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Abstract: This paper revisits the study of numerical approaches for fractional SIRC model with
Salmonella bacterial infection (FSIRC-MSBI). This model is investigated by the aid of fully shifted
Jacobi’s collocation method for temporal discretization. It is concluded that the method of the current
paper is far more efficient and reliable for the considered model. Numerical results illustrate the
performance efficiency of the algorithm. The results also point out that the scheme can lead to
spectral accuracy of the studied model.
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1. Introduction

In the last decades, fractional calculus theory [1-4] has been developed rapidly. It has been
applied in several scientific areas like physics, economic, diffusion processes, serology, engineering,
etc. [5—10]. Actually, fractional calculus theory was spotted as a veritable development to classical
calculus theory. Large amount of work on modelling biological systems has been restricted to
fractional order ordinary differential equations [11,12]. Therefore, the urgent necessity to find the
exact solutions or merely the approximate ones to these problems has emerged. Whereas obtaining
the exact solution is complicated to get, the numerical solution as an alternative was appeared and its
methods were developed.

Mathematical modelling of infectious diseases has been studied for a long time. The classical
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susceptible-Infected-Recovered (SIR) model has been introduced in [13] and several studies have
investigated the dynamical behaviors of SIR model [14,15]. Casagrandi et al. [16] developed SIR
model by introducing a new compartment called cross-immune compartment. The new development
of SIR model named by SIRC model which describes the case between the fully susceptible and the
fully protected one. More recently, the fractional-order SIRC model, a disease in human population,
was discussed in [17,18,19].

Salmonella infection [20] is a common disease caused by the Salmonella bacteria. It affects on
the intestinal tract in which develop consequently diarrhea, fever, and abdominal cramps. Salmonella
infection is usually considered as the public health issue. The objective of this work is to introduce
an efficient numerical algorithm for solving FSIRC-MSBI.

In many areas of sciences such as engineering, biology, economics, physics and others, several
high-order numerical methods have been developed to deal with the related problems. Recently,
spectral methods are known as an efficient and highly accurate schemes. Exponential rate of
convergence and a high level of accuracy are the main characteristic of spectral methods. The
spectral method is classified into four kinds namely collocation [20], tau [21], Galerkin [22] and
Petrov Galerkin [23] methods. Here, shifted Jacobi Gauss-Radau collocation (SJ-GR-C) method is
developed to approximate the system of a FSIRC-MSBI.

The paper is organized as follows. We present some mathematical preliminaries in section 2. In
sections 3, we propose a numerical technique for solving system of a FSIRC-MSBI. Section 4
implements the proposed method on an example to show its accuracy and efficiency. Finally, in
section 5 we outline the main conclusions.

2. Preliminaries and notation
2.1. Shifted Jacobi polynomials

For shifted Jacobi polynomial ?8(5(,0) (x) = ka(p 9) (%x —1),2 >0, where ?k(p ) (x) is the

standard Jacobi polynomial [24,25], the analytic formula is

(p,o) — vk k=) r'(k+o+1)Ir(j+k+p+o+1) j
?ﬁ,k (x) ZFO =D r(+o+1)rk+p+o+1)(k—j)j'e 1
_ Zk I'(k+p+1)I'(k+j+p+o+1) (x—2 j (1)
T AJE0 k- DIF(+p+ )T (k+pt+o+1)Q x )
Taking Wép ) (x) = (8 — x)Px?, for the weighted space LfN(p,c) [0, £], we get
g
J— ﬁ (P'O') d
(©,9), 00 = Jy ®C@IWg" (x)dx,
2 _ o) 2 _ (P (po)
10 I 0= (@ 0o | BRI o= (5) WS 2)

We used tc(sf)s’c),and mg’f),O < s < S, for the nodes and Christoffel numbers of the Jacobi
Gauss Radau interpolation. Related to the shifted Jacobi polynomials, we list
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(po) _ £ . (po)
tass = E(té‘,s +1),

+o+1
(o) _ (2\° (p.0)
Woss = (3 W, 0<s<s$.

