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Abstract: On the basis of logistic models of forest restoration, we consider the influence of population
pressure on forest restoration and establish a reaction diffusion model with Holling II functional
responses. We study this reaction diffusion model under Dirichlet boundary conditions and obtain
a positive equilibrium. In the square region, we analyze the existence of Turing instability and Hopf
bifurcation near this point. The square patterns and mixed patterns are obtained when steady-state
bifurcation occurs, the hyperhexagonal patterns appears in Hopf bifurcation.
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1. Introduction

Forest is the main part of the whole terrestrial ecosystem. The generation and distribution of
interspecies models play an important role in ecological protection and biochemical response. One of
the typical models is forest restoration model [1–6]. Many mathematicians and biologists have been
paying close attention to these kinds of models since the 1960s.

Okubo [7] defined the process of diffusion as a set of particles, which may be a molecule or a
living, through the individual’s random movement in space and time. The diffusion models had been
widely used in the fields of chemistry, physics and ecology [8]. Diffusion models had also been
successfully applied to describe land cover change. Jesse [9] and Svirezhev [10] indicated that when
combining reaction terms, these diffusion models became particularly suitable for simulating land use
and land cover change because they took into account the dynamics of spatial structure and land cover
class. Acevedo et al. [11] described a quantitative model of forest restoration based on diffusion
logistic growth (DLG), which provided a new method for study of forest restoration. While
considering spatial dependence, the relationship between continuous space and time of forest

http://http://www.aimspress.com/journal/MBE
http://dx.doi.org/10.3934/mbe.2020201


3568

restoration is studied. Holmes et al. [12] pointed out that application of DLG model in forest
restoration assumed land-cover change could be described as traveling waves diffusing from source to
outside at constant rate. It is assumed that tree colonization can be regarded as a small scale forest
restoration process and spread irregularly in space.

Recently, land-use and land-cover change (LUCC) had a wide range of impacts on biodiversity,
climate and ecosystem services. In Vitousek, Nunes et al. and Houet et al. [13–15], the authors
believed that LUCC was the most vital human change on earth. Pereira et al. [16] said it would
straightly affect biodiversity. In [17,18], the authors thought the climate was also affected by LUCC.
Lambin et al. [19] noted that although LUCC described usual land cover change, most studies payed
a lot of attentions to large-scale deforestation processes used by humans, such as agriculture. Forest
restoration is becoming more and more common in agricultural intensification processes, especially in
the tropics [20–22].

Human activity is one of the main factors leading to change of natural environment. The
contradiction between population and forest resources is becoming more and more prominent, so it is
important to establish forest restoration-population pressure model to consider the balance between
population growth and forest resources.

The objective of this paper is to analyse dynamic properties of forest restoration-population pressure
model. In the second section, we establish the population pressure reaction diffusion model under
Dirichlet boundary conditions according to the idea [23,24]. And we study the local stability of positive
equilibrium of the model in the third section. In the fourth section, the existence conditions of Turing
instability and Hopf bifurcation are given in Theorem 4.1 and 4.2, respectively. We obtain two kinds of
steady-state bifurcation types, that is, simple bifurcation and double bifurcation. At the same time, we
select some values for the parameters, and get numerical simulations to support the results in section
4.

2. Construction of forest restoration-population pressure model

In the classical applications of partial differential equation models to population ecology, organisms
are assumed to have Brownian random dispersion, the rate of which is invariant in time and space

∂u (x, y, t)
∂t

= D
(
∂2u
∂x2 +

∂2u
∂y2

)
,

where u (x, y, t) is the density of organisms at spatial coordinates x, y, and time t, and D is the diffusion
coefficient that measures dispersal rate.

Holmes et al. [12] pointed out that the diffusion logistic growth (DLG) model is an extension of
two-dimensional Fisher Eq [25]. DLG consists of two parts: Brownian random dispersion and logistic
population growth. This model can be represented by a partial differential equation:

∂u
∂t

= Du(
∂2u
∂x2 +

∂2u
∂y2 ) + ruu(1 −

u
Ku

), (2.1)

where u stands for forest radio, t for time, Du for diffusion rate, x and y for spatial position, ru for
natural growth rate, Ku for bearing capacity.
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In order to complete the model, we must specify the initial values and boundary conditions. The
forest ratio in region R =

{
(x, y)

∣∣∣0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly

}
is defined as initial value at time t = 0 ,where

Lx and Ly represent landscape range of the x and y axes. At the same time, we apply Dirichlet boundary
u = 0 on the boundary of R, ∂R:

