
http://www.aimspress.com/journal/MBE

MBE, 17(4): 3925–3952.
DOI: 10.3934/mbe.2020218
Received: 12 March 2020
Accepted: 20 May 2020
Published: 28 May 2020

Research article

Immunization strategies in directed networks

Junbo Jia, Wei Shi, Pan Yang and Xinchu Fu∗

Department of Mathematics, Shanghai University, Shanghai 200444, China

* Correspondence: Email: xcfu@shu.edu.cn; Tel: +862166132664; Fax: +862166133292.

Abstract: Many complex systems can be modeled as directed networks, which can be regarded as a
generalization of undirected networks. In this paper, epidemic dynamics and immunization strategies
in directed networks are studied. First, a Susceptible-Infected-Susceptible (SIS) model on a directed
network is established employing the mean-field method, and its dynamics and epidemic threshold
of the network are studied. Then based on the continuous degree technique, namely, considering the
degree of a node as a continuous variable, we propose a method to calculate the epidemic threshold
of the immunized network. Besides, some immunization strategies, including optimal immunization,
random immunization, combined targeted immunization, and combined acquaintance immunization,
and three special networks are considered. Finally, through numerical analysis, all immunization
strategies are simulated and compared on different types of networks. We find that the nodes with
the largest product of in-degree and out-degree are the most worthy of being immunized.

Keywords: directed network; optimal immunization; random immunization; combined targeted
immunization; combined acquaintance immunization

1. Introduction

Complex network is a powerful tool to describe and study complex systems [1]. Generally, the
network is represented by a graph in mathematics, including nodes, which represent the individual
component in the system, and edges between the nodes, which represent the relationship or interaction
between individuals in the system. Many fields in the real world can be studied by using complex
networks, such as computer networks [2], social networks [3–5], gene regulatory networks [6], etc..
An important reason why the application of complex networks is so widespread is that it can be used
to characterize the topological features of these systems, such as small-world property [4,7], scale-free
property [8], community structures [9–12], and hierarchical structures [13].

Disease or information transmission on the network is an important topic in the spreading
dynamics on networks [1, 14–17]. It can be applied to study the spread of the epidemic in contact
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networks, viruses in computer networks, and opinion in social networks. Depending on whether the
edge has a direction, the underlying networks can be divided into undirected networks, directed
networks [18, 19] and semi-directed networks [20, 21]. In this paper, directed networks are
considered. There are two main reasons for this. First, the directed network can be regarded as a
generalization of the undirected network and semi-directed network. For example, undirected
networks can be seen as directed networks with two-way edges. Second, it is based on the fact that
sometimes the edges are directional or the infection between two nodes is asymmetric. For example,
some computer viruses can only be transmitted from server to client through downloading or visiting.
The public opinion of social networks can only flow from followed to followers. Trade flows among
manufacturers, wholesalers and retailers are well modeled by directed networks [22]. Besides, the
health care workers who take protective measures are less likely be infected by patients, but in turn,
the infected doctors in the clinic will likely to infect the patients, causing cross-infection, such as
influenza, hepatitis B, and COVID-19 (or 2019-nCoV).

Also, designing and implementing efficient immunization strategies are of great significance for
the prevention and control of disease or information outbreaks on various types of networks [23–27].
This is also an indispensable part of the study of spreading dynamics on networks. Here, by
immunization we mean to make some nodes immune or resistant to a disease or pathogenic agent,
especially by inoculation. After a node is immunized, it will neither be infected by the infected nodes
nor spread the disease to the susceptible. Therefore, the immunized nodes can be regarded as the
removed nodes, which change the topological structure of the network and protect the whole network
from a disease outbreak. Many researchers have considered the immunization on different
networks [24–26, 28, 29], including homogeneous networks and heterogeneous networks. The results
indicate that the nodes with a large degree are worthy of being immunized because they are not only
susceptible but once infected they can easily spread the disease. Besides, different immunization
strategies have been developed as well [29], including random immunization, targeted immunization,
and acquaintance immunization [26]. However, in front of the directed network, new problems arise.
A node in a directed network has in-degree and out-degree, which makes the nodes with large
in-degree not necessarily have large out-degree. This means that nodes that are easy to be infected are
not necessarily easy to infect others. Similarly, nodes that are prone to infect others are not
necessarily easy to be infected as well. Besides, when we consider immunizing the nodes with both
large in-degree and out-degree, such nodes may not even exist, because in-degree and out-degree can
obey different distributions.

In this paper, we study epidemic spread and immunization strategies in a directed network. First,
using the mean-field method, the Susceptible-Infected-Susceptible (SIS) model on the directed
network is established and the epidemic threshold is defined. By considering the immunized nodes as
being removed from the network together with their corresponding in-edges and out-edges, the
immunized network is regarded as a new network. Then, by continuous degree method [30], namely,
considering the degree of a node as a continuous variable, the epidemic threshold of the immunized
network is calculated. We also analyze four families of immunization strategies, including optimal
immunization, random immunization, combined targeted immunization and its three variants, and
combined acquaintance immunization and its two variants. Besides, immunization strategies for
specific cases are considered as well, such as undirected networks, networks with an uncorrelated
joint degree, and epidemic spread considering infectivity. Finally, the numerical analysis of all
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immunization strategies for four different types of networks is given. We find that optimal
immunization is the most efficient strategy, which is to immunize the nodes from top to bottom
according to the product of in-degree and out-degree. Interestingly, the importance of in-degree and
out-degree of the nodes are different. The strategies tending to immunize the nodes with large
out-degree are slightly inferior to those of large in-degree in networks where only the in-degree is
heterogeneous, but in the networks where the out-degree is heterogeneous, the former will be
significantly better than the latter.

The rest of the paper is organized as follows. In section 2, the SIS model on the directed network is
established, and the global stability analysis and expression of epidemic threshold are given. In
section 3, based on the continuous degree, the epidemic threshold of the immunized network is
calculated, and some immunization strategies and special cases are considered. In section 4, the
numerical analysis is provided to complement the theoretical analysis. Finally, the conclusions and
discussions are given in section 5.

2. The SIS model in directed network

In this section, we first introduce the directed network and build an epidemic spread model in it.
Then, the global stability analysis of the model is given.

2.1. Directed network

First, let us introduce a directed network. Directed network means the edges in the network are
directed. So, each node attached with two kinds of edges, in-edges, and out-edges. For a node in the
network, we use in-degree and out-degree represent the numbers of in-edges and out-edges,
respectively, and by joint degree (k, l) we mean that for a node its in-degree is k and its out-degree is l.
Here, we use k∗ and k∗ to represent the minimum and maximum of the in-degree, respectively, and l∗
and l∗ correspond to out-degree. Denote by Nk,l the number of nodes with a joint degree (k, l) and by
N the size of the whole network, then

N =
∑
k,l

Nk,l. (2.1)

Denote the number of nodes with in-degree k by Nk,· and that of with out-degree l by N·,l, and we have

Nk,· =
∑

l

Nk,l, (2.2)

and
N·,l =

∑
k

Nk,l. (2.3)

In an undirected network, the degree distribution P(k) is defined to be the fraction of nodes with
degree k. Thus if there are N nodes in total in a network and Nk of them have degree k, we have
P(k) = Nk

N . However, in a directed network, degree distribution P(k) will be replaced by joint degree
distribution P(k, l), which is defined to be the fraction of nodes with a joint degree (k, l) instead. And,
we have

