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Abstract: Based on ecological significance, a delayed diffusive predator-prey system with food-
limited and nonlinear harvesting subject to the Neumann boundary conditions is investigated in this
paper. Firstly, the sufficient conditions of the stability of nonnegative constant steady state solutions
of system are derived. The existence of Hopf bifurcation is obtained by analyzing the associated
characteristic equation and the conditions of Turing instability are derived when the system has
no delay. Furthermore, the occurrence conditions the Hopf bifurcation are discussed by regarding
delay expressing the gestation time of the predator as the bifurcation parameter. Secondly, by using
upper-lower solution method, the global asymptotical stability of a unique positive constant steady
state solution of system is investigated. Moreover, we also give the detailed formulas to determine
the direction, stability of Hopf bifurcation by applying the normal form theory and center manifold
reduction. Finally, numerical simulations are carried out to demonstrate our theoretical results.
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1. Introduction

The ordinary differential equation

dU(t)
dt

= rU(t)
(
1 −

U(t)
K

)
(1.1)

is well known as the logistic equation in both ecology and mathematical biology, where r and K
are positive constants that stand for the intrinsic growth rate and the carrying capacity, respectively.
It follows from Eq (1.1) that the U′(t)/U(t) is a linear growth function of the density U(t). However,
Smith [1] concluded that the Eq (1.1) does not have practical significance for a food-limited population
under the influence of environmental toxicants. Based on the above fact, Smith established a new
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growth function in [1]. Besides, Smith also pointed out that a food-limited population requires food
for both preservation and growth in its growth. For another thing, when the specie is mature, food is
needed for preservation only. Therefore, the modified system is as follows

dU(t)
dt

=
rU(t)(K − U(t))

K + αU(t)
, (1.2)

where r, K and α are positive constants, and r
α

is the replacement of mass in the population at K.
In [2], Wan et al. considered a single population food-limited system with time delay:

dU(t)
dt

=
rU(t)(K − U(t − τ))

K + αU(t − τ)
, τ > 0, (1.3)

they studied existence of Hopf bifurcations and global existence of the periodic solutions at the positive
equilibrium. Eq (1.3) has been discussed in the literature by numerous scholars, they mainly concluded
global attractivity of positive constant equilibrium and oscillatory behaviour of solutions of Eq (1.3) [3,
4]. Su et al. [5] considered the conditions of steady state bifurcation and existence of Hopf bifurcation
of food-limited population system under the dirichlet boundary condition for Eq (1.1). In addition,
Gourley et al. [6] investigated the global stability, boundedness and bifurcations phenomenon of Eq
(1.2) with nonlocal delay. About more interesting conclusions for food-limited system, we refer to the
literature [7–11].

However, in real world, the interaction of prey and predator is one of the basic relations in biology
and ecology. The dynamical analysis of the predator-prey system is a hot issue in biomathematics all
the time, an important reason is that compared with single population system, multi-population
system can exhibit complex dynamical behavior. The well-known predator-prey system has been
widely studied by many ecologists and mathematicians. The authors in [12, 13] developed
food-limited population system to prey-predator system of functional response. Moreover, the
reproduction of predator after preying upon prey is not instantaneous, but is mediated by some
reaction time delay τ for gestation. Compared with the predator-prey system without delay, the
time-delay predator system is more ecological significance. The delay has an effect on population
dynamics and induces very rich dynamical phenomenon, see [14–20]. Here, we will take
ratio-dependent functional response into consideration, i.e., the characteristic of consumption of prey
is mUV

βU+γV . The predation and reproduction of predator are not simultaneous. Taking into account the
delay, the reproduction of predator from consuming the prey is nU(t−τ)V

βU(t−τ)+γV . Hence, the prey-predator
system with ratio-dependent and food-limited as follows

dU(t)
dt

=
rU(K − U)

K + αU
−

mUV
βU + γV

,

dV(t)
dt

=
nU(t − τ)V

βU(t − τ) + γV
− eV,

(1.4)

where the variables U(t) and V(t) denote the densities of the prey and predator at time t, respectively. r,
K, m, n and e are all positive constants that stand for the intrinsic growth rate of the prey, the carrying
capacity of the prey species, predate rate of prey, converation rate from prey, and mortality rate of
predator, positive constants β and γ are half saturation constant, τ(> 0) is a time delay which occurs in
the predator response term and represents a gestation time of the predators.
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In fact, biological resources in the predator-prey system are most likely to be harvested for
economic benefit, human need to develop biological resources and capture some biological species,
such as in fishery, forestry and wildlife management [21]. Hence, the demand of sustainable
development for suitable resources is felt in different region of human activities to maintenance the
stability of the ecosystem. We know that harvesting in population has a significant impact on the
dynamic behavior of species, because of the reduction of food in the space. There are some basic
types of harvesting being considering in the literature, see [21–26]. Nevertheless, a great number of
mathematicians have a strong interest in nonlinear harvesting, because Michaelis-Menten type
harvesting is more realistic in biology and ecology [22]. Inspired by the above discussion, system
(1.4) with nonlinear prey harvesting transforms into the following system

dU(t)
dt

=
rU(K − U)

K + αU
−

mUV
βU + γV

−
qEU

m1E + m2U
,

dV(t)
dt

=
nU(t − τ)V

βU(t − τ) + γV
− eV,

(1.5)

where q, E, m1, m2 are also positive constants. q is the catchability coefficient, E is the effort applied
to harvest prey species, m1 and m2 are suitable constants. Fang gave some sufficient conditions of the
existence of positive periodic solutions for a food-limited predator-prey system with harvesting effect
in [24, 25] .

In nature, the populations all require food, space and spouse and so on for survival and reproduction.
When the larger the density of population is, the higher require on the environment. The shortage of
food and the change in space always limit its survival and development. Naturally, the populations
change position or have a diffusion to search better environment. We assume that the populations
are in an isolate patch and ignore the impact of migration, including immigration and emigration.
Individuals tend to migrate towards regions with lower population densities for each population. To
take spatial effects into consideration, reaction diffusion system become more and more important,
see [12, 13, 23, 27–35]. In this paper, we study the following reaction diffusion system:

∂U(t, x)
∂t

= D1∆U +
rU(K − U)

K + αU
−

mUV
βU + γV

−
qEU

m1E + m2U
, t > 0, x ∈ Ω,

∂V(t, x)
∂t

= D2∆V +
nU(t − τ, x)V

βU(t − τ, x) + γV
− eV, t > 0, x ∈ Ω,

∂U
∂ϑ

=
∂V
∂ϑ

= 0, t > 0, x ∈ ∂Ω,

U(t, x) = U0(t, x) ≥ 0,V(t, x) = V0(t, x) ≥ 0, t ∈ [−τ, 0], x ∈ Ω,

(1.6)

where Ω ⊂ Rn(n ≥ 1) is a bounded region and it has smooth boundary ∂Ω. D1 and D2, respectively,
denote the diffusion coefficients of the prey and predator, and they are positive constants. ∆ denotes
the Laplacian operator in Rn, ϑ is outer normal vector of a boundary ∂Ω.

To simplify the system (1.6), we use the following nondimensionalization:

u =
U
K
, v =

V
r
, t̃ = rt, τ̃ = rτ, d =

1
α
, s = m, a =

βK
α
, b =

rγ
α
, h =

qαE
rm2K

,

ρ =
m1E
m2K

, c =
kn
r
, δ =

αe
r
, d1 =

αD1

r
, d2 =

αD2

r
.
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Then rewrite the system (1.6) as follows:

∂u(t, x)
∂t

= d1∆u +
u(1 − u)

d + u
−

suv
au + bv

−
hu
ρ + u

, t > 0, x ∈ Ω,

∂v(t, x)
∂t

= d2∆v +
cu(t − τ)v

au(t − τ) + bv
− δv, t > 0, x ∈ Ω,

∂u
∂ϑ

=
∂v
∂ϑ

= 0, t > 0, x ∈ ∂Ω,

u(t, x) = u0(t, x) ≥ 0, v(t, x) = v0(t, x) ≥ 0, t ∈ [−τ, 0], x ∈ Ω.

(1.7)

Denote F(u, v) =
u(1 − u)

d + u
−

suv
au + bv

−
hu
ρ + u

, G(u, v) =
cu(t − τ)v

au(t − τ) + bv
−δv, Λ = {a, b, c, d, h, s, ρ, δ}.

In this paper, the domain of system is confined to Ω = [0, lπ], we define a real-valued Hilbert space

X =

{
(u, v) ∈ H2(Ω) × H2(Ω) :

∂u
∂ϑ

∣∣∣∣∣
∂Ω

=
∂v
∂ϑ

∣∣∣∣∣
∂Ω

= 0
}
.

The corresponding complexification is XC := {x1 + ix2 : x1, x2 ∈ X}, with the complex-valued L2

inner product 〈
U1,U2

〉
=

1
lπ

∫ lπ

0
(u1u2 + v1v2)dx

for Ui = (ui, vi) ∈ XC(i = 1, 2).
The rest of the paper is arranged as follows. In section 2, the existence and priori bound of solution

of the system (1.7) are considered. In section 3, the existence of nonnegative constant steady state
solutions is investigated. In section 4, the stability of the nonnegative constant steady state solutions
of system (1.7) and the conditions of Hopf bifurcation and Turing instability are discussed by stability
analysis and bifurcation theory. In section 5, we give the detailed formulas to determine the direction
of Hopf bifurcation and the stability of the bifurcating periodic solutions by the normal form theory
and center manifold theorem for PFDEs. In section 6, some numerical simulations are carried out to
illustrate the correctness of the theoretical results. Finally, some conclusions and discussions are given.