∂R =


(0, y) , 0 ≤ y ≤ Ly

(Lx, y) , 0 ≤ y ≤ Ly

(x, 0) , 0 ≤ x ≤ Lx(
x, Ly

)
, 0 ≤ x ≤ Lx

The current application of the model includes three parameters: diffusion rate (Du), endogenous
growth rate (ru) and carrying capacity (Ku). The diffusion rate describes rate of change of land cover
radio. In the case of land cover change, intrinsic growth rate describes the rate of change of land cover
category. Proportion of this land cover category can be increased to the maximum, that is, carrying
capacity (Ku = 1).

With regard to influence of population on forest resources, we use predator-prey systems for
reference and describe the relationship between population and forest as Holling II functional
responses [26]. According to [27] and based on Eq (2.1), forest restoration model is considered under
population pressure, and the following model is established:

∂u
∂t

= Du

(
∂2u
∂x2 +

∂2u
∂y2

)
+ ruu

(
1 −

u
Ku

)
−

βu
1 + au

v,

∂v
∂t

= Dv

(
∂2v
∂x2 +

∂2v
∂y2

)
+ rvv

(
1 −

v
Kv

)
+

αu
1 + au

v,
(2.2)

where v is the population density, a is the half-saturation constant, α = cβ, c is the conversion
coefficiency of the population. The term βu/ (1 + au) denotes the functional response of the
population, all parameters are assumed to be positive.

We specify the value of solution of the differential equation at the boundary, then for all t ≥ 0, the
system complies with homogeneous Dirichlet boundary conditions

u (x, y, t) = u0, v (x, y, t) = v0, (x, y) ∈ ∂Ω,

where u and v are state variables, (u0, v0) is a uniform steady-state solution which is independent of
variables, t, x, y and satisfies

f (u0, v0, α) = g (u0, v0, α) = 0.

For convenience of calculation, we have recorded Du, DN , ru, rv and 1/Ku, 1/Kv as d1, d2, r1, r2 and
P, Q, respectively. Therefore, we can obtain

∂u
∂t

= d1∆u + r1u (1 − Pu) −
βuv

1 + au
,

∂v
∂t

= d2∆v + r2v (1 − Qv) +
αuv

1 + au
.

(2.3)
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3. Linear stability analysis

Consider 
r1u (1 − Pu) −

βuv
1 + au

= 0,

r2v (1 − Qv) +
αuv

1 + au
= 0,

(3.1)

from the first equation of Eq (3.1), we can obtain

v =
1
β

(
r1 + ar1u − Pr1u − aPr1u2

)
. (3.2)

Substituting v in the second equation of Eq (3.1) with Eq (3.2), we obtain

h0u4 + h1u3 + h2u2 + h3u + h4 = 0, (3.3)

where

h0 = −
a2P2Qr2

1r2

β2 , h1 =
1
β2

(
2a2PQr2

1r2 − 2aP2Qr2
1r2

)
,

h2 = −
1
β

(αPr1 + aPr1r2) +
1
β2

(
4aPQr2

1r2 − a2Qr2
1r2 − P2Qr2

1r2

)
,

h3 =
1
β

(αr1 + ar1r2 − Pr1r2) +
1
β2

(
2PQr2

1r2 − 2aQr2
1r2

)
, h4 =

r1r2

β
−

Qr2
1r2

β2 .

In the following discussion, we suppose that Eq (2.3) has a positive equilibrium (u∗, v∗).
In order to simplify discussions, we transform homogeneous state solution (u∗, v∗) into (0, 0) by the

means of transformation (u, v) = (u∗ + ũ, v∗ + ṽ). We obtain

f (ũ, ṽ) =
(
r1 + 2ar1u∗ − 2Pr1u∗ − 3aPr1u∗2 − βv∗

)
ũ − βu∗ṽ − aPr1ũ3

+ (ar1 − 3aPr1u∗ − Pr1) ũ2 − βũṽ − aPr1u3
∗ + ar1u2

∗ − Pr1u2
∗ + r1u∗ − βu∗v∗,

g (ũ, ṽ) = (r2 + ar2u∗ − 2Qr2v∗ − 2aQr2u∗v∗ + αu∗) ṽ

+ (ar2v∗ − aQr2v∗2 + αv∗) ũ + (−2aQr2v∗ + ar2 + α) ũṽ

+ (−aQr2u∗ − Qr2) ṽ2 − aQr2u∗v2
∗ + ar2u∗v∗ − Qr2v2

∗ + r2v∗ + αu∗v∗,

(3.4)