P(k, l) =
Nk,l

N
. (2.4)
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Besides, the in-degree distribution and out-degree distribution will be

Pin(k) =
Nk,·

N
=

∑
l Nk,l

N
, (2.5)

and
Pout(l) =

N·,l
N

=

∑
k Nk,l

N
, (2.6)

respectively.
Accordingly, we have the relationship between the marginal degree distribution and degree

distribution
P(k, ·) =

∑
l

P(k, l) =

∑
l Nk,l

N
= Pin(k), (2.7)

and
P(·, l) =

∑
k

P(k, l) =

∑
k Nk,l

N
= Pout(l). (2.8)

And for each node in the network, if its joint degree is independent each other, we will have the
relationship

P(k, l) = Pin(k)Pout(l). (2.9)

Besides, by the joint degree distribution P(k, l), we can obtain moment 〈kφlϕ〉 about zero, which
equals to

〈kφlϕ〉 =
∑
k,l

kφlϕP(k, l), φ, ϕ = 0, 1, 2, 3, · · · . (2.10)

If φ = ϕ = 1, 〈kφlϕ〉 will be mixture moment 〈kl〉. If φ = 1, ϕ = 0, or φ = 0, ϕ = 1, it will be the mean
in-degree or mean out-degree, which can be denoted by 〈k〉 and 〈l〉, respectively. Here, we should note
that whole the in-degree must equal whole the out-degree because, for each directed edge, it must be
an in-edge of certain node and an out-edge of another node at the same time. So we obtain

〈k〉 = 〈l〉. (2.11)

2.2. Epidemic model in directed network

Based on the directed network described above, we now consider the epidemic spread model,
including the assumptions and the modeling of the propagating mechanism.

First, let us introduce the health state of nodes into the network. All nodes are divided into two
compartments: Susceptible denoted by S , and infected denoted by I. S node means that it can be
infected and I node means it is infective. Meanwhile, we use S (t) and I(t) denote the amount of S
nodes and the I nodes, respectively, at time t, and use S k,l(t) and Ik,l(t) to represent the S nodes and I
nodes with joint-degree (k, l). So, according to the health state of nodes and their joint degree, we have
the following relationship

N = S (t) + I(t) =
∑
k,l

S k,l(t) +
∑
k,l

Ik,l(t). (2.12)

Besides, for the nodes with a joint degree (k, l), we have

Nk,l = S k,l(t) + Ik,l(t). (2.13)
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If we let sk,l(t) =
S k,l(t)
Nk,l

and ρk,l(t) =
Ik,l(t)
Nk,l

denote the relative densities of S nodes and I nodes with
respect to the nodes with joint degree (k, l), respectively, then from the last equation, we obtain

sk,l(t) + ρk,l(t) = 1. (2.14)

Next, we give the assumption about the propagating mechanism of the epidemic in the directed
network described in the previous subsection. For each S node in the network, say A, it can be infected
by a I node through the directed edge that is emitted by this I node and point to the node A, and all the
directed edges like this can cause the infection of node A. The infection rate of each edge during a unit
of time is set to β. On the other hand, for each I node, it can become an S node again due to recovery,
and the recovery rate during a unit time is set to γ.

Based on this infection mechanism, the SIS model can be built via mean-field method, as below,

dIk,l(t)
dt

= βkS k,l(t)Θk,l(t) − γIk,l(t). (2.15)

Where, the first item on the right hand represents the increment of Ik,l(t) because of the infection of
susceptible nodes S k,l(t), and the second item indicates the decrement of Ik,l(t) caused by recovery.
Θk,l(t) denote the possibility of an in-edge of S node with joint degree (k, l) is emitted by I nodes. For
simplicity, we consider the relative densities and substitute (2.14) into (2.15) and assume the network
does not have the degree-degree correlation between two end nodes of a directed edge, then the SIS
model in directed network becomes

dρk,l(t)
dt

= βk(1 − ρk,l(t))Θ(t) − γρk,l(t). (2.16)

Where,

Θ(t) =

∑
k,l lIk,l(t)∑
k,l lNk,l

=
1
〈l〉

∑
k,l

lP(k, l)ρk,l(t). (2.17)

2.3. Epidemic threshold and global stability analysis

The epidemic threshold is a crucial parameter to determine whether the disease will outbreak or
not. Generally, when the related parameter exceeds the threshold, the disease will break out, otherwise,
disease tend to vanish. Here, we calculate the epidemic threshold.

First, let us consider the equilibria of the model, and let the right hand of (2.16) equals to zero, we
get

ρk,l(t) =
βkΘ(t)

γ + βkΘ(t)
. (2.18)

Substituting (2.18) into (2.17), we obtain a self-consistency equation with respect to Θ(t),

Θ(t) =
1
〈l〉

∑
k,l

lP(k, l)
βkΘ(t)

γ + βkΘ(t)
. (2.19)

We define the function f (Θ) as the right hand of (2.19), and it has the following properties

f (0) = 0, (2.20)
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f (1) =
1
〈l〉

∑
k,l

lP(k, l)
βk

γ + βk
<

1
〈l〉

∑
k,l

lP(k, l) = 1, (2.21)

d f (Θ)
dt

=
1
〈l〉

∑
k,l

lP(k, l)
βkγ

(γ + βkΘ)2 > 0, (2.22)

d2 f (Θ)
dt2 =

1
〈l〉

∑
k,l

lP(k, l)
−2β2k2γ

(γ + βkΘ)3 < 0. (2.23)

From these properties, we know that f (Θ) is a strictly monotone increasing and a strictly convex
function. The value at origin is zero and is less than 1 at point 1. Therefore, the endemic equilibrium
exists if and only if

d f (Θ)
dt

∣∣∣∣∣
Θ=0

=
β〈kl〉
γ〈l〉

> 1. (2.24)

So we define the epidemic threshold λc as

λc =
〈l〉
〈kl〉

. (2.25)

When the joint-degree is independent, that is, when (2.9) holds, the epidemic threshold will be

λ∗c =
1
〈l〉
. (2.26)

Next, we consider the global dynamics of the model (2.16).

Theorem 2.1. For the model (2.16) and epidemic threshold λc defined in (2.25), if β

γ
≤ λc then the

disease-free equilibrium E0 is globally asymptotically stable in ∆. While if β

γ
> λc, model (2.16)

admits a unique endemic equilibrium E1, which is globally asymptotically stable in ∆ − {0}, where
∆ = {ρk,l | 0 ≤ ρk,l ≤ 1,∀k∗ ≤ k ≤ k∗, l∗ ≤ l ≤ l∗}.

Proof. Let R0 =
β〈kl〉
γ〈k〉 , namely the basic reproduction number. Then we have R0 ≤ 1 ⇐⇒ β

γ
≤
〈k〉
〈kl〉 = λc

and R0 ≥ 1 ⇐⇒ β

γ
≥
〈k〉
〈kl〉 = λc. Besides, the model (2.16) is a special case of the model studied in [18]

since the latter is generalized. By Theorem 1 in [18], we complete the proof. �

The Theorem 2.1 above shows that when the relative infection rate, β

γ
, is less than or equal to the

epidemic threshold, λc, the disease will gradually die out. Only when the relative infection rate is
greater than the epidemic threshold, the disease will break out. Furthermore, Theorem 2.1 also implies
that if we want to prevent the outbreak of the disease on the network, an effective way is to change the
topological structure of the network such that the epidemic threshold λc of the network is greater than
the relative infection rate of the disease.