2. Existence of solution and priori estimate

In this section, we establish the existence of solution of system (1.7) and a priori estimate of the
solution. Firstly, we have

F(u, v) =
u(1 − u)

d + u
−

suv
au + bv

−
hu
ρ + u

≤
u

(d + u)(ρ + u)
f (u, v),

where f (u, v) = −u2 + (1 − ρ − h)u + ρ − dh. Define m =
1 − ρ − h −

√
(1 − ρ − h)2 − 4(dh − ρ)

2
,

m =
1 − ρ − h +

√
(1 − ρ − h)2 − 4(dh − ρ)

2
.

Theorem 2.1. The following statements are true for system (1.7).
(1) Given any initial condition u0(x) ≥ 0, v0(x) ≥ 0, and u0(x) . 0, v0(x) . 0, then system (1.7) has

a unique solution
(
u(t, x), v(t, x)

)
, such that u(t, x) > 0 and v(t, x) > 0 for t ∈ (0,∞) and x ∈ Ω.
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(2) If one of three conditions holds
(2a) (1 − ρ − h)2 < 4(dh − ρ) and dh − ρ > 0,
(2b) (1 − ρ − h)2 ≥ 4(dh − ρ), 1 − ρ − h < 0 and dh > ρ,
(2c) (1 − ρ − h)2 ≥ 4(dh − ρ), 1 − ρ − h > 0, dh > ρ and u0(x) < m,
then

(
u(t, x), v(t, x)

)
tend to (0, 0) uniformly as t → ∞.

(3) For any solution
(
u(x, t), v(x, t)

)
of system (1.7), if one of two conditions holds

(3a) dh < ρ,
(3b) (1 − ρ − h)2 ≥ 4(dh − ρ), 1 − ρ − h > 0 and dh > ρ,
then

lim sup
t→∞

max
x∈Ω

u(t, x) ≤ m, lim
t→∞

∫
Ω

v(t, x)dx ≤ C2,

where C2 = c
4dsδ |Ω| +

cm
s |Ω|.

(4) If d1 = d2 and τ = 0, then lim supt→∞maxΩ v(t, x) ≤
c

4dsδ
+

cm
s

for any x ∈ Ω.

Proof. (1) Obviously, F(u, v) and G(u, v) are mixed quasi-monotone in set R2
+ =

{
(u, v)

∣∣∣u ≥ 0, v ≥ 0
}
.

According to the definition of upper and lower solutions in [16], denoted (u, v) = (0, 0) and (u, v) =

(̃u, ṽ), where (̃u, ṽ) is the unique solution of the following system,
du
dt

=
u(1 − u)

d + u
−

hu
ρ + u

, t > 0,

dv
dt

=
cu(t − τ)v

au(t − τ) + bv
− δv, t > 0,

u(t) = u0, v(t) = v0, t ∈ [−τ, 0],

(2.1)

where u0 = supΩ u0(t, x), v0 = supΩ v0(t, x), t ∈ [−τ, 0]. Consider that

∂u
∂t
≥ d1∆u +

u(1 − u)
d + u

−
suv

au + bv
−

hu
ρ + u

,

∂v
∂t
≥ d2∆v +

cuv
au + bv

− δv,
∂u
∂t
≤ d1∆u +

u(1 − u)
d + u

−
suv

au + bv
−

hu
ρ + u

,

∂v
∂t
≤ d2∆v +

cuv
au + bv

− δv,

(2.2)

and 0 ≤ u0(t, x) ≤ u0, 0 ≤ v0(t, x) ≤ v0. Then (u, v) and (u, v) are the upper-solution and lower-solution
of system (1.7). So we have that any solution of system (1.7) is nonnegative and exists on [0,∞), it
exhibits that system (1.7) has a global solution

(
u(t, x), v(t, x)

)
satisfying

0 ≤ u(t, x) ≤ ũ, 0 ≤ v(t, x) ≤ ṽ, t ≥ 0, x ∈ Ω.

Then u(t, x) > 0, v(t, x) > 0 by the strong maximum principle for all t > 0 and x ∈ Ω.
(2) We are able to get from the first equation of system (1.7) that

∂u
∂t
≤ d1∆u +

u
(d + u)(ρ + u)

(
(1 − u)(ρ + u) − dh − hu

)
.
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If (1 − ρ − h)2 < 4(dh − ρ), we can obtain that (1 − u)(ρ + u) − dh − hu < 0 for all u > 0, it leads
to ũ → 0 as t → ∞. Suppose (1 − ρ − h)2 ≥ 4(dh − ρ) and dh > ρ hold, if either 1 − ρ − h < 0 or
1 − ρ − h > 0 and u0(x) < m, then ũ → 0 as t → ∞. Therefore u(t, x) → 0 uniformly on Ω as t → ∞.
Similarly, we have that v(t, x)→ 0 uniformly on Ω as t → ∞ from the second equation of system (1.7).

(3) Consider any of conditions (3a) − (3b), then it follows from the first equation of system (1.7)
that

∂u
∂t
≤ d1∆u +

u
(d + u)(ρ + u)

(m − u)(u − m), (2.3)

according to Eq (2.3) and comparison principle, we can get that

lim sup
t→∞

max
x∈Ω

u(t, x) ≤ m.

There exists a t1, such that u(t, x) ≤ m + ε for t ≥ t1 and x ∈ Ω, where ε is a arbitrarily small positive
constant.

To the estimate v(t, x). Denote U(t) =
∫

Ω
u(t, x)dx and V(t) =

∫
Ω

v(t, x)dx. By the Neumann
boundary condition, we obtain

dU
dt

=

∫
Ω

∂u
∂t

dx =

∫
Ω

d1∆udx +

∫
Ω

(u(1 − u)
d + u

−
suv

au + bv
−

hu
ρ + u

)
dx,

dV
dt

=

∫
Ω

∂v
∂t

dx =

∫
Ω

d2∆vdx +

∫
Ω

( cu(t − τ)v
au(t − τ) + bv

− δv
)
dx.

Then
d
(
cU(t) + sV(t + τ)

)
dt

= c
∫

Ω

(u(1 − u)
d + u

−
hu
ρ + u

)
dx − s

∫
Ω

δv(t + τ)dx

≤
c

4d
|Ω| − δ

(
cU(t) + sV(t + τ)

)
+ cδU(t).

It follows from u(t, x) ≤ m + ε that U(t) ≤ (m + ε)|Ω| for any t ≥ t1, we have

d
(
cU(t) + sV(t + τ)

)
dt

≤ −δ
(
cU(t) + sV(t + τ)

)
+ C1, t ≥ t1, (2.4)

where C1 = c
4d |Ω| + cδ(m + ε)|Ω|.

By the comparison principle and Eq (2.4), we obtain

cU(t) + sV(t + τ) ≤
(
cU(0) + sV(τ)

)
e−δt +

C1

δ
(1 − e−δt),

lim sup
t→∞

(c
s
U(t) + V(t + τ)

)
≤

c
4dsδ

|Ω| +
cm
s
|Ω| � C2.

Hence,

lim
t→∞

∫
Ω

v(t, x)dx ≤ C2.
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(4) When d1 = d2 and τ = 0, let S (t, x) = cu(t, x) + sv(t, x). By Eq (1.7), we have
∂S
∂t

= d1∆S +
cu(1 − u)

d + u
−

chu
ρ + u

− sδv, t > 0, x ∈ Ω,

∂S
∂t

= 0, t > 0, x ∈ ∂Ω,

S (0, x) = cu(0, x) + sv(0, x), x ∈ Ω.

(2.5)

From Eq (2.5), we get

cu(1 − u)
d + u

−
chu
ρ + u

− sδv ≤
c
d

u(1 − u) + cδu − δS ≤
c

4d
+ cδ(m + ε) − δS

for t > 0 and x ∈ Ω.
Consider 

∂Z
∂t

= d1∆Z +
c

4d
+ cδ(m + ε) − δZ, t > 0, x ∈ Ω,

∂Z
∂t

= 0, t > 0, x ∈ ∂Ω,

Z(0, x) = cu(0, x) + sv(0, x), x ∈ Ω.

(2.6)

The solution Z(t, x) satisfies limt→∞ Z(t, x) =
c

4dδ
+ cm by using [36, Theorem 2.4.6], then the

comparison principle displays that

lim sup
t→∞

max
Ω

v(t, x) ≤ lim sup
t→∞

max
Ω

S (t, x)
s
≤

c
4dsδ

+
cm
s
.

This completes the proof of Theorem 2.1. �

3. The nonnegative constant steady states of system (1.7)

In reality, we are interested in all the nonnegative steady state solution. Next, we give the conditions
of existence of nonnegative constant steady state solutions for system (1.7).

Proposition 3.1. (1) The singularity E0 = (0, 0) always exists.
(2) If (h+ρ−1)2 = 4(dh−ρ) and h+ρ−1 < 0 hold, then semi-trivial steady state E10 = ( 1−h−ρ

2 , 0)(the
boundary equilibrium) exists.

(3) If ρ > dh holds, then semi-trivial steady state E30 = (m, 0) exists.
(4) If (h + ρ − 1)2 > 4(dh − ρ), h + ρ − 1 < 0 and ρ < dh hold, then semi-trivial steady state

E20 = (m, 0) and E30 = (m, 0) (the boundary equilibrium) exist.

In ecology, we concentrate on the existence of the positive constant steady state solutions. System

(1.7) has a positive constant steady state E∗ = (u∗, v∗), where v∗ satisfies v∗ =
(c − aδ)u∗

bδ
under c−aδ >

0 and u∗ satisfies the following quadratic equation

A0u2 + A1u + A2 = 0 (3.1)

with A0 =
(c − aδ)s

bc
+ 1, A1 =

(c − aδ)(d + ρ)s
bc

+ ρ + h − 1, A2 =
(c − aδ)dρs

bc
+ dh − ρ.

For the distribution of roots of Eq (3.1), we are able to get the following results about the existence
of a positive constant steady state solution.
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Lemma 3.1. Suppose c − aδ > 0 holds, then the following statements are true.