here and below, we call

a1 = r1 + 2ar1u∗ − 2Pr1u∗ − 3aPr1u∗2 − βv∗,

a2 = r2 + ar2u∗ − 2Qr2v∗ − 2aQr2u∗v∗ + αu∗,

b1 = βv∗,

b2 = ar2v∗ − aQr2v∗2 + αv∗,

e1 = −aPr1ũ3 + (−3aPr1u∗ + ar1 − Pr1) ũ2 − βũṽ − aPr1u3
∗ + ar1u2

∗

− Pr1u2
∗ + r1u∗ − βu∗v∗,

e2 = + (−2aQr2v∗ + ar2 + α) ũṽ + (−aQr2u∗ − Qr2) ṽ2 − aQr2u∗v2
∗

+ ar2u∗v∗ − Qr2v2
∗ + r2v∗ + αu∗v∗.
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Rewrite Eq (3.4) as follows  f (ũ, ṽ) = a1ũ − b1ṽ + e1,

g (ũ, ṽ) = a2ṽ + b2ũ + e2.

Moreover, we explicitly incorporate length l into equations by transforming x = lx̃ and y = lỹ,
which changes the domain Ω = [0, l]× [0, l] to the unit square Ω̃ = [0, 1]× [0, 1], then Eq (2.3) become

∂ũ
∂t

= d1

(
1
l2

∂2ũ
∂x̃2 +

1
l2

∂2ũ
∂ỹ2

)
+ a1ũ − b1ṽ + e1,

∂ṽ
∂t

= d2

(
1
l2

∂2ṽ
∂x̃2 +

1
l2

∂2ṽ
∂ỹ2

)
+ a2ṽ + b2ũ + e2,

(x̃, ỹ) ∈ Ω̃ (3.5)

with {
ũ (x̃, ỹ, t) = u0, ṽ (x̃, ỹ, t) = v0, (x̃, ỹ) ∈ ∂Ω̃,

f (u0, v0) = g (u0, v0) = 0.
(3.6)

For the sake of simplify and calculation, we express Ω̃, x̃, ỹ, and ũ, ṽ as Ω, x, y, and u, v.

Let
C2

0 (Ω) :=
{
u ∈ C2 (Ω) ; u |∂Ω = 0

}
,

and
X :=

(
C2

0 (Ω)
)2
,Y := (C (Ω))2,

we adapt Eq (3.5) as an operator equation

∂U
∂t

= Φ (U) ,

here U := (u, v), and map Φ : X → Y is defined as

Φ (U) :=


d1

l2

∂2u
∂x2 +

d1

l2

∂2u
∂y2

d2

l2

∂2v
∂x2 +

d2

l2

∂2v
∂y2

 +

(
a1u − b1v + e1

a2v + b2u + e2

)
.

By differentiating U on homogeneous equilibrium solution U∗ ≡ (u∗, v∗) ≡ (0, 0), we have the
linearization of mapping Φ into L

L := DuΦ (U∗)

=


d1

l2

∂2

∂x2 +
d1

l2

∂2

∂y2 0

0
d2

l2

∂2

∂x2 +
d2

l2

∂2

∂y2

 +

(
a1 −b1

b2 a2

)
.

The stability of U can be analyzed by the solution of variational problem

∂U
∂t

= LU,
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we decompose X in direct sum

X =

∞∑
m,n=1

⊕Xm,n, Xm,n :=
{(

c1

c2

)
sin mπx · sin nπy; c1, c2 ∈ R

}
,m, n ∈ N

and L maps Xm,n to itself. Therefore,

L
(

c1

c2

)
sin mπx · sin nπy

=


−d1

(
m2

l2 +
n2

l2

)
π2 + a1 −b1

b2 −d2

(
m2

l2 +
n2

l2

)
π2 + a2


(

c1

c2

)
sin mπx · sin nπy.