Besides, it should be noted that the epidemic threshold defined in (2.25) is uniquely determined by
the network topology and have nothing to do with the disease. However, the relative infection rate of
disease, β

λ
, is not only related to the disease itself, but also to the media, which refers to the directed

network in this situation. Additionally, our model and conclusion are based on the assumptions that
nodes are uniformly mixed up and there is no correlation between two ends of any directed edge, and
the subsequent research on immunization strategies is also based on these assumptions.
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3. Immunization strategies

In this section, we will study the immunization strategies in the directed network, which is an
indispensable step for epidemic prevention. By immunization, we mean to make nodes immune to
the epidemic or pathogenic agent, especially by inoculation. Generally, medical resources related to
vaccination are high cost and often inadequate. Therefore, we need to design economical and efficient
immunization strategies.

The immunizations we studied here are different from treatment and are carried out before the onset
of the outbreak. In other words, before the emergence of the disease, some nodes in the network are
vaccinated in advance, such that when an external infected node comes to the network or a certain node
in the network suddenly becomes infected, the disease can tend to die out.

Let us briefly describe the principle behind the prevention of disease outbreaks through
immunization. We call the immunized node the removed node, denoted by R, which is different from
the S node and the I node. This is because the immunized nodes will not be infected and are not
infectious as well. They do not participate in the spread of disease, just like they are removed from the
network. Thus, immunization can be regarded as removing some nodes and the attached edges from
the network, which changes the topological structure of the network and finally makes the epidemic
threshold increase, thus reducing the prevalence or even preventing the outbreak of the disease.

3.1. Epidemic threshold of immunized network

We calculate the epidemic threshold of an immunized network by continuous degree method [30].
By continuous degree, we mean considering the degree of a node as the positive real number that varies
continuously. We can do that mainly because when the size of the network is large enough, regarding
the degree as a continuous variable is a good approximation method and is easy to deal with as well.

For the nodes with a joint degree (k, l), assume the rate of being immunized is α(k, l), where 0 ≤
α(k, l) ≤ 1. α(k, l) = 0 means the nodes with a joint degree (k, l) are not been immunized, and α(k, l) = 1
means the nodes are immunized completely. Alternatively, we can also think of α(k, l) as the probability
that a node with joint degree (k, l) is immunized. Once the network is immunized, those immunized
nodes are considered removed from the network and its total number are

∫ l∗

l∗

∫ k∗

k∗
α(k, l)Nk,ldkdl, where

k∗, k∗, l∗, and l∗ are as described in subsection 2.1. Accordingly, the attached
∫ l∗

l∗

∫ k∗

k∗
kα(k, l)Nk,ldkdl

in-edges and
∫ l∗

l∗

∫ k∗

k∗
lα(k, l)Nk,ldkdl out-edges will be removed as well.

For the unremoved nodes with a joint degree (k, l), due to the removing of some edges their in-
degree k and out-degree l will become k′ and l′, respectively, after immunization. Where,

k′ = k −
∫ l∗

l∗

∫ k∗

k∗
lα(k, l)Nk,ldkdl k∫ l∗

l∗

∫ k∗

k∗
kNk,ldkdl

= k(1 − 〈lα(k,l)〉
〈k〉 )

= kA

(3.1)

and
l′ = l −

∫ l∗

l∗

∫ k∗

k∗
kα(k, l)Nk,ldkdl l∫ l∗

l∗

∫ k∗

k∗
lNk,ldkdl

= l(1 − 〈kα(k,l)〉
〈l〉 )

= lB.

(3.2)
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In (3.1),
∫ l∗

l∗

∫ k∗

k∗
lα(k, l)Nk,ldkdl represents the total number of removed in-edges, which is from the

perspective of surviving nodes, and the fraction part represents the ratio of in-edges of a node with
in-degree k in the whole in-edges. So their product will be the reduction of in-degree for an node with
in-degree k. And the items in (3.2) are similar. Besides, for simplicity, we also let A and B represent
1 − 〈lα(k,l)〉

〈k〉 and 1 − 〈kα(k,l)〉
〈l〉 , respectively.

Conversely, for the node with a joint degree (k′, l′) in the immunized network, their original in-
degree and out-degree in the original network are,

k =
k′

A
, (3.3)

and
l =

l′

B
, (3.4)

respectively.
For the original network, the in-degree k and out-degree l satisfy k∗ ≤ k ≤ k∗ and l∗ ≤ l ≤ l∗. Then

for the immunized network, we have k′∗ ≤ k′ ≤ k′∗, l′∗ ≤ l′ ≤ l′∗, and the relationship

k′∗ = k∗A, k′∗ = k∗A, (3.5)

and
l′∗ = l∗B, l′∗ = l∗B. (3.6)

Next, the new joint degree distribution, or the new joint probability density, is

P′(k′, l′) =
N′k′ ,l′

N′

=
(1−α( k′

A ,
l′
B ))N k′

A , l
′

B∫ l∗

l∗

∫ k∗

k∗
(1−α(k,l))Nk,ldkdl

=
(1−α( k′

A ,
l′
B ))P( k′

A ,
l′
B )∫ l∗

l∗

∫ k∗

k∗
(1−α(k,l))P(k,l)dkdl

,

(3.7)

which is completely determined by the original joint degree distribution P(k, l) and the immune
function α(k, l).

With the new joint degree distribution, we can obtain the new moments 〈kl〉′ and 〈l〉′, as follows,

〈kl〉′ =
∫ l′∗

l′∗

∫ k′∗

k′∗
k′l′P′(k′, l′)dk′dl′,

=
∫ l∗B

l∗B

∫ k∗A

k∗A
AkBl (1−α( k′

A ,
l′
B ))P( k′

A ,
l′
B )∫ l∗

l∗

∫ k∗

k∗
(1−α(k,l))P(k,l)dkdl

dk′dl′

=
∫ l∗

l∗

∫ k∗

k∗
A2B2kl (1−α(k,l))∫ l∗

l∗

∫ k∗

k∗
(1−α(k,l))P(k,l)dkdl

P(k, l)dkdl

= A2B2∫ l∗

l∗

∫ k∗

k∗
(1−α(k,l))P(k,l)dkdl

∫ l∗

l∗

∫ k∗

k∗
kl(1 − α(k, l))P(k, l)dkdl,

(3.8)

and
〈l〉′ =

∫ l′∗

l′∗

∫ k′∗

k′∗
l′P′(k′, l′)dk′dl′.

=
∫ l∗B

l∗B

∫ k∗A

k∗A
Bl (1−α( k′

A ,
l′
B ))P( k′

A ,
l′
B )∫ l∗

l∗

∫ k∗

k∗
(1−α(k,l))P(k,l)dkdl

dk′dl′

=
∫ l∗

l∗

∫ k∗

k∗
AB2l (1−α(k,l))∫ l∗

l∗

∫ k∗

k∗
(1−α(k,l))P(k,l)dkdl

P(k, l)dkdl

= AB2∫ l∗

l∗

∫ k∗

k∗
(1−α(k,l))P(k,l)dkdl

∫ l∗

l∗

∫ k∗

k∗
l(1 − α(k, l))P(k, l)dkdl.

(3.9)
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Thus we obtain the epidemic threshold of immunized network

λ′c = 〈l〉′

〈kl〉′

=

∫ l∗

l∗

∫ k∗

k∗
l(1−α(k,l))P(k,l)dkdl

A
∫ l∗

l∗

∫ k∗

k∗
kl(1−α(k,l))P(k,l)dkdl

= 〈l〉
〈kl〉−〈klα(k,l)〉 .