(1) If A1 < 0, A2
1 − 4A0A2 > 0 and A2 > 0, then Eq (3.1) has two positive roots u±∗ =

−A1±
√

A2
1−4A0A2

2A0
.

(2) If A1 < 0, A2
1 − 4A0A2 = 0, then Eq (3.1) has a unique positive root u0

∗ = − A1
2A0

.
(3) If A2 < 0, then Eq (3.1) has a unique positive root u∗ = u+

∗ .

By Lemma 3.1, the following Proposition is existing.

Proposition 3.2. Suppose c − aδ > 0 holds, then the following statements are true.
(1) When A1 < 0, A2

1 − 4A0A2 > 0 and A2 > 0, the system (1.7) has two positive steady states

E+
∗ = (u+

∗ , v
+
∗ ) and E−∗ = (u−∗ , v

−
∗ ), where v±∗ =

(c − aδ)u±∗
bδ

.

(2) When A1 < 0, A2
1 − 4A0A2 = 0, E+

∗ and E−∗ merge, denoted by E0
∗ = (u0

∗, v
0
∗).

(3) When A2 < 0, the system (1.7) has a unique positive steady state E∗ = (u∗, v∗).

4. Stability and bifurcation

In this section, we consider the stability of nonnegative steady state and the conditions of Hopf
bifurcation and Turing bifurcation. In [37], we know that Laplacian operator −∆ exists the eigenvalue
n2

l2
(
n ∈ N0 := N ∪ {0}

)
under the homogeneous Neumann boundary condition, let ϕ1

n = (βn 0)T ,
ϕ2

n = (0 βn)T be eigenfunctions on X, where βn(x) = cos
(n

l x
)
. The linearization of system (1.7) at a

constant steady state Ê = (̂u, v̂) can be represented by
∂u
∂t
∂v
∂t

 = D∆

(
u(t)
v(t)

)
+ J1

(
u(t)
v(t)

)
+ J2

(
u(t − τ)
v(t − τ)

)
,

where D =diag(d1, d2), J1 =

(
a11 a12

0 a22

)
, J2 =

(
0 0

a21 0

)
, and

a11 =
d − û2 − 2dû2

(d + û)2 −
bŝv2

(âu + b̂v)2 −
hρ

(ρ + û)2 , a12 = −
aŝu2

(âu + b̂v)2 ,

a21 =
bĉv2

(âu + b̂v)2 , a22 =
aĉu2

(âu + b̂v)2 − δ.

The characteristic equation of system (1.7) is

det(λI − Dn − J1 − J2e−λτ) = 0,

where I stands for 2 × 2 identity matrix and Dn = −n2

l2 diag(d1, d2), n ∈ N0. Then we obtain

λ2 + Mnλ + Nn + Qe−λτ = 0 (4.1)

with Mn = (d1 + d2)
n2

l2 − a11 − a22, Nn = d1d2
n4

l4 − (a11d2 + a22d1)
n2

l2 + a11a22, Q = −a12a21.
Firstly, we discuss the stability of the singularity E0 = (0, 0) and the semi-trivial steady state

solutions Ei0(i = 1, 2, 3).
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Theorem 4.1. (1) The singularity E0 = (0, 0) is always locally asymptotically stable if dh > ρ, and
unstable if dh < ρ.

(2) Suppose (h+ρ−1)2 = 4(dh−ρ) and h+ρ−1 < 0 hold, the semi-trivial steady state E10 is always
locally asymptotically stable if c− aδ < 0 and (dh + dρ− 1)(ρ+

√
dh − ρ)2 + h(d +

√
dh − ρ)2 < 0, and

unstable if c − aδ > 0 or d(ρ + h) > 1.
(3) Suppose dh < ρ holds, the semi-trivial steady state E30 is locally asymptotically stable if c−aδ <

0 and
d − 2dm − 1

(d + m)2 +
h

(ρ + m)2 < 0, and unstable if c − aδ > 0 or m <
d − 1

2d
, d > 1.

(4) Suppose (h + ρ − 1)2 > 4(dh − ρ), h + ρ − 1 < 0 and ρ < dh hold,

(i) the semi-trivial steady state E20 is locally asymptotically stable if c − aδ < 0 and
d − 2dm − 1

(d + m)2 +

h
(ρ + m)2 < 0, and unstable if c − aδ > 0 or m <

d − 1
2d

, d > 1;

(ii) the semi-trivial steady state E30 is locally asymptotically stable if c − aδ < 0 and
d − 2dm − 1

(d + m)2 +

h
(ρ + m)2 < 0, and unstable if c − aδ > 0 or m <

d − 1
2d

, d > 1.

Proof. (1) By Eq (4.1), the corresponding characteristic equation of system (1.7) at E0 = (0, 0) is

(
λ + d1

n2

l2 −
1
d

+
h
ρ

)(
λ + d2

n2

l2 + δ
)

= 0,

clearly, we have

λ1 = −d1
n2

l2 +
1
d
−

h
ρ
, λ2 = −d2

n2

l2 − δ.

Therefore, if dh > ρ, λ1 and λ2 have negative real part for all n ∈ N0, so we get that the equilibrium
E0 = (0, 0) is locally asymptotically stable. On the contrary, if dh < ρ, there exists n = 0 that λ1 > 0,
then E0 = (0, 0) is unstable.

(2) At E10, then J1 =

a11 −
s
a

0
c − aδ

a

, J2 =

(
0 0
0 0

)
, we are able to get J(n, E10) =

a11 −
s
a

0
c − aδ

a

,
where a11 =

1 − ρ − h
2

( dρ + dh − 1

(d +
√

dh − ρ)2
+

h

(ρ +
√

dh − ρ)2

)
.

For n ≥ 0, the corresponding characteristic equation of system (1.7) at E10 is

λ2 + Mnλ + Nn = 0,

where Mn = (d1 + d2)
n2

l2 − a11 −
c − aδ

a
, Nn = d1d2

n4

l4 − (a11d2 +
c − aδ

a
d1)

n2

l2 + a11
c − aδ

a
.

By c− aδ < 0 and (dh + dρ− 1)(ρ+
√

dh − ρ)2 + h(d +
√

dh − ρ)2 < 0, we have Nn > 0 and Mn > 0
for n ≥ 0, which implies E10 is locally asymptotically stable. In a similar method, by c − aδ > 0 or
d(ρ + h) > 1, it is obvious that J(n, E10) has at least one eigenvalue with a positive real part for n = 0,
which implies E10 is unstable.

(3) Suppose dh < ρ holds, then semi-trivial steady state E30 = (m, 0) exists by Proposition 3.1.
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We can have J(n, E30) =

a11 −
s
a

0
c − aδ

a

, where a11 = m
(d − 2dm − 1

(d + m)2 +
h

(ρ + m)2

)
.By c − aδ < 0 and

d − 2dm − 1
(d + m)2 +

h
(ρ + m)2 < 0, we have Nn > 0 and Mn > 0 for n ≥ 0, which means E30 is locally

asymptotically stable. Similarity, by c− aδ > 0 or m <
d − 1

2d
and d > 1, it is obvious that J(n, E30) has

at least one eigenvalue with a positive real part for n = 0, which implies E30 is unstable.
(4) The proof of (4) is similar to (3), so we omit it.
This completes the proof. �

Theorem 4.2. If (ρ + h − 1)2 < 4(dh − ρ) holds, then E0 = (0, 0) is globally asymptotically stable in
R2

+ for system (1.7) with τ = 0.

Proof. Define the following Lyapunov functional

V(u, v) = c
∫

Ω

u(t, x)dx + s
∫

Ω

v(t, x)dx.

Then

d
dt

V
(
u(t, x), v(t, x)

)
= c

∫
Ω

(u(1 − u)
d + u

−
suv

au + bv
−

hu
ρ + u

)
dx + s

∫
Ω

( cuv
au + bv

− δv
)
dx

= c
∫

Ω

(u(1 − u)
d + u

−
hu
ρ + u

)
dx − sδ

∫
Ω

vdx

= c
∫

Ω

u
(d + u)(ρ + u)

(
− u2 − (ρ + h − 1)u − dh + ρ

)
dx − sδ

∫
Ω

vdx.

It follows from (ρ + h − 1)2 < 4(dh − ρ) that for all u ≥ 0,

−u2 − (ρ + h − 1)u − dh + ρ < 0.

Furthermore,
d
dt

V(u, v) ≤ 0,
d
dt

V(u, v) = 0 if and only if (u, v) = (0, 0). Then we can have that the
trivial steady state E0 = (0, 0) is globally asymptotically stable for system (1.7) with τ = 0.

This completes the proof. �

Next, we investigate the stability of positive constant steady state E∗. In the following discussion,
we always assume

(H1) : c − aδ > 0,
(c − aδ)dρs

bc
+ dh − ρ < 0(i.e., A2 < 0).

For the convenience of discussion, we make the following hypothesis:
(H2) : a11 + a22 < 0;
(H3) : a11a22 − a12a21 > 0;
(H4) : a11d2 + a22d1 < 0,

where a11 =
d − u2

∗ − 2du2
∗

(d + u∗)2 −
bsv2

∗

(au∗ + bv∗)2 −
hρ

(ρ + u∗)2 , a12 = −
asu2

∗

(au∗ + bv∗)2 , a21 =
bcv2

∗

(au∗ + bv∗)2 ,

a22 =
acu2

∗

(au∗ + bv∗)2 − δ.
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Theorem 4.3. Assume that (H1) ∼ (H4) hold. Then the unique positive constant steady state E∗ =

(u∗, v∗) of system (1.7) with τ = 0 is locally asymptotically stable, that is, system (1.7) has no stationary
pattern under these hypothesis.