The limitation of L in subspace Xm,n is a matrix of 2 × 2

Am,n := L
∣∣∣Xm,n

=


−d1

(
m2

l2 +
n2

l2

)
π2 + a1 −b1

b2 −d2

(
m2

l2 +
n2

l2

)
π2 + a2

 ,m, n = 1, 2, · · · .
(3.7)

Therefore,

Trace
(
Am,n

)
= − (d1 + d2)

(
m2

l2 +
n2

l2

)
π2 + a1 + a2, (3.8)

Det
(
Am,n

)
= d1d2

(
m2

l2 +
n2

l2

)2

− (a2d1 + a1d2)
(
m2

l2 +
n2

l2

)
+ a1a2 + b1b2. (3.9)

4. Analysis of Turing instability and Hopf bifurcation

In this section, we mainly study the existence of Turing instability and Hopf bifurcation. We define
a wave number k with k2 = m2 + n2 ∈ N, and denote θ = d2/d1, d1 = d, then the characteristic equation
of Am,n is as follows:

Λk (λ, θ) := λ2 − Trace (k) λ + Det (k) = 0, k ∈ N, (4.1)

with

Trace (k) = − (1 + θ)
dk2π2

l2 + a1 + a2,

Det (k) = θ
d2k4π4

l4 − (a2 + a1θ)
dk2π2

l2 + a1a2 + b1b2.

We assume that
(A0) − b1b2/a2 < a1 < −a2.

(A1) 0 < θ < θ1, θ1
∆
=

a1a2 + 2b1b2

a2
1

− 2

√
a1a2b1b2 + b2

1b2
2

a4
1

.
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Under the assumption (A0), all eigenvalues of Λ0 (λ, θ) have negative real parts, and Trace (k) < 0,
for k ∈ N.

Lemma 4.1. Suppose that (A1) holds, then min
k∈R+

Det (k) < 0.

Proof. Let x = dk2π2/l2 > 0, then we rewrite Det (k) as

Det (k) = θx2 − (a2 + a1θ) x + a1a2 + b1b2

= θ
(
x −

a2 + a1θ

2θ

)2

+ a1a2 + b1b2 −
(a2 + a1θ)2

4θ
.

(4.2)

From function (4.2), when x = (a2 + a1θ) /2θ, Det (k) can be taken to a minimum, that is, Det(k)min =

a1a2 + b1b2 − (a2 + a1θ)2/4θ. Since x > 0, we have a2 + a1θ > 0. If we want Det(k)min < 0 with the

condition a2 + a1θ > 0, θ must satisfy 0 < θ < (a1a2 + 2b1b2) /a2
1 − 2

√(
a1a2b1b2 + b2

1b2
2

)
/a4

1. Hence,
the lemma is proved. �

Let k2
min be the minimal point of function Det (k) on k2 ∈ R+, then

kmin =

√
l2

2d
a2 + a1θ

θπ2 .

We make the following assumption to ensure kmin > 0

(A2) 0 < θ < θ2 (d) , θ2 (d) ∆
=

a2l2

π2d − a1l2 .

θ = θ2 (d) decreases monotonically in d and intersects with θ = θ1 at the point d = d0. Let
θA (d) = min

d>0
{θ1, θ2 (d)}, then

θA (d) =

{
θ1, 0 < d ≤ d0,

θ2 (d) , d ≥ d0.
(4.3)

Hence, we have the following lemma.

Lemma 4.2. Suppose that (A0) holds, then assumptions (A1) and (A2) hold if and only if 0 < θ < θA (d),
d > 0.

4.1. Existence of Turing instability

4.1.1. Stability analysis of Turing instability

Denote

θT (k, d) =

(
a2dk2π2 − a1a2l2 − b1b2l2

)
l2

dk2π2 (
dk2π2 − a1l2) , for d > dk, (4.4)

where dk =
(a1a2 + b1b2) l2

a2k2π2 , then Det (k) = 0 when θ = θT (k, d).
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Let dM (k) be the point at which monotonicity of function changes, that is, function θ = θT (k, d)
increases monotonically if dk < d < dM (k), and θ = θT (k, d) decreases monotonically if
dM (k) < d < +∞. Hence, θ = θT (k, d) can take the maximum value θ1 at dM (k).

Lemma 4.3. Suppose that (A0) holds, function θ = θT (k, d) has the following properties.
(i) As for ki < ki+1, ki ∈ N, i = 1, 2, 3 · · · , there is only one root dk1,k2 ∈ (dM (k2) , dM (k1)) satisfies

θT (k1, d) = θT (k2, d) for d > 0. Furthermore,

θT (k1, d) > θT (k2, d) > θT (k3, d) > · · · , for d > dki,ki+1 .