Given R >0, Q € S;241[0, 8] and by means of Jacobi-Gauss quadrature property, we obtain

i @-vreamde =)7L a-orarora(Se+n)d

QP s (0.0) (£ (pO)
= (E) o wl20 (387 + 1)) 3)
— VS (p,o) (p,0)

= Ys=0 Wy 542 (tﬂ,s,s )

2.2. The fractional integration in the Caputo sense

The fractional derivative is occurred in various formulas which are not generally equal, see [26].
The two most famous definitions are Riemann-Liouville and Caputo ones.
Definition 2.1. For v > 0, the Riemann-Liouville fractional integral is

_ 1

v $ e _ -1

J°%©&) =f(),
where

rv) = f xV"le *dx,
0
1s gamma function.
Definition 2.2. For v > 0, the Caputo fractional derivatives is
— 1 § _ 7ym-— —lﬂ _
D'E() = 7y fy B 9"V Rf@Qdgm—1<v<m, §>0, (5)

where m is the ceiling function of v.
3. Jacobi spectral collocation scheme

In this work, we want to numerically solve the FSIRC-MSBI. The classical disease model is
given as

S= 0,(t,8,CI,R) =uN +nC(t) — (BI(t) + )S(t),

= 0,(t,8,C,9,R) = BS(E)I() + aBI)C() — (6 + m + wI(L),
R= 0558C,R) =(1—-a)BCE)IE) + 0I(t) — (4 + SR(),
C= ,(8,CI,R) =6R(t) — BC()I(t) — (1 +n)C(D),

(6)

where 071, u,n7t, 671, B, p are the infectious period, the mortality rate in every compartment,

crossimmune period, the total immune period, the contact rate and the fraction of the exposed cross
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immune individuals, respectively. While, §, 7, R, C are the proportion of susceptible individuals,
the proportion of infected individuals, the proportion of recovered individuals and the proportionthe
total number of herd animals is N =8 + 7 + R + C. The more general class of the previous system
is called FSIRC-MSBI and is given by:

DViS(t) = ,(t,S,C,9,R),S(0) = S,,
Dv2I(t) = ,(t,S,C,7,R),7(0) =0,
DVsR(t) = 5(t,S,C,7,R),R(0) =0,
Dv+C(t) = 2,(t,S,C,7,R),C(0) = 0.

(7

We use SJ-GR-C technique to solve FSIRC-MSBI. The main idea is to reduce FSIRC-MSBI to
a system of algebraic equations that easily solved. To do this, Shifted Jacobi polynomials are
appointed for the temporal discretization. The efficiency of our technique will examine via a
numerical test problem.

Firstly, we rewrite the system (7), as

DY¥(t) = F(t, W (b)), ()
where

DV1S(t) Q,(t,8,C,9,R)

/ DV17(t) / Q,(t,S,C,9,R)
DY = | D1R(t) | =] Q;(t,5,¢,9,R) |.
DV1C(t) / \94(t,5, ¢,7,R) /

Via SJ-GR-C method, we approximate the independent variable at tg,)]’g')j, where t)(zp]f;)l is a

Jacobi-Gauss-Radau collocation nodes.
The approximate solution of (8) is

Bi(®) = I, a0, 1= 1234 ©)
the fractional derivative DV{;(t) is
DV () = TN, ayD (PH (D), i = 1,234, (10)

And using analytical form of shifted Jacobi polynomial, we find

C(+0+1)[(k+j+p+o+1) vik
I'(k+o+1)I(j+p+0+1)(j—Kk)!kigk (a1
_ Zj (_1)j—k (T(k+DT(+o+D)I(j+k+p+0o+1)) k+v—1_

k=0 KIEK(j—K)IT (k+0+1)T(kK+V)T(j+p+0+1)