Proof. If (H1) holds, the system (1.7) has a unique positive constant steady state E∗. When τ = 0, the
corresponding characteristic equation of system (1.7) at E∗ is

λ2 + Mnλ + Nn + Q = 0. (4.2)

Obviously,

λ1 + λ2 = −Mn = −(d1 + d2)
n2

l2 + a11 + a22,

λ1λ2 = Nn + Q = d1d2
n4

l4 − (a11d2 + a22d1)
n2

l2 + a11a22 − a12a21.

It follows easily from (H2) ∼ (H4) that all roots of Eq (4.2) have negative real parts. Hence, by
Routh−Hurwitz stability criterion, the unique positive constant steady state E∗ is locally asymptotically
stable for τ = 0 when hypothesis (H2) ∼ (H4) hold.

This completes the proof. �

According to the work by Turing [38], positive constant steady state E∗ is Turing instability,
implying that E∗ is asymptotically stable for non-spatial system (1.7) but is unstable for spatial system
(1.7) with τ = 0. So we make the following hypothesis:

(H5) : a11d2 + a22d1 > 0;
(H6) : a11d2 + a22d1 − 2

√
d1d2(a11a22 − a12a21) > 0.

Theorem 4.4. If τ = 0, then diffusion-driven instability (i.e.,Turing instability) occurs for the system
(1.7) if (H1) ∼ (H3) and (H5) ∼ (H6) hold, that is, system (1.7) has stationary pattern under these
hypothesis.

Proof. We know that the positive equilibrium E∗ = (u∗, v∗) is stable for the non-spatial system (1.7),
and is unstable with respect to the constant steady state solution of the spatial system (1.7) with τ = 0.
The stability of non-spatial system (1.7) is guaranteed if hypothesis (H2) ∼ (H3) hold. When τ = 0, the
corresponding characteristic equation of system (1.7) at E∗ is Eq (4.2). Obviously, for spatial system
(1.7), it follows from (H5) ∼ (H6) that if there is a n ∈ N0 such that Nn + Q < 0 for 0 < k1 < n < k2,
which implies that Eq.(4.2) has a eigenvalue with positive real part, it is shown that the positive constant
steady state E∗ is unstable for spatial system (1.7), that is, the diffusion-driven instability occurs.

This completes the proof. �

Now, by regarding τ as the bifurcation parameter, we investigate the stability and the Hopf
bifurcation near the unique positive constant steady state E∗. Assume that iω(ω > 0) is a root of Eq
(4.1), ω satisfies the following equation

−ω2 + iMnω + Nn + Q
(

cos(ωτ) − i sin(ωτ)
)

= 0, (4.3)

which implies that {
−ω2 + Nn = −Q cos(ωτ),
Mnω = Q sin(ωτ).

(4.4)
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By Eq (4.4), adding the squared terms for both equations yields

ω4 + Pnω
2 + Qn = 0, (4.5)

where

Pn = M2
n − 2Nn =

(
a11 + d1

n2

l2

)2
+

(
a22 + d2

n2

l2

)2
> 0, (4.6)

Qn = N2
n − Q2 = (Nn + Q)(Nn − Q). (4.7)

Let S = ω2, we have
S 2 + PnS + Qn = 0. (4.8)

For the following discussion, we make some assumption:
(H7) : a11a22 + a12a21 > 0,
(H8) : a11a22 + a12a21 < 0.

Theorem 4.5. Assume that (H1) ∼ (H4) and (H7) hold. Then all roots of Eq (4.1) have negative real
parts for all τ ≥ 0. Furthermore, the unique positive constant steady state E∗ = (u∗, v∗) of system (1.7)
is locally asymptotically stable for all τ ≥ 0.

Proof. From Eq (4.6), we have Pn > 0. By (H1) ∼ (H4) and Theorem 4.3, we have Nn + Q > 0. If (H7)
holds, then

Nn − Q = d1d2
n4

l4 − (a11d2 + a22d1)
n2

l2 + a11a22 + a12a21 > 0

for all τ ≥ 0, which implies that Eq (4.8) has no positive roots, according to [19, Lemma 2.3], therefore
the characteristic Eq (4.1) has no purely imaginary roots. Combined with Theorem 4.3, we are able to
obtain that all roots of Eq (4.1) have negative real parts for any τ ≥ 0.

This completes the proof. �

Lemma 4.1. ( [39])Let f (y) be a positive C1 function for y > 0, and let d > 0, β ≥ 0 be constants.
Further, let T ∈ [T,∞) and ω ∈ C2,1(Ω × (T,∞)

)
∩ C1,0(Ω × [T,∞)

)
be a positive function.

(i) If ω satisfies {
ωt − d∆ω ≤ (≥)ω1+β f (ω)(α − ω), (t, x) ∈ (T,∞) ×Ω,
∂ω
∂t = 0, (t, x) ∈ (T,∞) × ∂Ω,

and the constant α > 0, the

lim sup
t→∞

max
Ω

ω(t, ·) ≤ α
(

lim sup
t→∞

min
Ω

ω(t, ·) ≥ α
)
.

(ii) If ω satisfies {
ωt − d∆ω ≤ ω1+β f (ω)(α − ω), (t, x) ∈ (T,∞) ×Ω,
∂ω
∂t = 0, (t, x) ∈ (T,∞) × ∂Ω,

and the constant α ≤ 0, the
lim sup

t→∞
max

Ω

ω(t, ·) ≤ 0.
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Theorem 4.6. Suppose that the conditions of Theorem 4.5 are satisfied. Furthermore, assume that

d > ρ, ρ − dh −
dρs
b

> 0 hold. Then the unique positive constant steady state E∗ = (u∗, v∗) of system
(1.7) is globally asymptotically stable.

Proof. By the strong maximum principle of parabolic equations, for any nonnegative initial values(
u0(x), v0(x)

)
.

(
0, 0

)
, we have u(t, x) > 0, v(t, x) > 0 for all t > 0 and x ∈ Ω.

From the first equation of system (1.7), we get

∂u
∂t

= d1∆u +
u(1 − u)

d + u
−

suv
au + bv

−
hu
ρ + u

≤ d1∆u +
1
d

u(1 − u).

By Lemma 4.1, we obtain
lim sup

t→∞
max

Ω

u(t, x) ≤ 1 := u1

for any given ε > 0, there exists t1 > 0 such that for any t > t1, u(t, x) ≤ u1 + ε.
Then from the second equation of system (1.7), we have

∂v
∂t

= d2∆v +
cu(t − τ)v

au(t − τ) + bv
− δv

≤ d2∆v +
c(u1 + ε)v

a(u1 + ε) + bv
− δv

= d2∆v +
v

a(u1 + ε) + bv
(
(c − aδ)(u1 + ε) − bδv

)
.

By Lemma 4.1 again and the any ε, we obtain that

lim sup
t→∞

max
Ω

v(t, x) ≤
(c − aδ)u1

bδ
:= v1

for t > t1 + τ, there exists t2 > t1 such that for any t > t2, v(t, x) ≤ v1 + ε.
On the other hand, from the first equation of system (1.7), we have

∂u
∂t

= d1∆u +
u(1 − u)

d + u
−

suv
au + bv

−
hu
ρ + u

≥ d1∆u +
u(1 − u)

d + u
−

su(v1 + ε)
au + b(v1 + ε)

−
hu
ρ + u

= d1∆u +
u

(au + b(v1 + ε))(d + u)(ρ + u)
B(u, v1 + ε),

where B(u, v1 + ε) = (1 − u)(au + b(v1 + ε))(ρ + u) − s(v1 + ε)(d + u)(ρ + u) − h(d + u)(au + b(v1 + ε)).
Here, let u(y) be solution of B(u, y) = 0. If d > ρ, ρ − dh − dρs

b > 0 hold, we get B(−ρ, v1 + ε) < 0,
B(−d, v1 + ε) < 0, B(0, v1 + ε) > 0, B(1, v1 + ε) < 0, then B(u, v1 + ε) = 0 exists unique positive root
u(v1 + ε).

It follows from Lemma 4.1 that

lim inf
t→∞

min
Ω

u(t, x) ≥ u(v1) := u1
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for t > t2 and any ε > 0, there exists t3 > t2 such that for any t > t3, u(t, x) ≥ u1 − ε.
Then from the second equation of system (1.7), we have

∂v
∂t

= d2∆v +
cu(t − τ)v

au(t − τ) + bv
− δv

≥ d2∆v +
c(u1 − ε)v

a(u1 − ε) + bv
− δv

= d2∆v +
v

a(u1 − ε) + bv
(
(c − aδ)(u1 − ε) − bδv

)
.

By Lemma 4.1 again and the any ε, we obtain

lim inf
t→∞

min
Ω

v(t, x) ≥
(c − aδ)u1

bδ
:= v1

for t > t3 + τ and any ε > 0, there exists t4 > t3 such that for any t > t4, v(t, x) ≥ v1 − ε.
Meanwhile, the first equation of system (1.7) can be written as

∂u
∂t

= d1∆u +
u(1 − u)

d + u
−

suv
au + bv

−
hu
ρ + u

≤ d1∆u +
u(1 − u)

d + u
−

su(v1 − ε)
au + b(v1 − ε)

−
hu
ρ + u

= d1∆u +
u

(au + b(v1 − ε))(d + u)(ρ + u)
B(u, v1 − ε).

Similarly, by d > ρ, ρ − dh −
dρs
b

> 0, we know that B(u, v1 − ε) = 0 has a unique positive root
u(v1 − ε) and

lim sup
t→∞

max
Ω

u(t, x) ≤ u(v1) := u2

for t > t4 and any ε > 0, there exists t5 > t4 such that for any t > t5, u(t, x) ≤ u2 + ε.
It is easily known that

u1 ≤ u(t, x) ≤ u1, v1 ≤ v(t, x) ≤ v1,

and u1, u1, v1, v1 satisfy the following inequalities

u1(1 − u1)
d + u1

−
su1v1

au1 + bv1

−
hu1

ρ + u1
≤ 0,

cu1v1

au1 + bv1
− δv1 ≤ 0,

u1(1 − u1)
d + u1

−
su1v1

au1 + bv1
−

hu1

ρ + u1

≥ 0,
cu1v1

au1 + bv1

− δv1 ≥ 0.