(ii) Define d0,k1 = +∞, and

θT
∆
= θT (d) = θT (k, d) , d ∈

(
dki+1,ki+2 , dki,ki+1

)
, ki ∈ N, i = 1, 2, 3 · · · .

Then

θT (d) ≤ θA (d) , 0 < d < +∞.

Moreover, θT (d) = θA (d) if and only if d = dM (k), k ∈ N.

We display the relation between θ = θ1, θ = θ2 (d) and θ = θT (k, d) in Figure 1, where d > 0,
k = 5, 10, 13 · · · .

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

d

0

0.005

0.01

0.015

0.02

θ

(d,θ)

L1:θ=θ
1

L2:θ=θ
2
(d)

T1:θ=θ
T
(5,d)

T2:θ=θ
T
(10,d)

T3:θ=θ
T
(13,d)

(d
0 1

)

(d
M 1

)

Figure 1. The figure of functions θ = θ1, θ = θ2 (d) and θ = θT (k, d), d > 0, k = 5, 10, 13 · · · ,
in (d, θ) plane.
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0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

θ

(d,θ)

Stable domain for (u
*
,v

*
)

Turing unatable domain

T
(d)

T
5,10

T
10,13

Figure 2. The Turing bifurcation line T : θ = θT (d), d > 0.

Theorem 4.1. Suppose that (A0) holds.
(1) For any given k1 ∈ N, when θ = θT (k1, d), system (3.5) occurs Turing bifurcation at (u∗, v∗).
(2) θ = θT (d), d > 0 is the critical curve of Turing instability.
(i) If θ > θT (d), d > 0, system (3.5) is asymptotically stable at (u∗, v∗).
(ii) If 0 < θ < θT (d), d > 0, Turing instability occurs in system (3.5) at (u∗, v∗).

Proof. When θ = θT (k1, d), we have Det (k1) = 0. Then Eq (4.1) becomes

Λk1 (λ, θ) := λ2 − Trace (k1) λ = 0. (4.5)

The Eq (4.5) has a zero root, and the other root of Λk1 (λ, θ) has negative real part. That is, Eq (3.5)
occurs Turing bifurcation at (u∗, v∗) when θ = θT (k1, d).

When θ > θT (d), d > 0, Det(k1) > 0. (A0) ensures that Trace (k1) < 0, then all roots of Λk1 (λ, θ)
have negative real parts. On the other hand, when 0 < θ < θT (d), d > 0, Det(k1) < 0, so system (3.5)
is Turing instability. �

Remark 4.1. When θ > θT (d), d > 0, system (3.5) occurs steady-state bifurcation at positive
equilibrium (u∗, v∗).
(1) If m = n, the bifurcation type is a simple steady-state bifurcation.
(2) If m , n, the bifurcation type is a double steady-state bifurcation.

4.1.2. Numerical simulations of Turing bifurcation

Let r1 = 1, r2 = 0.01, P = 10, Q = 20, a = 0.01, α = 8, β = 11, l = 3, we obtain positive
equilibrium of system (2.3) is

(u∗, v∗) = (0.01, 0.0818) ,
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and a1 = −0.0996, a2 = 0.0573, b1 = 0.11, b2 = 0.6544. Through (A1), (A2), Eqs (4.3,4.4), we obtain
θ1 = 0.0119,

θA (d) =


0.0119, 0 < d ≤ 4.3,

0.5157
dπ2 + 0.8964

, d ≥ 4.3,

and

θT (k1, d) =
−5.3703 + 0.5157dk2

1π
2

dk2
1π

2
(
dk2

1π
2 + 0.8964

) .
By setting k1 = 5, m1 = 3, n1 = 4, we obtain d0,5 = +∞ and d5,10 = 0.0535. Select d = d1 = 0.06 ∈[

d5,10, d0,5
)
, thus θT = θT (5, 0.06) = 0.0097. Equation (3.5) with d = 0.06 undergoes Turing bifurcation

near equilibrium (0.01, 0.0818) at θ = 0.0097. Since m1 , n1, that is, the bifurcation type of Eq (3.5)
is double steady-state bifurcation, and we derive the following mixed patterns.

0 0.5 1 1.5 2 2.5 3

X

0

0.5

1

1.5

2

2.5

3

Y

u (x,y)

-1
3

-0.5

0

3

0.5

u
 (

x,
y)

2

1

u (x,y)

Y

2

1.5

X

2

1
1

0 0

Figure 3. X-Y-U mixed pattern under the condition of m1 = 3, n1 = 4.
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Figure 4. X-Y-V mixed pattern under the condition of m1 = 3, n1 = 4.
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4.2. Existence of Hopf bifurcation

4.2.1. Stability analysis of Hopf bifurcation

We assume that
(A0)

′

a1 > max{−a2,−b1b2/a2}.