(3.10)

Where, 〈klα(k, l)〉 =
∫ l∗

l∗

∫ k∗

k∗
klα(k, l)P(k, l)dkdl. If we substitute 〈k〉 with 〈l〉 due to (2.11), λ′c can also

be expressed as 〈k〉
〈kl〉−〈klα(k,l)〉 .

For an immunization strategy, we can also define the immunization threshold, αc, as the proportion
of the total immunized nodes such that β

γ
= λ′c. If the proportion of total immunized nodes is less than

αc, the disease breakout. Otherwise, the disease will tend to die out. The smaller the immunization
threshold αc, the higher the efficiency, because a small αc means fewer nodes needed to be immunized
for preventing disease outbreaks.

3.2. Some examples of immunization strategies

Based on the calculation method proposed above, we now give some examples of immunization
strategies in this subsection, including optimal immunization, random immunization, combined
targeted immunization and combined acquaintance immunization. For convenience, we also
respectively call these strategies A, B, C and D.

3.2.1. Strategy A: Optimal immunization

The first is the optimal immunization, which is to immunize the nodes in turn from the maximum
value to the minimum value according to the kl value of the nodes, namely, the product of the out-
degree and the in-degree. Here, the optimal means that the epidemic threshold λ′c is the largest when the
same number of nodes are immunized. In other words, its immunization threshold αc defined at the end
of the previous subsection is the smallest of all immunization strategies. This immunization strategy
is inspired by the expression of the epidemic threshold in (3.10) because when the same number of
nodes are being immunized, immunizing those nodes with the highest kl will maximize the epidemic
threshold of the network.

The fact that strategy A is optimal is based on the global information of joint degree. Thus, one
drawback is that we cannot give a specific immunization threshold αc without the knowledge of the
joint degree distribution of a specific network.

3.2.2. Strategy B: Random immunization

The second is random immunization, also known as uniform immunization [24], which is the
simplest immunization strategy. That is to say, regardless of the degree of nodes, either in-degree,
out-degree, or joint degree, each node is being immunized with the same probability, say constant α,
where 0 ≤ α ≤ 1. So we have

α(k, l) = α. (3.11)

Thus,

〈klα(k, l)〉 =

∫ l∗

l∗

∫ k∗

k∗
klαP(k, l)dkdl = α〈kl〉. (3.12)
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So, substituting this into (3.10), we obtain the epidemic threshold

λc =
〈l〉

(1 − α)〈kl〉
. (3.13)

Then let it equal the relative infection rate β

γ
, we get the immunization threshold

αc = 1 −
γ〈l〉
β〈kl〉

. (3.14)

Strategy B is effective because it can increase the epidemic threshold, and when the immunization
proportion α is large enough, the epidemic threshold can be greater than the relative infection rate.
One advantage of strategy B is that no information about node degree is required when the node is
being immunized. Usually, this also makes it inefficient, and we often think of random strategy as a
reference.

3.2.3. Strategy C: Combined targeted immunization

The third strategy is combined targeted immunization, which is a generalization of targeted
immunization on undirected networks [24, 25]. In an undirected network, the nodes with a large
degree are worthy of being immunized, because they are not only easy to be infected but also easy to
spread disease. However, in a directed network, degree becomes joint degree, which contains two
components, in-degree, and out-degree. The nodes with large in-degree do not necessarily have large
out-degree, and the nodes with large out-degree do not necessarily have large in-degree as well. In
other words, in the directed network, the nodes that are easy to be infected are not necessarily easy to
spread the disease, and, similarly, the nodes that are easy to spread the disease may not be easy to be
infected. Therefore, the nodes with both large in-degree and large out-degree are generally worthy of
being immunized. So, here the immunization function α(k, l) is expressed as follows,

α(k, l) =

{
1, k ≥ kc and l ≥ lc,

0, otherwise.
(3.15)

Where, kc and lc represent the critical values of in-degree and out-degree, respectively. Thus, 〈klα(k, l)〉
will be

〈klα(k, l)〉 =
∫ l∗

l∗

∫ k∗

k∗
klα(k, l)P(k, l)dkdl

=
∫ l∗

lc

∫ k∗

kc
klP(k, l)dkdl

= ω1.

(3.16)

Where, ω1 represents the integral of klP(k, l) in area Ω1 = {(k, l) : kc ≤ k ≤ k∗, lc ≤ l ≤ l∗}. Then the
epidemic threshold is

λc =
〈l〉

〈kl〉 − ω1
. (3.17)

Similar to the optimal immunization, we can not give a specific immunization threshold without
specific kc, lc, and P(k, l). And strategy C also requires global information about node degrees, so do
strategy A. Besides, strategy C here is actually a series of immunizations, because different kc and lc

can be considered as different immunization.
There are three variants associated with strategy C, as follows.
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Variant C1: Immunize the nodes either with large in-degree or with large out-degree.
The immunization function is expressed as

α(k, l) =

{
1, k ≥ kc or l ≥ lc,

0, otherwise.
(3.18)

And, the 〈klα(k, l)〉 will be

〈klα(k, l)〉 =
∫ l∗

l∗

∫ k∗

k∗
klα(k, l)P(k, l)dkdl

= (
∫ l∗

lc

∫ k∗

kc
+

∫ l∗

lc

∫ kc

k∗
+

∫ lc
l∗

∫ k∗

kc
)klP(k, l)dkdl

= ω1 + ω2 + ω3.

(3.19)

Where, ω1 is the same as that in (3.16), and ω2, ω3 are the integrals of klP(k, l) in areas Ω2 =

{(k, l) : k∗ ≤ k ≤ kc, lc ≤ l ≤ l∗} and Ω3 = {(k, l) : kc ≤ k ≤ k∗, l∗ ≤ l ≤ lc}, respectively. So the
infection threshold is

λc =
〈l〉

〈kl〉 − ω1 − ω2 − ω3
. (3.20)

Variant C2: The second variant is only immunizing the nodes with a large in-degree, regardless of the
node’s out-degree. And the immunization function is

α(k, l) =

{
1, k ≥ kc,

0, otherwise.
(3.21)

Through the same calculation as above, we obtain the epidemic threshold

λc =
〈l〉

〈kl〉 − ω1 − ω2
. (3.22)

Where ω1 and ω2 are as described above.

Variant C3: In contrast to the second variant, the third variant is only immunizing the nodes with a
large out-degree. So the immunization function is

α(k, l) =

{
1, l ≥ lc,

0, otherwise.
(3.23)

And the corresponding epidemic threshold is

λc =
〈l〉

〈kl〉 − ω1 − ω3
. (3.24)

Where ω1 and ω3 are as described above as well.

We also can not give the immunization threshold of these three variants, because these strategies
require the global information about the joint degree and the specific values kc and lc, which is the same
as the case in strategy C. For a particular network, when kc and lc are given, the epidemic threshold of
C1 is the maximum and that of C is the minimum among this family of immunization strategies. The
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infection thresholds of C2 and C3 are undetermined, but both are between that of C and C1. However,
we can not say C1 is more efficient than C due to the uncertainty of their immunization thresholds.