(4.9)

The Eq (4.9) reveals that (u1, v1) and (u1, v1) are coupled upper and lower solutions of system (1.7)
by Definition 2.1 in [16].
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Moreover, we derive the following inequality:∣∣∣∣∣∣u1(1 − u1)
d + u1

−
su1v1

au1 + bv1
−

hu1

ρ + u1
−

(u2(1 − u2)
d + u2

−
su2v2

au2 + bv2
−

hu2

ρ + u2

)∣∣∣∣∣∣
≤

(1
d

+
s
b

+
h
ρ

)∣∣∣∣u1 − u2

∣∣∣∣ +
s
a

∣∣∣∣v1 − v2

∣∣∣∣,∣∣∣∣∣∣ cu1v1

au1 + bv1
− δv1 −

( cu2v2

au2 + bv2
− δv2

)∣∣∣∣∣∣ ≤ c
b

∣∣∣∣u1 − u2

∣∣∣∣ +
c − aδ

a

∣∣∣∣v1 − v2

∣∣∣∣
It is easy to display that there exists a positive constant Ki(i = 1, 2) such that the following Lipschitz

condition holds ∣∣∣F(u1, v1) − F(u2, v2)
∣∣∣ ≤ K1

(∣∣∣u1 − u2

∣∣∣ +
∣∣∣v1 − v2

∣∣∣),∣∣∣G(u1, v1) −G(u2, v2)
∣∣∣ ≤ K2

(∣∣∣u1 − u2

∣∣∣ +
∣∣∣v1 − v2

∣∣∣).
So we can define sequences (un, vn) and (un, vn) as follows

un = un−1 +
1

K1

(un−1(1 − un−1)
d + un−1

−
sun−1vn−1

aun−1 + bvn−1

−
hun−1

ρ + un−1

)
,

vn = vn−1 +
1

K2

( cun−1vn−1

aun−1 + bvn−1
− δvn−1

)
,

un = un−1 +
1

K1

(un−1(1 − un−1)
d + un−1

−
sun−1vn−1

aun−1 + bvn−1
−

hun−1

ρ + un−1

)
,

vn = vn−1 +
1

K2

( cun−1vn−1

aun−1 + bvn−1

− δvn−1

)
,

where n = 1, 2, · · ·, (u0, v0) = (u1, v1) and (u0, v0) = (u1, v1).
It is easy to deduce that the sequences (un, vn) and (un, vn) satisfy the following a series of inequalities

(u1, v1) ≤ (un, vn) ≤ (un+1, vn+1) ≤ (un+1, vn+1) ≤ (un, vn) ≤ (u1, v1),

and that the limits
lim
n→∞

un = u, lim
t→∞

vn = v, lim
t→∞

un = u, lim
t→∞

vn = v

exist and satisfy the following equations

F(u, v) = 0, F(u, v) = 0,G(u, v) = 0,G(u, v) = 0. (4.10)

From the conditions of Theorem 4.6, we get that the system (1.7) has a unique positive constant
steady state E∗ = (u∗, v∗), therefore it follows from Eq (4.10) that u = u and v = v. It is well known [36,
Theorem 2.4.6] that the solution

(
u(t, x), v(t, x)

)
of system (1.7) satisfies

lim
t→∞

u(t, x) = u∗, lim
t→∞

v(t, x) = v∗

uniformly for x ∈ Ω. By Theorem 4.5, if (H1) ∼ (H4) and (H7) hold, then the unique positive constant
steady state E∗ = (u∗, v∗) is locally asymptotically stable. Hence, the unique positive constant steady
state E∗ = (u∗, v∗) is globally asymptotically stable. �
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Denote

N = l

√
(a11d2 + a11d2) +

√
(a11d2 + a11d2)2 − 4d1d2(a11a22 + a12a21)

2d1d2

and

N∗ =

{
[N],N < N,

N − 1,N ∈ N.

Therefore, we have the following Lemma.

Lemma 4.2. Assume (H1) ∼ (H4) and (H8) hold, then Eq (4.1) has a pair of purely imaginary roots
±iωn(0 ≤ n ≤ N∗) at τ j

n, where

τ j
n = τ0

n +
2 jπ
ωn

, j ∈ N0,

τ0
n =

1
ωn

arccos
ω2

n − Nn

Q
,

ωn =

√
2Nn − M2

n +
√

(M2
n − 2Nn)2 − 4(N2

n − Q2)
2

. (4.11)

Clearly, we know that τ j+1
n > τ

j
n, therefore the following Lemma exhibits that we get a complete

ordering of the Hopf bifurcation parameters τ j
n.

Lemma 4.3. Assume (H1) ∼ (H4) and (H8) hold, then

τ
j
N∗
≥ τ

j
N∗−1 ≥ τ

j
N∗−2 ≥ · · · ≥ τ

j
1 ≥ τ

j
0 (4.12)

for j ∈ N0.

Proof. From Eq (4.11), we have

ω2
n =

2Nn − M2
n +

√
(M2

n − 2Nn)2 − 4(N2
n − Q2)

2

=
2

M2
n−2Nn

Q2−N2
n

+

√
(M2

n−2Nn)2

(Q2−N2
n )2 + 4

Q2−N2
n

.

Obviously, by Eq (4.6) and Eq (4.7), we know that M2
n − 2Nn is increasing in n and Q2 − N2

n is
decreasing in n. Hence we have that

ωN∗ ≤ ωN∗−1 ≤ ωN∗−2 ≤ · · · ≤ ω1 ≤ ω0.

And notice that Nn is strictly increasing in n ∈ [0,N∗], then we deduce that ω2
n−Nn

Q is strictly

decreasing in n ∈ [0,N∗]. Hence, τ j
n = 1

ωn
arccos ω2

n−Nn

Q +
2 jπ
ωn

is strictly decreasing in n ∈ [0,N∗], that is,
Eq (4.12) is correct for any n ∈ [0,N∗].

This completes the proof. �
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It follows from Eq (4.12) we obtain

τ0
0 = min{τ j

n}, 0 ≤ n ≤ N∗, j ∈ N0.

Let λ(τ) = p(τ)± iq(τ) be the pair of root of Eq (4.1) near τ = τ
j
n satisfies p(τ j

n) = 0 and q(τ j
n) = ωn.

Then we have the following transversality condition.

Lemma 4.4. For n ∈ {0, 1, 2, · · ·,N∗} and j ∈ N0,

dp(τ)
dτ

∣∣∣∣∣
τ=τ

j
n

> 0.

Proof. Differentiating two sides of Eq (4.1) with respect to τ, we get

(
2λ + Mn − Qτe−λτ

)dλ
dτ

= λQe−λτ.

Therefore, (dλ
dτ

)−1

=
(2λ + Mn)eλτ − Qτ

λQ
.

Thus, by Eq (4.3) and Eq (4.4), we have

Re
((dλ

dτ

)−1
)∣∣∣∣∣∣
τ=τ

j
n

= Re
( (2λ + Mn)eλτ − Qτ

λQ

)∣∣∣∣∣∣
τ=τ

j
n

= Re
( (2iωn + Mn)eiωnτ

j
n − Qτ

iωnQ

)
=

2ωn cos(ωnτ
j
n) + Mn sin(ωnτ

j
n)

ωnQ

=
2ω2

n + M2
n − 2Nn

Q2 > 0.

This completes the proof. �

According to above analysis, and the qualitative theory of partial functional differential equations,
we obtain the following results on the stability and Hopf bifurcation.

Theorem 4.7. Assume (H1) ∼ (H4) and (H8) hold, then the following statements valid
(1) The unique positive constant steady state E∗ = (u∗, v∗) of system (1.7) is locally asymptotically

stable for τ ∈ [0, τ0
0) and always unstable when τ > τ0

0.
(2) System (1.7) undergoes Hopf bifurcations near the unique positive constant steady state E∗ =

(u∗, v∗) at τ j
n for n ∈ {0, 1, 2, · · ·,N∗}, j ∈ N0. If n = 0, the bifurcating periodic solutions are all spatially

homogeneous. Otherwise, these bifurcating periodic solutions are spatially inhomogeneous.
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5. Stability and direction of Hopf bifurcation

In this section, we investigate the stability of the bifurcating periodic solution and direction of
Hopf bifurcation by applying center manifold theorem and normal form theory of PFDEs [40]. For
convenience, for fixed j ∈ N0, 0 ≤ n ≤ N∗, we denote τ∗ = τ

j
n.