Denote

θH (k, d) =
(a1 + a2) l2 − dk2π2

dk2π2 , for 0 < d < dk, (4.6)

where dk =
(a1 + a2) l2

k2π2 , then Trace (k) = 0 when θ = θH (k, d).

θ = θH (k, d) decreases monotonically in d and intersects with θ = θ1 at the point d = dH. On the
basis of Lemma 4.1, it is known that min

k∈R+

Det (k) < 0 if 0 < θ < θ1, then we obtain the following

theorem.

Theorem 4.2. Suppose that (A0)
′

holds. For any given k1 ∈ N, when θ = θH (k1, d) > θ1, 0 < d < dH,
system (3.5) occurs Hopf bifurcation at positive equilibrium (u∗, v∗).

Proof. θ = θH (k1, d), we have Trace (k1) = 0, then Eq (4.1) becomes

Λk1 (λ, θ) := λ2 + Det (k1) = 0. (4.7)

Since θ > θ1, through assumption (A0)
′

, Det (k1) > 0, we know that Eq (4.7) has a pair of pure
imaginary roots. The above satisfies conditions for the generation of Hopf bifurcation. �

4.2.2. Numerical simulations of Hopf bifurcation

Let r1 = 1, r2 = 0.01, P = 1, Q = 10, a = 0.01, α = 8, β = 8, l = 3, we can solve positive
equilibrium of Eq (2.3) to obtain

(u∗, v∗) = (0.003, 0.125) .

We then obtain a1 = −0.0059, a2 = 0.009, b1 = 0.024, b2 = 1. Through assumption (A1) and (4.6),
we have θ1 = 0.0008, and

θH (k, d) =
0.0279 − dk2π2

dk2π2 .

By setting m3 = 5, n3 = 12, we obtain dH = 1.6714 × 10−5. We choose d = 1.5206 × 10−5 which
is satisfied d < dH, and obtain θH = 0.1. The relationship between θ = θ1 and θ = θH (k, d) can be
reflected by Figure 5.

Mathematical Biosciences and Engineering Volume 17, Issue 4, 3567–3581



3578

-6 -4 -2 0 2 4 6

d

-1

-0.5

0

0.5

1

1.5

θ

(d,θ)

(d
H 1

)

1

Figure 5. The figure of functions θ = θ1 and θ = θH (k, d) in (d, θ) plane.

Hopf bifurcation occurs at θ = 0.1, we can obtain hyperhexagonal patterns in Figures 6 and 7.
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Figure 6. X-Y-U hyperhexagonal pattern under the condition of m3 = 5, n3 = 12.
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Figure 7. X-Y-V hyperhexagonal pattern under the condition of m3 = 5, n3 = 12.
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Moreover, from Figures 8 and 9, we observe that u (x, t) and v (x, t) are periodic in relation to t, that
is, there is a stable bifurcation periodic solution near the positive equilibrium of Eq (2.3).
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Figure 8. u (x, t) periodic solution image.
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Figure 9. v (x, t) periodic solution image.

5. Conclusions

DLG system to model forest recovery as the spread of land-cover classes in continuous space and
time. However, there is only one variable u in DLG system. In this paper, we establish a reaction
diffusion model based on DLG system and Holling II functional responses, we can use this model to
reflect the variable relationship between forest restoration and population pressure. When the
population pressure increases, the density of forest restoration will decrease. On the contrary, when
the population pressure decreases, the density of forest restoration will increase and the situation of
forest restoration will be improved. We also consider the effect of population pressure on forest
restoration, through Eq (2.3).

Under Dirichlet boundary conditions, we obtain a positive equilibrium. According to linear stability
analysis of positive equilibrium solution of Eq (3.5) and discussion of eigenvalue attributes of the
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matrix, we obtain the conditions for Turing instability and Hopf bifurcation. Furthermore, the steady-
state bifurcation is divided into simple steady-state bifurcation and double steady-state bifurcation. In
addition, we verify the existence of Turing instability and Hopf bifurcation by numerical simulation,
and obtain different kinds of patterns.

Our work is to further study the diffusion logistic growth (DLG) model, which helps ease the
relationship between forest restoration and population pressure.
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