To maximize efficiency, strategy C and its three variants need to be implemented on different
networks, although all of them can increase the epidemic threshold. Strategy C is suitable for the
networks of nodes with heterogeneity in both in-degree and out-degree, and the networks where the
nodes with large in-degree are usually the nodes with large out-degree. Variant C1 is suitable for the
networks that there is heterogeneity in both in-degree and out-degree but no correlation between
in-degree and out-degree of a node. Variant C2 is suitable for networks with heterogeneity in
in-degree but homogeneity in out-degree. In contrast to variant C2, variant C3 is suitable for networks
with heterogeneity in out-degree but homogeneity in in-degree.

3.2.4. Strategy D: Combined acquaintance immunization

The fourth is combined acquaintance immunization, which is a generalization of acquaintance
immunization on the undirected network [26]. Its principle is that generally the nodes worthy of being
immunized have a large degree, either in-degree or out-degree, and if we look for the targeted nodes
in the opposite direction of the directed edges, these important nodes are more likely to be found.
Therefore, we randomly immunize a neighbor of randomly selected a node each time, regardless of
whether the neighbor is connected through the in-edges or the out-edges of the node. This strategy
can also be called proportional immunization because the proportion (or the probability) of a node
being immunized is proportional to the sum of the in-degree and out-degree of that node. And the
immunization function is

α(k, l) =
a(k + l)∫ l∗

l∗

∫ k∗

k∗
(k + l)Nk,ldkdl

=
a(k + l)
2N〈k〉

, (3.25)

where a is the total number of nodes being immunized.
Calculating 〈klα(k, l)〉, then substituting it into (3.10), we can get

λc =
〈l〉

〈kl〉 − a
2N〈k〉 (〈k

2l〉 + 〈kl2〉)
. (3.26)

Let (3.26) equal relative infection rate β

γ
, we have the immunization threshold

αc =
a
N

=

(
〈kl〉 −

γ〈l〉
β

)
2〈k〉

〈k2l〉 + 〈kl2〉
. (3.27)

Similar to strategy C, strategy D also has its variants, as follows.

Variant D1: The first variant is also randomly immunizing a neighbor of a randomly selected node.
However, the difference is that we look for the neighbor only along the in-edges of the node. In
fact, this strategy can be considered as immunizing a node with the probability proportional to the
out-degree of this node. This is because in this case, nodes with large out-degree are more likely
to be immunized as neighbors. Here, the immunization function is

α(k, l) =
al∫ l∗

l∗

∫ k∗

k∗
lNk,ldkdl

=
al

N〈l〉
, (3.28)
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where, a is the number of immunized nodes, the same as above. By the same method as well, we
obtain the epidemic threshold

λc =
〈l〉

〈kl〉 − a
N〈l〉〈kl2〉

, (3.29)

and the immunization threshold

αc =
a
N

=

(
〈kl〉 −

γ〈l〉
β

)
〈l〉
〈kl2〉

. (3.30)

Variant D2: Unlike variant D1, the second variant looks for the neighbors along the out-edges of the
node. So variant D2 can be regarded as immunizing node with the probability being immunized
is proportional to its in-degree. Thus the immunization function is

α(k, l) =
ak∑

k,l kNk,l
=

ak
N〈k〉

. (3.31)

Then, the epidemic threshold λc and immunization threshold αc will be

λc =
〈l〉

〈kl〉 − a
N〈k〉〈k

2l〉
, (3.32)

and

αc =
a
N

=

(
〈kl〉 −

γ〈l〉
β

)
〈k〉
〈k2l〉

, (3.33)

respectively.

One of the advantages of strategy D and its two variants, D1 and D2, is that they require no
knowledge of the node degree or any other global information [26], which makes them different from
strategy A, C and variants C1, C2. Besides, only in the appropriate networks, the immunization
strategies proposed in this subsection can maximize their performance. Strategy D is suitable for the
networks with heterogeneity either in in-degree or out-degree. However, variant D1 and D2 are
suitable for networks with heterogeneity only in in-degree and out-degree, respectively.

Finally, we should note that in the previous subsection we have obtained the expression of infection
threshold of the immunized network by continuous degree method, so the integrals in this subsection
can be replaced by the sum during the calculation for the specific network. Moreover, for convenience,
all the related epidemic thresholds in this subsection are listed in Table 1, which also contains some
epidemic thresholds in the next subsection.

3.3. Immunization for special networks

In the two subsections above, we have studied the calculation of the epidemic threshold of the
immunized network and some immunization strategies. Next, in this subsection, we will consider
three special cases of directed networks, which are undirected network, network with uncorrelated
joint degree and epidemic spread with considering infectivity. This is because the design and
implementation of immunization strategies are closely dependent on the topology of the network and
the mechanism of disease spread.
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Table 1. The related epidemic threshold λc
1.

Directed networks Case 1 Case 2
No immunization 〈l〉

〈kl〉
〈l〉
〈k2〉

1
〈k〉

Immunized 〈l〉
〈kl〉−〈klα(k,l)〉

〈l〉
〈k2〉−〈k2α(k)〉

〈k〉
〈k〉2−〈klα(k,l)〉

Strategy A / / /

Strategy B 〈l〉
(1−α)〈kl〉

〈l〉
(1−α)〈k2〉

1
(1−α)〈k〉

Strategy C 〈l〉
〈kl〉−ω1

〈k〉
〈k2〉−ω4

〈k〉
〈k〉〈k〉−ω1

Variant C1
〈l〉

〈kl〉−ω1−ω2−ω3

〈k〉
〈k2〉−ω4

〈l〉
〈k〉〉l〉−ω1−ω2−ω3

Variant C2
〈l〉

〈kl〉−ω1−ω2

〈k〉
〈k2〉−ω4

〈l〉
〈k〉〈l〉−ω1−ω2

Variant C3
〈l〉

〈kl〉−ω1−ω3

〈k〉
〈k2〉−ω4

〈l〉
〈k〉〈l〉−ω1−ω3

Strategy D 〈l〉
〈kl〉− a

2N〈k〉 (〈k
2l〉+〈kl2〉)

〈k〉

〈k2〉−
a〈k3〉
N〈k〉

〈l〉
〈k〉〈l〉− a

2N (〈k2〉+〈l2〉)

Variant D1
〈l〉

〈kl〉− a
N〈l〉 〈kl2〉

〈k〉

〈k2〉−
a〈k3〉
N〈k〉

〈l〉
〈k〉〈l〉− a

N 〈l
2〉

Variant D2
〈l〉

〈kl〉− a
N〈k〉 〈k

2l〉
〈k〉

〈k2〉−
a〈k3〉
N〈k〉

〈l〉
〈k〉〈l〉− a

N 〈k
2〉

1 Here, the case 1 and case 2 mean the undirected network in subsection 3.3.1 and the network with an independent joint degree in
subsection 3.3.2, respectively. The symbol “/” for strategy A means we do not give the current epidemic threshold since it is dependent
on both the joint degree distribution and the number of immunized nodes.

3.3.1. Case 1: Undirected network

The first special case is the undirected network. This is because an undirected network can be seen
as a bi-directed network or two-way network. That is, for each undirected edge between two nodes,
say A–B, we can see it as two directed edges, A→ B and A← B.

For the undirected network, its joint degree distribution follows that

P(k, l) =

{
Pin(k) = Pout(l), k = l,
0, otherwise.

(3.34)

The in-degree distribution Pin(k) and out-degree distribution Pout(l) here are the identical distribution,
and are actually the traditional degree distribution. So, for simplicity, let P(k) represent the Pin(k) or
Pout(l). We should note that, in general, in-degree and out-degree in a directed network follow different
degree distributions.