Firstly, we let ũ(t, x) = u(τt, x) − u∗, ṽ(t, x) = v(τt, x) − v∗ and drop the tilde. Then system (1.7) can
be transformed into:

∂u(t, x)
∂t

= τd1∆u + τ
( (u + u∗)(1 − u − u∗)

d + (u + u∗)
−

s(u + u∗)(v + v∗)
a(u + u∗) + b(v + v∗)

−
h(u + u∗)
ρ + (u + u∗)

)
, t > 0, x ∈ (0, lπ),

∂v(t, x)
∂t

= τd2∆v + τ
( c(u(t − 1) + u∗)(v + v∗)
a(u(t − 1) + u∗) + b(v + v∗)

− δ(v + v∗)
)
, t > 0, x ∈ (0, lπ),

∂u(t, x)
∂n

=
∂v(t, x)
∂n

= 0, t ≥ 0, x = 0, lπ,

u(t, x) = u0(x) − u∗, v(t, x) = v0(x) − v∗, (t, x) ∈ [−1, 0] × [0, lπ].
(5.1)

Let µ = τ − τ∗, µ ∈ R, U =
(
u(t, ·) v(t, ·)

)T . After the system (5.1) can be rewritten in an abstract
form in the phase space C = C

(
[−1, 0], X

)
as

U̇(t) = τ∗D∆U(t) + L(τ∗)(Ut) + F(Ut, µ), (5.2)

where D =diag(d1, d2), L(τ∗)(φ) and F(φ, µ) are defined by

L(τ∗)(φ) = τ∗

(
a11φ1(0) + a12φ2(0)

a21φ1(−1) + a22φ2(0)

)
,

F(φ, µ) = µD∆φ + L(µ)(φ) + f (φ, µ),

with f (φ, µ) =
(
τ∗ + µ

)(
F1(φ, µ) F2(φ, µ)

)T and

F1(φ, µ) =

(
φ1(0)+u∗

)(
1−φ1(0)−u∗

)
d+

(
φ1(0)+u∗

) −
s
(
φ1(0)+u∗

)(
φ2(0)+v∗

)
a
(
φ1(0)+u∗

)
+b
(
φ2(0)+v∗

) − h
(
φ1(0)+u∗

)
ρ+
(
φ1(0)+u∗

) − a11φ1(0) − a12φ2(0),

F2(φ, µ) =
c
(
φ1(−1)+u∗

)(
φ2(0)+v∗

)
a
(
φ1(−1)+u∗

)
+b
(
φ2(0)+v∗

) − δ(φ2(0) + v∗
)
− a21φ1(−1) − a22φ2(0),

for (φ1 φ2)T ∈ C.
Linearizing Eq (5.2) at (0, 0), we can obtain the following equation

dU(t)
dt

= τ∗D∆U(t) + L(τ∗)(Ut). (5.3)

About the discussion of characteristic roots in section 4, we get that the characteristic equation of
Eq (5.3) has a pair of simple purely imaginary eigenvalues Λn = {iωnτ∗,−iωnτ∗} and consider the
following functional differential equation

dU(t)
dt

= −τ∗D
n2

l2 Ut + L(τ∗)(Ut). (5.4)

According to the Riesz representation theorem, there exists a 2 × 2 matrix function η(θ, τ, n)(−1 ≤
θ ≤ 0), whose elements are of bounded variation functions such that

−τ∗D
n2

l2 φ(0) + L(τ∗)(φ) =

∫ 0

−1

[
dη(θ, τ∗, n)

]
φ(θ)
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for φ ∈ C.
Actually, we choose

η(θ, τ∗, n) =


τ∗

a11 − d1
n2

l2 a12

0 a22 − d2
n2

l2

 , θ = 0,

0, θ ∈ (−1, 0),

τ∗

(
0 0
−a21 0

)
, θ = −1.

Let us define C∗ = C([0, 1],R2∗), where R2∗ is the two-dimensional vector space of row vectors,
A(τ∗) denotes the infinitesimal generator of the strongly continuous semigroup induced by the solution
of Eq (5.4) and A∗ with domain dense in C∗ and is the formal adjoint of A∗ under the bilinear form

(
ψ(s), φ(θ)

)
= ψ(0)φ(0) −

∫ 0

θ=−1

∫ θ

ξ=0
ψ(ξ − θ)dη(θ)φ(ξ)dξ

= ψ(0)φ(0) + τ∗

∫ 0

−1
ψ(ξ + 1)

(
0 0

a21 0

)
φ(ξ)dξ,

for φ ∈ C, ψ ∈ C∗.
Let P and P∗ be the center subspace, that is, the generalized eigenspace of A(τ∗) and A∗ associated

with Λn. A(τ∗) has a pair of simple purely imaginary eigenvalues ±iωnτ∗, and A∗ has also a pair of
simple purely imaginary eigenvalues ±iωnτ∗.

Let q(θ) = (1 M)T eiωnτ∗θ(−1 ≤ θ ≤ 0), q∗(s) = (1 N)e−iωnτ∗s(0 ≤ s ≤ 1) be the eigenfunctions of
A(τ∗) and A∗ corresponds to iωnτ∗ and −iωnτ∗, respectively. By simple calculation, we have

M =
iωn + d1

n2

l2 − a11

a12
, N =

iωn + d1
n2

l2 − a11

a21e−iωnτ∗
.

Denote Φ = (Φ1 Φ2) and Ψ∗ = (Ψ∗1 Ψ∗2)T by

Φ1(θ) =
q(θ) + q(θ)

2
=

(
Re(eiωnτ∗θ)

Re(Meiωnτ∗θ)

)
,Φ2(θ) =

q(θ) − q(θ)
2i

=

(
Im(eiωnτ∗θ)

Im(Meiωnτ∗θ)

)
,

for θ ∈ (−1, 0), and

Ψ∗1(s) =
q∗(s) + q∗(s)

2
=

(
Re(e−iωnτ∗s)

Re(Ne−iωnτ∗θ)

)
,Ψ∗2(s) =

q∗(s) − q∗(s)
2i

=

(
Im(e−iωnτ∗s)

Im(Ne−iωnτ∗s)

)
,

for s ∈ (0, 1).

We define

(Ψ∗,Φ) =

(
(Ψ∗1,Φ1) (Ψ∗1,Φ2)
(Ψ∗2,Φ1) (Ψ∗2,Φ2)

)
,

and construct a new basis Ψ for P∗ by Ψ = (Ψ1 Ψ2)T = (Ψ∗,Φ)−1Ψ∗, then (Ψ,Φ) = I2.
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We denote fn = (ϕ1
n ϕ2

n). Let α · fn be defined by

α · fn = α1ϕ
1
n + α2ϕ

2
n, α = (α1 α2)T ∈ C.

According to [40], the center subspace of linear Eq (5.4) is given by PCNC, where
PCNC = Φ(Ψ, 〈φ, fn〉) · fn, φ ∈ C, and C = PCNC

⊕
PsC, PsC denotes the complement subspace of

PCNC in C.
Eq (5.2) can be rewritten the following an abstract ordinary differential equation

dU(t)
dt

= A(τ∗)Ut + X0F(Ut, µ),

where

X0(θ) =

{
0,−1 ≤ θ < 0,
I, θ = 0.

By the decomposition of C, the solutions of system (5.2) are

U(t) = Φ

(
x1

x2

)
+ h(x1, x2, µ),

where (
x1

x2

)
=

(
Ψ, 〈Ut, fn〉

)
,

and
h(x1, x2, µ) ∈ PsC, h(0, 0, 0) = 0,Dh(0, 0, 0) = 0.

Following the theory in [40] and [41], the center subspace of the linear system of system (5.3) with
µ = 0 is given by PCNC where

PCNC =
1
2
(
zq(θ) + zq(θ)

)
· fn (5.5).

Then the solutions of system (5.2) are

U(t) =
1
2
(
zq(θ) + zq(θ)

)
· fn + W

(
z(t), z(t)

)
(θ), (5.6)

where W(z, z) = h
( z+z

2 ,
i(z−z)

2 , 0
)
, z = x1 − ix2. According to [40], z satisfies the following equation

ż = iωnτ∗z + g(z, z), (5.7)

where
g(z, z) =

(
Ψ1(0) − iΨ2(0)

)
〈F(Ut, 0), fn〉. (5.8)

Let

W(z, z) = W20
z2

2
+ W11zz + W02

z2

2
+ · · ·, (5.9)

g(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ · · ·, (5.10)
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and Ψ1(0) − iΨ2(0) = (χ1 χ2). By Eq (5.6) and Eq (5.9), then we get

ut(0) =
1
2

(z + z)βn(x) + W (1)
20 (0)

z2

2
+ W (1)

11 (0)zz + W (1)
02 (0)

z2

2
+ · · ·,

vt(0) =
1
2

(Mz + Mz)βn(x) + W (2)
20 (0)

z2

2
+ W (2)

11 (0)zz + W (2)
02 (0)

z2

2
+ · · ·,

ut(−1) =
1
2

(ze−iωnτ∗ + zeiωnτ∗)βn(x) + W (1)
20 (−1)

z2

2
+ W (1)

11 (−1)zz + W (1)
02 (−1)

z2

2
+ · · ·,

vt(−1) =
1
2

(Mze−iωnτ∗ + Mzeiωnτ∗)βn(x) + W (2)
20 (−1)

z2

2
+ W (2)

11 (−1)zz + W (2)
02 (−1)

z2

2
+ · · ·,

and
F1(Ut, 0) =

1
τ∗

F1 =
b20

2
u2

t (0) + b11ut(0)vt(0) +
b02

2
v2

t (0) +
b30

6
u3

t (0) +
b21

2
u2

t (0)vt(0)

+
b12

2
ut(0)v2

t (0) +
b03

6
v3

t (0) + · · ·,

F2(Ut, 0) =
1
τ∗

F2 =
c20

2
u2

t (−1) + c11ut(−1)vt(0) +
c02

2
v2

t (0) +
c30

6
u3

t (−1) +
c21

2
u2

t (−1)vt(0)

+
c12

2
ut(−1)v2

t (0) +
c03

6
v3

t (0) + · · ·,

where

b20 = −
2d(2du∗ + u∗ + 1)

(d + u∗)3 +
2absv2

∗

(au∗ + bv∗)3 +
2hρ

(ρ + u∗)2 , b11 = −
2absu∗v∗

(au∗ + bv∗)3 , b02 =
2absu∗

(au∗ + bv∗)3 ,

b30 =
8d2u∗ + 4du∗ − 4d3 − 2d2 + 6d

(d + u∗)4 −
6a2bsv2

∗

(au∗ + bv∗)4 −
6hρ

(ρ + u∗)4 , b21 =
4a2bsu∗v∗ − 2ab2sv2

∗

(au∗ + bv∗)4 ,

b12 =
4ab2su∗v∗ − 2a2bsu2

∗

(au∗ + bv∗)4 , b03 = −
6ab2su∗

(au∗ + bv∗)4 , c20 = −
2abcv2

∗

(au∗ + bv∗)3 , c11 =
2abcu∗v∗

(au∗ + bv∗)3 ,

c02 = −
2abcu2

∗

(au∗ + bv∗)3 , c30 =
6a2bcv2

∗

(au∗ + bv∗)4 , c21 =
2ab2cv2

∗ − 4a2bcu∗v∗
(au∗ + bv∗)4 , c12 =

2a2bcu2
∗ − 4ab2cu∗v∗

(au∗ + bv∗)4 ,

c03 =
6ab2cu3

∗

(au∗ + bv∗)4 .