DB (0) = P ™0 = Theeo (-1

Then

DVPi(0) = I, 2DV (P (D) = IR, 2P (). (12)
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Consequently
YO(t) = F(b), (13)
where
z,N m a1iPgf 7" (O
N g ()
YO (t) = ] . aSJP(p 0v3)(t)
j=m Ay Péfj) o) )

o - . oo (1)
{m LI 2y PO (0, 2 P87 (0), EN agiPet (9, I ay Pt )(o)\

0, (6 2N a5 P (0, I 5P (1), ZN, a5 (6), ZNg 4P ™ (1)
FO = Q3(t, 2%, ay E(r]) 2, Yito ay; 53“1) KO} Lo as; g]) KO} %o asj SJ(FJ) 7 ®)
Q4 (6 2N a3 P (0, T 257 (1), TN agP ™ (6, ZNg 4P ™ (0)

— +(PO)
Let t =ty toget

POAPDY = FPD),  r=12,..,N. (15)
Also, we have
2N, 2PV (0) = S,, SN, aP (0 =0,  i=234 (16)

merge Eqgs (15) and (16), to build a system of (4N + 4) algebraic equations that easily solved. The
existence and uniqueness are realized by the following theories.

Theorem 3.1. Let 0 < u<v <1 and let F:[0,L] X R = R be a given function continuous
in (0,L] X R. Assume that t*F(t, ) is a continuous function on (0,L] X R. Then the fractional
differential equation

DYW(t) = F(t, ¥(1)), (17)

has at least a continuous solution defined on [0, L], d for a suitable d < L.
Theorem 3.2. Let 0 < u <v <1 and assume tMF(t, ) is continuous on (0,L] X R. Assume
further

I F(td) —Ft @) IS lIld—ol, (18)
for some positive constant T independent of ¢, € R and t € [0, L]. Then the equation
DYW(t) = F(t, W(t)), (19)
has a unique solution ¢ € C°[0, L]. The proofs of the previous theories can directly obtain from [27].
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4. Error analysis

Using Lagrange interpolation polynomials, we introduce an upper bound of the absolute errors.
Theorem 4.1. Suppose that D¥y(x) € C[0,8] for k=10,1,...,N—1,(3+ 2N +0) > 0. If
X (X) is the best approximation to x(x) from Fy, then the error bound is presented as follows

Ey(p+1) \/£(2N+p+3)r(3+21\r+o) (20)

X () = Xar (%) "wéf;"’)(x)s T((V+1)+1) [(4+2V +p+0)

Proof. Since ¥, (x) is the best approximation to x(x) from Fjr,then by the definition of the best
approximation, we have

YWy () € Fiy I XG0 =0 (0 o000 S XCO = V() 001 @1
Based on the generalized Taylors formula [28], we obtain V;-(x) = Y, . (k+1) Dkx(0+) then
(V+1)
— ky o+ E—2X
X0 = T 7 DX(OD < B (22)
Then, we conclude the following
1XG) = 1060 W0y XG0 = T 7 DXO™) Ko,
_ B2 2w+ (p o)
= (F((]\l‘+1)+1))2f X Weg ()dx
E? L 2(V+1) _ v\PyO
(F((]\/‘+1)+1))2f X (2 — x)Px%dx (23)
(2N+p+3)E2 2(N+1)+0' _ p
(F((N+1)+1))2f X (1 —x)Pdx

Q2N+p+3)E2y(p4+1)T (342 +0)
~ T@A+2N+p+o)(T(V+1)+1)2 *

Thus, an upper bound of the absolute error is acquired.

5. Numerical results

Using the algorithm presented in the previous section, we give in this section some numerical
results. We discuss the FSIRC-MSBI (8) with the following values of parameters:

u=011, o0=0.15 6=0.16, m=041,
n=05 6=06  §=05  S,=N,=345.