The immunization strategies on undirected networks have been studied in references [24–26, 28],
among which there are three main strategies: Random immunization, targeted immunization, and
acquaintance immunization. If we regard the undirected network as a special directed network, the
calculation method in subsection 3.1 is still works, and the immunization strategies in section 3.2 are
still in accord with the existing results, which will be shown below.

If the underlying network we considered is undirected, the immunization function α(k, l), moments
〈kl〉, and 〈klα(k, l)〉 will become α(k), 〈k2〉 and 〈k2α(k)〉, respectively. Thus, the epidemic thresholds of
the original network and immunized network will be

λc =
〈k〉
〈k2〉

, (3.35)
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and

λc =
〈k〉

〈k2〉 − 〈k2α(k)〉
, (3.36)

respectively.
Therefore, for random immunization, if the probability of each node being immunized is still α,

namely, α(k) = α for all degree k, the corresponding epidemic threshold and immunization threshold
will be

λc =
〈k〉

(1 − α)〈k2〉
, (3.37)

and

αc = 1 −
γ〈k〉
β〈k2〉

, (3.38)

respectively.
For the optimal immunization, combined targeted immunization, and its three variants, they are

equivalent to the targeted immunization in the undirected network, in which

α(k) =

{
1, k ≥ kc,

0, otherwise.
(3.39)

Therefore, the epidemic threshold is

λc =
〈k〉

〈k2〉 − ω4
, (3.40)

where, ω4 is the integral of k2P(k) in the interval [kc, k∗]. Besides, it should be noted that given the
relative infection rate of the disease and the degree distribution of the network, immunization threshold
and critical value kc are uniquely determined, although it is difficult to obtain the analytical expressions
of them.

Finally, the combined acquaintance immunization and its two variants are equivalent to the
acquaintance immunization in the undirected network. If we plan to immunize a nodes, the
immunization function will be

α(k) =
ak

N〈k〉
. (3.41)

Accordingly, the epidemic threshold and immunization threshold will be

λc =
〈k〉

〈k2〉 −
a〈k3〉

N〈k〉

, (3.42)

and

αc =
a
N

=

(
〈k2〉 −

γ〈k〉
β

)
〈k〉
〈k3〉

, (3.43)

respectively.
Finally, for convenience, the related epidemic threshold obtained in this subsection are listed in

Table 1 as well.
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3.3.2. Case 2: Network with independent joint degree

The second special case is directed networks with independent joint degree. In this case, the joint
degree distribution is equal to the product of the corresponding in-degree distribution and the out-
degree distribution, that is, formula (2.9) is held. Here, the in-degree and out-degree in the joint degree
are uncorrelated, and it is opposite of the undirected network studied in the first case, where the in-
degree and out-degree have a linear relationship.

For a network with independent joint degree, the epidemic thresholds of the original network and
immunized network are

λc =
〈l〉
〈k〉〈l〉

=
1
〈k〉

, (3.44)

and

λ′c =
〈k〉

〈k〉2 − 〈klα(k, l)〉
, (3.45)

respectively. Besides, the implementation of the four families of immunization strategies studied in
subsection 3.2 remains unchanged, and to reduce redundancy, the corresponding infection thresholds
are also listed in Table 1.

3.3.3. Case 3: Epidemic spread with considering infectivity

The last case is the epidemic spread in a directed network with considering infectivity, and its
counterpart in the undirected network has been studied in [28, 31, 32]. Considering the infectivity is
based on the observation that the spread of some disease requires to consume time for two individuals
to make effective contacts, such as AIDS/HIV and severe acute respiratory syndrome (SARS), and the
individual with large degree are usually impossible to make effective contact with all their neighbors
during unit time. That is to say, for an infected node, its neighbors being infected during unit time
have a saturation effect [31]. So, we assume that for the infected with a joint degree (k, l), the effective
out-degree is C(l), where 0 < C(l) ≤ l. Then the model (2.16) remains unchanged, but the Θ(t), the
probability that an in-edge is emitted by infected nodes, will become

Θ(t) =
1
〈l〉

∑
k,l

C(l)P(k, l)ρk,l(t). (3.46)

In fact, the model (2.16) in subsection 2.2 with (3.46) is more general than the model (2.16)
with (2.17), because if the effective out-degree C(l) equals out-degree l, the former model will
become the latter. Besides, to characterize the saturation effect of infectivity, different analytical
expressions of C(l) with upper bound can be selected. For example, the constant function in [32], the
piecewise function [31], and the continuous function with an upper limit in [28]. Here we will not
give the specific analytical expression since the analysis is the same no matter which function is used,
which will be shown as follows.

Similar to the process from (2.18) to (2.24) in subsection 2.3, we can also obtain the condition that
the endemic equilibrium exists if and only if

β〈kC(l)〉
γ〈l〉

> 1. (3.47)
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Similarly, in this case, we also define the epidemic threshold as

λc =
〈l〉
〈kC(l)〉

. (3.48)

Then, by continuous degree method, the joint degree distribution of immunized network is the same
as (3.7), and its moment 〈kC(l)〉′ will be

〈kC(l)〉′ =
∫ l′∗

l′∗

∫ k′∗

k′∗
k′C(l′)P′(k′, l′)dk′dl′,

=
∫ l∗B

l∗B

∫ k∗A

k∗A
AkC(Bl) (1−α( k′

A ,
l′
B ))P( k′

A ,
l′
B )∫ l∗

l∗

∫ k∗

k∗
(1−α(k,l))P(k,l)dkdl

dk′dl′

=
∫ l∗

l∗

∫ k∗

k∗
A2BkC(Bl) (1−α(k,l))∫ l∗

l∗

∫ k∗

k∗
(1−α(k,l))P(k,l)dkdl

P(k, l)dkdl

= A2B∫ l∗

l∗

∫ k∗

k∗
(1−α(k,l))P(k,l)dkdl

∫ l∗

l∗

∫ k∗

k∗
kC(Bl)(1 − α(k, l))P(k, l)dkdl.

(3.49)

Where, symbols A and B refer not to the immunization strategies, but to the quantities 1 − 〈lα(k,l)〉
〈k〉 and

1 − 〈kα(k,l)〉
〈l〉 in subsection 3.1.

Then, substituting (3.49) and (3.9) into (3.48), we obtain the epidemic threshold for the immunized
network

λ′c = 〈l〉′

〈kC(l)〉′

=
B

∫ l∗

l∗

∫ k∗

k∗
l(1−α(k,l))P(k,l)dkdl

A
∫ l∗

l∗

∫ k∗

k∗
kC(Bl)(1−α(k,l))P(k,l)dkdl

=
〈k〉−〈kα(k,l)〉

〈kC(Bl)〉−〈kC(Bl)α(k,l)〉 .

(3.50)

The expression of epidemic threshold in (3.50) is general, and based on this, we can obtain the
corresponding epidemic thresholds of various immunization strategies. But we will not go any further
here, because their calculations are similar to those for the strategies in subsection 3.2.

4. Numerical analysis

In this section, we will present the numerical results of the epidemic transmission and immunization
strategies on the directed network to complement the theoretical analysis above. And these results are
mainly to illustrate and contrast the efficiency of different immunization strategies.

