    

ECOG1 PS 0 or 1 73 (89.0%) 8 (100%)  

ECOG PS 2 or 3 9 (11.0%) 0  

Lauren’s intestinal 34 (41.5%) 3 (37.5%)  

Lauren’s diffuse  48 (58.5%) 5 (62.5%)  

Location of primary lesion - no. (%)    

Upper 1/3 11 (13.4%)  1 (12.5%)  

Middle 1/3 18 (22.0%)  5 (62.5%)  

Lower 1/3  43 (52.4%) 1 (12.5%)  

Entire stomach 10 (12.2%)  1 (12.5%)  

Chemotherapy regimen - no. (%)    

Cisplatin/Fluorouracil   80 (97.6%) 8 (100%)  

Cisplatin/Capecitabine 2 (2.4%)  0  

*Relative dose intensity - %    

Median  81.2 76.6  

Interquartile range  (75.3–87.3)  (64.7-84.9)  

Number of chemotherapy cycles    

Median  4 10  

Interquartile range  (2–5) (7–11)  

Chemotherapy response (WHO criteria) -no (%)    

PR2 16 (24.6%) 6 (100%)  

SD3  25 (38.5%)   

PD4  24 (36.9%)   

Unmeasurable  16  2  

Unevaluable  1   

Second-line chemotherapy  55 (67.1%)  6 (75.0%)  

Median follow-up for survivors  35.5 months  -  

Overall survival - mo.    

Median 8.2  16  

Interquartile range  (6.8-10.5)  (11.3-26.7)  

Time to progression - mo.    

Median 3.1 8.2  

Interquartile range  (2.5–3.9)  (4.3–21.2)  
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1Eastern Cooperative Oncology Group, 2partial response, 3stable disease, 4progressive disease. 

*Relative dose intensity 

*Mean of relative dose intensities of cisplatin and fluorouracil. Dose intensity is defined as the amount of drug 

administered per unit of time, expressed as milligrams per square meter per week. Relative dose intensity is defined 

as the actual dose intensity relative to the planned dose intensity of each drug. 
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