Therefore

F1(Ut, 0) = (
z2

2
ζ20 + zzζ11 +

z2

2
ζ20)β2

n +
z2z
2

(ζ1βn + ζ2β
3
n) · ··,

F2(Ut, 0) = (
z2

2
ν20 + zzν11 +

z2

2
ν20)β2

n +
z2z
2

(ν1βn + ν2β
3
n) · ··,

〈F(Ut, 0), fn〉 = τ∗〈F(Ut, 0), fn〉 = τ∗
(
F1(Ut, 0)ϕ1

n + F2(Ut, 0)ϕ2
n
)

=
z2

2
τ∗

(
ζ20

ν20

)
Γ + zzτ∗

(
ζ11

ν11

)
Γ +

z2

2
τ∗

(
ζ20

ν20

)
Γ +

z2z
2
τ∗

(
γ1

γ2

)
+ · · ·

with Γ = 1
lπ

∫ lπ

0
β3

n(x)dx, γ1 = 1
lπ

∫ lπ

0

(
ζ1β

2
n(x) + ζ2β

4
n(x)

)
dx, γ2 = 1

lπ

∫ lπ

0

(
ν1β

2
n(x) + ν2β

4
n(x)

)
dx,

and

Mathematical Biosciences and Engineering Volume 17, Issue 4, 3520–3552.



3541

ζ20 =
1
4
(
b20 + M(2b11 + Mb02)

)
, ζ11 =

1
4
(
b20 + (M + M)b11 + MMb02

)
,

ζ1 = W (1)
20 (0)

(b20 + Mb11

2
)

+ W (1)
11 (0)

(
b20 + Mb11

)
+ W (2)

20 (0)
(b11 + Mb02

2
)

+ W (2)
11 (0)

(
b11 + Mb02

)
,

ζ2 =
b30

8
+

(2M + M)b21

8
+

(M2 + 2MM)b12

8
+

M2Mb03

8
,

ν20 =
1
4
(
c20e−2iωnτ∗ + M(2c11e−iωnτ∗ + Mc02)

)
,

ν11 =
1
4
(
c20 + (Meiωnτ∗ + Me−iωnτ∗)c11 + MMc02

)
,

ν1 = W (1)
20 (−1)

(c20eiωnτ∗ + Mc11

2
)

+ W (1)
11 (−1)

(
c20e−iωnτ∗ + Mc11

)
+ W (2)

20 (0)
( c11eiωnτ∗+Mc02

2

)
+ W (2)

11 (0)
(
c11e−iωnτ∗ + Mc02

)
,

ν2 =
c30e−iωnτ∗

8
+

(2M + Me−2iωnτ∗)c21

8
+

(M2eiωnτ∗ + 2MMe−iωnτ∗)c12

8
+

M2Mc03

8
.

Consider that
1
lπ

∫ lπ

0
β3

n(x)dx = 0, n = 1, 2, 3, · · ·, (5.11)

then we deduce

g(z, z) =
(
Ψ1(0) − iΨ2(0)

)
〈F(Ut, 0), fn〉

=
z2

2
(ζ20χ1 + ν20χ2)Γτ∗ + zz(ζ11χ1 + ν11χ2)Γτ∗

+
z2

2
(ζ20χ1 + ν20χ2)Γτ∗ +

z2z
2

(γ1χ1 + γ2χ2)τ∗ + · · ·.

Combine with Eq (5.8), Eq (5.10) and Eq (5.11), we have g20 = g11 = g02 = 0, n = 1, 2, 3, · · ·.
If n = 0, g20 = (ζ20χ1 + ν20χ2)τ∗, g11 = (ζ11χ1 + ν11χ2)τ∗, g02 = (ζ20χ1 + ν20χ2)τ∗, and for n ∈ N0,
g21 = (γ1χ1 + γ2χ2)τ∗.

By Eq (5.5), we obtain

Ẇ(z, z) = W20zż + W11(żz + zż) + W02zż + · · ·, (5.12)

A(τ∗)W = A(τ∗)W20
z2

2
+ A(τ∗)W11zz + A(τ∗)W02

z2

2
+ · · ·. (5.13)

Moreover, W(z, z) satisfies
Ẇ(z, z) = A(τ∗)W(z, z) + H(z, z), (5.14)

where

H(z, z) = H20
z2

2
+ H11zz + H02

z2

2
+ · · ·

= X0(θ)F(Ut, 0) − Φ
(
Ψ, 〈X0(θ)F(Ut, 0), fn〉

)
· fn.
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Hence, it follows from Eq (5.8), (5.10) and Eq (5.12–5.14) that
(
2iωnτ∗ − A(τ∗)

)
W20 = H20,

−A(τ∗)W11 = H11,(
− 2iωnτ∗ − A(τ∗)

)
W02 = H02.

(5.15)

Since A(τ∗) has only two eigenvalues ±iωnτ∗, Eq (5.15) has only a unique solution Wi j.
Next, we need to calculate Hi j(θ), θ ∈ [−1, 0]. We get that for −1 ≤ θ < 0,

H(z, z)(θ) = −Φ(θ)Ψ(0)〈F(Ut, 0), fn〉 · fn

= −

(q(θ) + q(θ)
2

,
q(θ) − q(θ)

2i

) (
Ψ1(0)
Ψ2(0)

)
〈F(Ut, 0), fn〉 · fn

= −
1
2

((
q(θ)g20 + q(θ)g02

)z2

2
+

(
q(θ)g11 + q(θ)g11

)
zz

+
(
q(θ)g02 + q(θ)g20

)z2

2

)
· fn + · · ·.

Hence, by comparing the coefficients, and notice that

H(z, z)(0) = F(Ut, 0) − Φ(0)Ψ(0)〈F(Ut, 0), fn〉 · fn,

we have

H20(θ) =


−1

2

(
q(θ)g20 + q(θ)g02

)
· fn,−1 ≤ θ < 0,

τ∗

(
ζ20

ν20

)
β2

n −
1
2

(
q(θ)g20 + q(θ)g02

)
· fn, θ = 0.

H11(θ) =


−1

2

(
q(θ)g11 + q(θ)g11

)
· fn,−1 ≤ θ < 0,

τ∗

(
ζ11

ν11

)
β2

n −
1
2

(
q(θ)g11 + q(θ)g11

)
· fn, θ = 0.

By the definition of A(τ∗) and Eq (5.15), we have

Ẇ20 = A(τ∗)W20 = 2iωnτ∗W20 − H20, − 1 ≤ θ < 0,

Ẇ11 = A(τ∗)W11 = −H11, − 1 ≤ θ < 0.

That is

W20(θ) =
i

2ωnτ∗

(
q(θ)g20 +

q(θ)g02

3

)
· fn + E1e2iωnτ∗θ,

W11(θ) =
i

2ωnτ∗

(
q(θ)g11 − q(θ)g11

)
· fn + E2.

Utilizing the definition of A(τ∗) and combining Eq (5.15) and the above discussions, it follows that

E1 =

2iωn + d1
n2

l2 − a11 −a12

−a21e−2iωnτ∗ 2iωn + d2
n2

l2 − a22

−1 (
ζ20

ν20

)
β2

n,
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E2 =

d1
n2

l2 − a11 −a12

−a21 d2
n2

l2 − a22

−1 (
ζ11

ν11

)
β2

n.

Thus, we can compute the following formulas which determine the direction and stability of
bifurcating periodic orbits:

C1(0) =
i

2ωnτ∗

(
g11g20 − 2|g11|

2 −
1
3
|g02|

2) +
1
2

g21,

µ2 = −
Re

(
C1(0)

)
Re

(
λ′(τ∗)

) ,
β2 = 2Re

(
C1(0)

)
,

T2 = −
Im

(
C1(0)

)
+ µ2Im

(
λ′(τ∗)

)
ωnτ∗

.

(5.16)

In fact, µ2 determines the directions of the Hopf bifurcation, β2 determines the stability of the
bifurcating periodic solutions, T2 determines the period of bifurcating periodic solutions. Moreover,
by [41], we have the following results.

Theorem 5.1. For any critical value τ j
n, the following statements valid

(1) If µ2 > 0 (resp. < 0), then the Hopf bifurcation is forward (resp. backward), that is, the
bifurcating periodic solutions exist for τ > τ j

n (resp. τ < τ j
n).

(2) If β2 < 0 (resp. > 0), then the bifurcating periodic solutions are orbitally asymptotically stable
(resp. unstable).

(3) If T2 > 0 (resp. < 0), then the period increases (resp. decreases).

6. Numerical simulations

In this section, we perform some results of the numerical simulations to illustrate our mathematical
findings in the previous sections. All of our numerical simulations employ the Neumann boundary
conditions.

6.1. Global stability

To portray the global stability of trivial steady state E0 and the positive constant steady state E∗,
let a = 1.35, b = 0.01, c = 1.353, d = 0.5676, δ = 1, h = 0.28, ρ = 0.045, s = 0.001, by simple
calculation, we are able to obtain (ρ + h − 1)2 < 4(dh − ρ). It follows from Theorem 4.2 that E0

is globally asymptotically stable. It can be seen Figure 1a. Moreover, denote a = 0.2, b = 1.5, c =

1.35, d = 0.5676, δ = 1, h = 0.06, ρ = 0.045, s = 0.01, then the unique positive constant steady state
E∗ = (0.8984, 0.6894) is globally asymptotically stable by Theorem 4.6. As shown in Figure 1b.