4.1. Four types of directed networks

First, based on the homogeneity or heterogeneity of the in-degree and out-degree, directed networks
can be divided into the following four types:

Type 1: Both in-degree and out-degree are homogeneous;

Type 2: In-degree is homogeneous, but out-degree is heterogeneous;

Type 3: Out-degree is homogeneous, but in-degree is heterogeneous;

Type 4: Both in-degree and out-degree are heterogeneous.
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This is different from the undirected network, which can only be divided into two types:
Homogeneous and heterogeneous. To carry out the subsequent simulations, we construct four
underlying networks, which correspond to the four types above. These networks, in turn, are called
‘ER-ER’, ‘ER-SF’, ‘SF-ER’, and ‘SF-SF’, because the generating mechanisms of homogeneous
degree and heterogeneous degree are based on the ER random graph [7] and BA model [8],
respectively. The sizes of all networks are 5000, and the corresponding in-degree distribution and
out-degree distribution are shown in Figure 1. Besides, none of the four networks has degree-degree
correlation, which is consistent with the previous model assumptions.
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Figure 1. The in-degree distribution and out-degree distribution of the four underlying
directed networks. N = 5000 for four networks. (a) is for ‘ER-ER’, where 〈k〉 = 〈l〉 = 8,
〈kl〉 = 64.0546, and λc ≈ 0.1249. (b) is for ‘ER-SF’, where 〈k〉 = 〈l〉 = 8, 〈kl〉 = 64.5226,
and λc ≈ 0.1240. (c) is for ‘SF-ER’, where 〈k〉 = 〈l〉 = 8, 〈kl〉 = 63.9634, and λc ≈ 0.1251.
(d) is for ‘SF-SF’, where 〈k〉 = 〈l〉 = 7.9968, 〈kl〉 = 65.0034, and λc ≈ 0.1230.

4.2. Infected densities over time

Based on the four networks constructed in the previous subsection, here we show the numerical
results of the densities of the infected over time. In fact, there are two kinds of numerical results.
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One is a numerical simulation. That is the numerical solution to the differential equation model (2.16)
and (2.17), where the joint degree distribution P(k, l) is calculated from the networks above. The
other is stochastic simulation, that is, Monte Carlo simulation, which is performed by simulating the
infection mechanism. Besides, we have selected two sets of parameters, which can be regarded as two
diseases with different infection rates β and recovery rates γ. One is β = 0.01, γ = 0.1, and its relative
infection rate is 0.1. Another is β = 0.05, γ = 0.1, and its relative infection rate is 0.5. But both the
initial densities of infected are set to 0.1.

Figure 2 shows the changes in infected densities over time t for four networks under two sets of
parameters. Each curve in the graph is the average of 50 stochastic simulations. We can see that for
the same set of parameters, four different networks have the same changing trend, where disease tends
to die out in Figure 2a and the disease tends to form endemic disease in Figure 2b. This is because the
epidemic thresholds of four networks are larger than the relative infection rate in Figure 2a and smaller
than that of in Figure 2b, respectively. However, for the same parameters, when the disease breaks
out different networks can have different prevalence, namely, the infected densities at stationary state,
because they can have different joint degree distributions. Interestingly, ‘ER-ER’ and ‘ER-SF’, as well
as ‘SF-ER’ and ‘SF-SF’, have almost the same prevalence. This is probably because they have the
same in-degree distribution, and the node is only infected through in-degree so that the probabilities
both of nodes being infected and recovery are the same.
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Figure 2. The change of infected densities over time for the four networks. Where, all
the initial infected densities are set to 0.1, and each curve is the mean of 50 stochastic
simulations. (a) is for the first set of parameters, where β = 0.01, γ = 0.1. (b) is for the
second set of parameters, where β = 0.05, γ = 0.1.

Figure 3 is the comparison between the numerical simulations and the stochastic simulations of the
infected densities over time. Here, the zigzag solid lines are the results of single stochastic simulations,
and the dash-dot lines are the mean of 50 stochastic simulations, which are the same as that in Figure 2.
The dashed lines are the corresponding numerical simulations. We can see that for these four networks,
whether under the first set of parameters or the second set of parameters, the numerical simulations are
in good agreement with the results of stochastic simulations, especially when the time is relatively
large. In other words, in terms of the prevalence, the numerical simulation is consistent with the
stochastic simulations. On the one hand, it shows that our model is reasonable. On the other hand,
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it suggests that we can use numerical simulation instead of stochastic simulation to further study the
model.
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Figure 3. The change of infected densities over time for the four networks. Where, solid
lines are the single stochastic simulations, and the dash-dot lines are the mean of 50 stochastic
simulations. The dashed lines are the corresponding numerical simulations. All the initial
infected densities are set to 0.1. (a), (b), (c) and (d) correspond to four networks, respectively,
and each contains simulation results for both sets of parameters.

4.3. Comparison of immunization strategies

In this subsection, we will use numerical simulations to compare the efficiencies of different
immunization strategies analyzed in subsection 3.2, including optimal immunization, random
immunization, combined targeted immunization, combined acquaintance immunization and
corresponding variants. For simplicity, we also call them strategy A, B, C, D, C1, C2, C3, D1, and D2.

Figure 4 shows the change of infected densities over time on the four networks immunized by
four strategies, A, B, C and D. Here, all the proportions of immunized nodes are 0.2, and the initial
infected densities are set to 0.1. Besides, we use the second set of parameters for simulations, that is,
β = 0.05, γ = 0.1. For convenience, let kc = lc for combined targeted immunization. From Figure 4,
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we can see that the four different immunization strategies are all effective because the prevalence after
immunized are less than that of without immunization. Furthermore, no matter which network, the
optimal immunization strategy is the best, followed by the combined targeted immunization, combined
acquaintance immunization, and random immunization. For network ‘SF-SF’ in Figure 4d, where the
in-degree and out-degree of nodes are heterogeneous, the effects of the four immunization strategies
are obviously different. However, for ‘ER-ER’ in Figure 4a, where both the in-degree and out-degree
are homogeneous, the differences in effects are not obvious, and the effects of strategies A and C, as
well as B and D, are almost the same. And ‘ER-SF’ and ‘SF-ER’ are similar to ‘SF-SF’ and ‘ER-ER’,
respectively.
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Figure 4. The change of infected densities over time for the four networks immunized by four
strategies. Strategies A, B, C, and D are the optimal immunization, random immunization,
combined targeted immunization, and combined acquaintance immunization, respectively.
Here, all the proportions of immunized nodes are 0.2, and the initial infected densities are set
to 0.1. β = 0.05, γ = 0.1. For combined targeted immunization, we let kc equal lc.

Figure 5 shows the relationship between the reduced prevalence, ρα/ρ0, and the immunization
proportion α. Here, ρα is the prevalence in the steady-state for the network with immunization
proportion α. We can see that for each α and each network, the four strategies are A, C, D, and B in
order of their immunization efficiency, which is consistent with the result in Figure 4.
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Figure 5. Reduced prevalence, ρα/ρ0, with immunization proportion α. Where, ρα and
ρ0 represent the prevalences with immunization proportion α and without immunization,
respectively. Strategies A, B, C, and D are the optimal immunization, random immunization,
combined targeted immunization, and combined acquaintance immunization, respectively.
Here, the initial infected densities are set to 0.1. β = 0.05, γ = 0.1. For combined targeted
immunization, we let kc equal lc.