Using the previous algorithm, we numerically treat with the previous equation and the related
conditions. We plot the numerical solutions curves of FSIRC-MSBI with values of parameters listed
above in Figure 1, where v; = 0.9, v, = 0.5, v; = 0.4, v, = 0.8 and n = 20. We observe that,
the numerical solutions curves of FSIRC-MSBI are matching with the increment of N'. Taking v, =
09, v, =0.5, v =04, v, =08 and N = 20, we obtain the numerical solutions curves of
FSIRC-MSBI as:
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s(t) =

i(t) =

r(t) =

c(t) =

it)

()

60
40

20

2.2666315109313093 14120 — 4.518750617539102712t1° + 4.16317329073499310¢18
—2.351654061293593778t17 4+ 9.1115148229469757t16 — 0.0000256664t*> + 0.000543643t*
—0.00883285t!3 + 0.111316t*2 — 1.09319t!! + 8.35991t1°0 — 49.4985t° + 224.439t8 — 766.155t”
+1920.76t°% — 3413.07t° + 4082.39t* — 3039.73t3 + 1242.89t? — 254.087t + 345,

—8.88178 » 10716 + 13.1658t — 139.698t* + 485.673t3 — 828.835t* + 829.952t> — 539.16t°
+242.091t7 — 78.3949t8 + 18.8519t° — 3.43483t!° + 0.480438t!! — 0.0519666t*2

+0.00435508t!3 — 0.000281732t'* + 0.0000139229t!> — 5.15539 x 107 7t1®
+1.38363 * 1078t17 — 2.54027 x 1071%t18 + 2.8527 x 10712t!® — 1.47738 = 10~ 14t?°,

5.55112 * 10716 + 3.23093t — 28.4521t% + 88.0133t% — 138.078t* + 129.504t> — 79.7545t°
+34.2339t7 — 10.6626t8 + 2.47775t% — 0.437851t1° + 0.0595744t'1 — 0.00628352t*2
+0.00051453t!® — 0.0000325786t'* + 1.57814 x 1076t'5 — 5.73525 x 1078t + 1.51241 x 10~ %t'7
—2.73096 x 10711t® + 3.01896 x 10~3t1% — 1.54027 x 10715¢2°,

5.55112 X 10717 + 2.24331t — 14.3887t% + 36.4142t3 — 49.226t* + 40.958t> — 22.7984t° + 8.96153t”
—2.58105t% + 0.558842t° — 0.0925786t1° + 0.0118684t'* — 0.00118452t'2 + 0.0000921207t*3
—5.55759 = 1076t + 2.57246 x 1077t*> — 8.95598 x 107°t1® + 2.26773 x 10710t7

—3.94014 x 10712¢18 4+ 4.19918 x 10t — 2.06912 x 10716t2°,

60 - /\ |

40 - [ 1

it

20

04 [ §

02

0.0

Figure 1. Numerical solutions curves of FSIRC-MSBI, where v; = 0.9, v, = 0.5, v; =
0.4, v, = 0.8 and IV = 20.
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FSIRC-MSBI is only solved by Rihan et al. [29]. The numerical technique [29] is mentioned as
local technique. However, they face complicated treatment due to the nonlocal fractional operator.
Otherwise, these methods obtained the approximate solution at given points, whereas the global ones
give it in entire domain, consequently, these techniques surely be the preferable. Collocation methods
have exponential convergence rates as well as a high accuracy level. Thus, collocation technique
surely is the preferable.

6. Conclusions

Expanding and development Collocation method for solving FSIRC-MSBI is our aspired. Our
aspired was achieved via SJ-GR-C method. We listed an illustrative example to appear the
effectiveness and applicability of our method. The results demonstrated that the spectral collection
method is effective. The results clarified that the accuracy is achieved even use comparatively few
nodes and then lower computational operations. We must emphasize that this method also excelled
over other approximated methods. By word, if we have a problem with not smooth solution, the
accuracy of the majority techniques may be deteriorated. That would be stopped merely exchanging
fractional order Jacobi instead of the Jacobi polynomial [30], also could using smoothing mapping.
Finally, we indicated that our algorithm can be used to handle various biological models like novel
nonlinear fractal coronavirus (COVID-19) [31].
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