6.2. Turing instability

We consider the Turing instability with respect to the unique positive constant steady state E∗ of
system (1.7) with τ = 0. Let a = 1.2, b = 0.5, c = 0.4, d = 1.8, δ = 0.15, h = 0.161, ρ = 0.5, s =

0.2, d1 = 0.005, d2 = 0.5 and l = 4. By simple calculation, we obtain that system (1.7) has a unique
positive steady state E∗ = (0.0527, 0.1547). It follows from Theorem 4.4 that assumption (H1) ∼ (H3)
and (H5) ∼ (H6) are satisfied, that is, the positive steady state E∗ for the ODE system is stable. However,
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Figure 1. (a) The trivial state steady E0 of system (1.7) is globally asymptotically stable. (b)
The positive constant state steady E∗ of system (1.7) is globally asymptotically stable.

Figure 2. The positive steady state E∗ = (0.0527, 0.1547) is Turing unstable, and there exists
a stable nonconstant steady state solution.

for the PDE system, the positive steady state E∗ becomes unstable, and system (1.7) has a stable
nonconstant steady state solution, which means that a Turing instability occurs. This is shown in
Figure 2. It portrays that the population is irregularly distributed in space. We also observe that the
system (1.7) has a stationary spatial pattern, that is shown in Figure 3. Moreover, choose d1 = 0.01, we
are able to observe that under the effect of diffusion coefficients of d2 , system (1.7) portrays different
spatial patterns that can be periodic, stationary, as shown in Figure 4.

6.3. Delay induced Hopf bifurcation in system (1.7)

Firstly, we consider that the unique positive constant steady state E∗ of system (1.7) is locally
asymptotically stable for all τ ≥ 0. Let a = 1, b = 0.5, c = 0.4, d = 2, δ = 0.15, h = 0.01, ρ = 0.5, s =

0.2, d1 = 0.01, d2 = 0.02. By calculation, the positive constant steady state E∗ = (0.3783, 1.2611), the
conditions (H1) ∼ (H4) and (H7) are satisfied. It follows from Theorem 4.5 that the unique positive
constant steady state E∗ of system (1.7) is locally asymptotically stable for all τ ≥ 0 in Figure 5.

Consider system (1.7) with the parameters a = 1, b = 0.5, c = 0.4, d = 2, δ = 0.15, h = 0.1, ρ =
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Figure 3. The positive steady state of system (1.7) is unstable with τ = 0, and there exists a
stationary spatial pattern.

Figure 4. Examples of spatial patterns for d2 = 0.02(left), d2 = 0.2(right).

Figure 5. The local asymptotic stability of positive equilibrium E∗ = (0.3783, 1.2611) for
system (1.7) for all τ ≥ 0. τ = 0(left), τ = 5(right).
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Figure 6. The local asymptotic stability of positive equilibrium E∗ = (0.1293, 0.4311) for
system (1.7) when τ = 0.

0.5, s = 0.2, d1 = 0.01, d2 = 0.02 and l = 1. Calculation shows that system (1.7) has a unique positive
constant steady state E∗ = (0.1293, 0.4311). Hypothesis (H1) ∼ (H4) and (H8) satisfy for n = 0, by
calculation we have ω0 = 0.0652. It follows from Theorem 4.7 that homogeneous Hopf bifurcations
occur at τ j

0 ≈ 6.1868 + 96.3679 j for j ∈ N0. We use the forward Euler method to find numerical
solutions to system (1.7) with τ = 0, 5.85, 6.20, respectively. From Theorem 4.3, the unique positive
constant steady state E∗ = (0.1293, 0.4311) of system (1.7) with τ = 0 is locally asymptotically stable,
it can be seen from Figure 6.

As shown in Figure 7 and 8, we observe sustained oscillations when delay τ crosses the critical
value τ0

0 ≈ 6.1868. We have λ′(τ0
0) ≈ 0.0035 − 0.0014i by Lemma 4.4. From Theorem 4.7, we know

that if τ ∈ [0, τ0
0), then the equilibrium E∗ = (0.1293, 0.4311) is locally asymptotically stable. This

is shown in Figure 7. And we conclude that the equilibrium E∗ = (0.1293, 0.4311) loses its stability
and Hopf bifurcation occurs when τ crosses the critical value τ0

0. By calculation and Eq (5.16), we get
C1(0) = −0.5076 − 1.4071i, µ2 ≈ 145.0286 > 0, β2 ≈ −1.0152 < 0, T2 ≈ 3.9916 > 0.

Hence, it follows from Theorem 5.1 that the direction of the bifurcation is forward, and the
bifurcating period solutions are locally asymptotically stable. Moreover, the period of bifurcating
periodic solutions increases. This is shown in Figure 8. If τ is increasing crosses the critical value
τ0

1 ≈ 10.0462, a spatially inhomogeneous periodic solution occurs near the positive equilibrium
E∗ = (0.1293, 0.4311). However, the bifurcating periodic solution bifurcating from the critical value
τ0

1 must be unstable on the whole phase space since the characteristic equation always has roots with
positive real parts for τ > τ0

0 ≈ 6.1868. This is shown in Figure 9. Besides, as τ increases further, with
the same initial values, the solution of system (1.7) converges to (0, 0), which implies that the
increasing delay may cause the prey and predator to go extinct. As shown in Figure 10.
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Figure 7. The local asymptotic stability of positive equilibrium E∗ = (0.1293, 0.4311) for
system (1.7) when τ = 5.85 < τ0

0 = 6.1868.

Figure 8. The positive equilibrium E∗ = (0.1293, 0.4311) is unstable and spatially
homogeneous stable periodic solution bifurcates from E∗ for system (1.7) when τ = 6.20 >
τ0

0 = 6.1868.
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Figure 9. The positive equilibrium E∗ = (0.1293, 0.4311) is unstable and spatially
inhomogeneous stable periodic solution bifurcates from E∗ for system (1.7) when τ =

10.10 > τ0
1 = 10.0462.

Figure 10. The solution of system (1.7) converges to (0, 0) with τ = 15.9 > τ0
1 > τ

0
0.

Figure 11. Stability region exploring the dynamics of the system (1.7) in the (h, τ) parameter
space.
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6.4. The effect of nonlinear harvesting

Considering the effect of nonlinear harvesting, we denote the parameters be the same as section 6.3
and h vary in [0.05, 0.12]. The stability and instability regions of the unique positive constant steady
state E∗ for system (1.7) is depicted by mapping the nonlinear harvesting to the critical value of the
delay τ in Figure 11. We observe that the nonlinear harvesting effect parameter h increases from 0.05
and 0.12, the Hopf bifurcation is occurred for lower critical values of τ. Meanwhile, we observe that
the harvesting effect parameter h has a significant effect on the stability of ecosystem.

7. Conclusions and discussions

In this paper, we focused on a delayed diffusive predator-prey system with food-limited and
nonlinear harvesting effect. Firstly, in order to prove the global stability of the solution, we gave the
existence of solution and priori bound. Meanwhile, we also derived the conditions of stability of the
nonnegative constant steady state solution. Moreover, the global stability of the trivial and positive
constant steady state is investigated. The conditions of Turing instability and Hopf bifurcation are
obtained for system (1.7), respecitvely. For the positive constant steady state solution, it is
demonstrated that Hopf bifurcation can be occurred when bifurcation parameter τ increases beyond a
critical value. We derived the detailed formulas to determine the properties of Hopf bifurcation.

For the system (1.7), it follows from Theorem 4.2 and Theorem 4.6 that the trivial steady state E0

and the positive constant steady state E∗ are globally asymptotically stable under the certain
conditions (Figure 1), respectively. From an ecological point of view, due to the food-limited in the
natural environment, intraspecific competition in prey population increases, so nonlinear prey
harvesting is taken into consideration. Increasing the harvesting effect parameter h properly can
decrease the density of prey population so that relieve the pressure of intraspecific competition and the
system becomes stable under the certain conditions. However, if h crosses a certain value, the density
of prey population begins decreasing and may even become extinct (Figures 10 and 11). The diffusion
induces the occurrence of Turing instability for the positive steady state E∗, which means that system
(1.7) has a stable nonconstant steady state solution (Figures 2 and 3). Our results also reveal the fact
that delay can induce very complex dynamics phenomenon, and a positive constant steady state E∗ is
depicted to be locally asymptotically stable when the parameter τ is less than the critical value τ∗
(Figure 7), and a stable periodic solutions will bifurcate from the constant steady state E∗ (Figure 8),
when the delay τ increase and it crosses through the critical value τ∗, which means that a stable and
spatially homogeneous periodic solutions will occur at the critical value of delay τ∗, when the delay τ
continues to increase to a certain value, spatially inhomogeneous periodic solution bifurcates from the
positive constant steady state E∗ for system (1.7) (Figure 9). When the delay τ is larger, the solution
of system (1.7) tends to (0, 0), that is, the population becomes extinct eventually (Figure 10).

From the biological point of view, it is clear that delay, nonlinear harvesting and diffusion effect
have a significant impact on the stability for ecosystem.

However, there exists many problems will need to be investigated for system (1.7). Firstly, the
selection results of Turing patterns are obtained by weakly nonlinear analysis [29, 30]. Secondly, the
diffusion of the population is random and homogeneous in this paper, actually, individuals often
perform a nonlocal diffusion or heterogeneous diffusion in the real world. Finally, spatial memory and
cognition of animals has drawn much attention in the mathematical modeling of animal movement
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(i.e., memory-based diffusion) [42]. These problems will be investigated in the future.
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