To compare the efficiency between the combined targeted immunization and its three variants, we
also performed numerical simulations, as shown in Figure 6. Four solid lines, in top-to-bottom order,
are the results of no immunization, random immunization, combined targeted immunization, and
optimal immunization, which are shown as references. The dashed lines, dash-dot lines, and dotted
lines are variant C1, C2, and C3, respectively. We can see that strategy C and its variants, C1, C2, and
C3, do not always have a similar performance and efficiency ranking in four networks. In Figure 6a,c,
there is no obvious difference between the four strategies. However, in Figure 6b,d, the efficiencies
are different, and the variants C1 and C3 are better than C2. Therefore, we can conclude that,
generally, the nodes with large out-degree are more worthy of being immunized than the nodes with
large in-degree. So, when both in-degree and out-degree are heterogeneous, strategy C1 is the best,
followed by C3. And strategy C3 is the best, followed by C1 when only the out-degree is
heterogeneous. In both cases, strategy C is also good, which is ranked behind C1 and C3, and strategy
C2 is the worst.
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Figure 6. The prevalence of four networks immunized by combined targeted immunization,
C and its three variants, C1, C2 and C1. Here, all the proportions of immunized nodes are 0.2,
and the initial infected densities are set to 0.1. β = 0.05, γ = 0.1. For these four strategies,
we let kc = lc, as before.

Besides, we also compared the family of the combined acquaintance immunization, that is, D and
its variants D1 and D2, as shown in Figure 7. The four solid lines in figures are for references, which
are corresponding to no immunization, random immunization, combined acquaintance immunization,
and optimal immunization from the top down. Dashed lines and dash-dot lines are corresponding to
variant D1 and D2, respectively. In Figure 7, we can find a very similar phenomenon with that of in
Figure 6, that is, in ‘ER-ER’ and ‘SF-ER’, the effects of D, D1, and D2 are similar, and their effects are
different in ‘ER-SF’ and ‘SF-SF’. Therefore, we can get the same conclusion as that in Figure 6, that
is, generally, the nodes with large out-degree more important than the nodes with large in-degree. We
should note that in strategy D1, the probability of a node being immunized is proportional to its out-
degree, although the node is looking for its neighbor though in-edges. Similarly, in D2, the probability
of a node being immunized is proportional to its in-degree. So, if the out-degree is heterogeneous,
strategy D1 will be better than D2, as shown in Figure 7b,d. Otherwise, the effects of D1 and D2 will
be similar, as shown in Figure 7a,c.
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Figure 7. The prevalence of four networks immunized by combined acquaintance
immunization, D and its two variants, D1 and D2. Here, all the proportions of immunized
nodes are 0.2, and the initial infected densities are set to 0.1. β = 0.05, γ = 0.1.

Table 2. The reduced prevalence of all immunization strategies1.

ER-ER ER-SF SF-ER SF-SF
Ranking ρ/ρ0 Strategies ρ/ρ0 Strategies ρ/ρ0 Strategies ρ/ρ0 Strategies

1 No 1 No 1 No 1 No
9 0.719 B 0.713 B 0.693 B 0.710 B
8 0.708 D1 0.698 D2 0.678 D1 0.668 D2

7 0.706 D 0.657 D 0.669 D 0.589 C2

6 0.703 D2 0.649 C2 0.664 D2 0.587 D1

5 0.672 C2 0.625 D1 0.612 C3 0.585 D
4 0.659 C3 0.542 C 0.593 C2 0.466 C
3 0.654 C1 0.520 C1 0.580 C1 0.390 C3

2 0.641 C 0.510 C3 0.579 C 0.352 C1

1 0.631 A 0.492 A 0.564 A 0.323 A

1 Here, all the proportions of immunized nodes are 0.2, and the initial infected densities are set to 0.1. β = 0.05, γ = 0.1.
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Finally, the prevalence ratios of the four networks are compared, including no immunization and
nine immunization strategies, as shown in Table 2. For the sake of comparison, we let kc = lc. For the
four networks, optimal immunization, A, and random immunization, B, are the best and the worst,
respectively, and the rest of the immunization strategies are in between. If we ignore C2, the family of
combined targeted immunization is more efficient than the family of combined acquaintance
immunization. These are easy to understand because the optimal immunization and the family of
combined targeted immunization require the global information of nodes, and these strategies are
deterministic. However, the family of combined acquaintance immunization only needs to know the
local information, and even the random immunization does not need to know the information of the
nodes, in which case they have certain randomness.

5. Conclusions and discussions

In this paper, the epidemic transmission and immunization strategies on directed networks are
considered. There are two main reasons for the study of directed networks: First, a directed network
can be regarded as a generalization of an undirected network. Second, some facts mentioned in the
introduction show that some underlying networks of disease transmission are directed and the
transmission between two nodes may be asymmetric. First of all, an SIS model on a directed network
is established by using the mean-field method, and the conditions for disease outbreaks are obtained.
That is, determine whether the epidemic threshold of a network, λc, is larger than the relative infection
rate of the disease, β

γ
. If λc ≥

β

γ
, the disease will die out. Otherwise, the disease will break out, leading

to an endemic. Next, we provid the calculation method of the epidemic threshold of the immunized
network by the continuous degree method by considering the degree of the node as a continuous
variable. Then, four kinds of immunization strategies are studied, including optimal immunization,
random immunization, the family of combined targeted immunization, and the family of combined
acquaintance immunization. Besides, several special cases are also considered, including undirected
networks, networks with independent joint degree, and epidemic spread with considered infectivity.
Finally, numerical analysis is carried out to perform and complement the theoretical analysis.

Through the continuous degree method, we can obtain the epidemic threshold of a directed
network immunized by various strategies. Generally, the epidemic threshold depends on the related
immunization parameters and the joint degree distribution of the network. Besides, the immunization
efficiencies of different strategies are compared through numerical simulation. We find that optimal
immunization and random immunization are the best and the worst, which is independent of the
degree distribution. If we do not consider the variant C2, the family of combined targeted
immunization is generally more efficient than that of combined acquaintance immunization. This is
because the former needs to know the global information of the nodes and whether a node is
immunized is determined. However, the latter only needs local information and whether a node is
immunized is random. Finally, we also find that the node with the largest product value of in-degree
and out-degree, kl, is the most worthy of being immunized. Secondly, relatively speaking, the nodes
with the large out-degree is more worthy of being immunized than the nodes with large in-degree.
That is why the optimal immunization is the best, and the strategies that tend to immunize nodes with
large out-degree are usually better than the strategies that are related to in-degree.

Nevertheless, the design and implementation of efficient immunization strategies remain a
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challenging topic [33]. The efficiency of strategy closely depends on the topological structure of the
network, and the strategies studied in this paper are based on the assumption of mean-field where all
nodes are uniformly mixed and there is no correlation between nodes. However, this may not be the
case in the real system, which can have some special properties, such as assortativity and
disassortativity [34], and some topological structures, such as star-shaped network, community
structure [12, 35], hierarchical structure, and clusters, and even can be dynamic [17], that is, there are
births and deaths of nodes and edges.

In addition, immunization strategies are also closely related to the mechanism of disease
transmission. For convenience of study, we usually assume that the spread and infection of the disease
are linear with out-degree and in-degree, respectively, which is sometimes inconsistent with reality.
Although we have considered the infectivity of nodes, which can be used to characterize the
saturation of the infection power of infected, the real infectivity function is still unknown for the
specific disease. Therefore, both the particular structure of the network and the infectivity of the
nodes are crucial in determining whether a node deserves to be immunized.
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