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Abstract: This paper studies a reaction-diffusion-advection system describing a directed movement
of immune cells toward chemokines during the immune process. We investigate the global solvability
of the model based on the bootstrap argument for minimal chemotaxis models. We also examine the
stability of nonconstant steady states and the existence of periodic orbits from theoretical aspects of
bifurcation analysis. Through numerical simulations, we observe the occurrence of steady or time-
periodic pattern formations.
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1. Introduction

Chemotaxis is a directed movement of biological individuals in response to a chemical signal. It
is well-known that the chemotaxis can significantly affect the immune system (see [1, 2]). To be
more specific, during the immune process, a chemical which is called chemokine is secreted by the
immune cell at sites of inflammation. Then, eukaryotic cells sense the gradient of chemokines by a
polarized distribution of receptors, and they move toward relatively high concentrations of the chemical
(chemoattraction), or in the opposite direction (chemorepulsion). Thus, chemotaxis seems to be a key
contribution to the spatial properties of the solutions to immune systems, such as pattern formations or
stabilization.

The immune system is regulated by various immune cells and dysregulation of the immune system
is associated with some kinds of diseases. Immunodeficiency occurs when the immune response is less
active, whereas hypersensitivity to the immune response is associated with many allergic diseases (see
[3, 4]). There have been several results to analyze the dynamics by using a mathematical model (see
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[5, 6, 7, 8, 9]). However, due to many variables and their complex coupling, it is not easy to understand
the mechanism mathematically.

In this regard, Lee et al. [10] proposed a simplified PDE system involving only three main factors;
antigens, chemokines and immune cells. The modelling is motivated by the pioneer work of Keller
and Segel [11], which studies the aggregation of cellular slime mold toward a higher concentration of a
chemical signal. Lee et al. obtained the stability and instability conditions for the uniform steady states
and provided numerical observations. In this paper, we investigate the following reaction-diffusion-
advection system introduced in [10]

At = DA∆A + sA − λAMA − µAA, x ∈ Ω, t > 0,
Ct = DC∆C + sC MA − µCC, x ∈ Ω, t > 0,
Mt = DM∆M − ∇ · (χM∇C) + sM − λM MA − µM M, x ∈ Ω, t > 0,
A(x, 0) = A0(x), C(x, 0) = C0(x), M(x, 0) = M0(x), x ∈ Ω,

(1.1)

where Ω is a smoothly bounded domain in Rn, n = 1, 2. The unknowns A, C, and M represent the con-
centration of antigens, the concentration of chemokines, and the density of immune cells, respectively.
Each equation of (1.1) contains a uniform diffusion with a constant coefficient and natural degradation
with a constant decay rate. The constant antigen source sA > 0 represents the persistent infection.
Since immune cells are produced in bone marrow and circulated throughout the body, we also consider
the source of M as a positive constant sM > 0. During the immune process, immune cells and antigens
are consumed by regulation and phagocytosis, which are denoted by λM MA and λAMA, respectively.
On the other hand, sC MA indicates that chemokines are secreted by immune cells depending on the
mass of antigens. The chemosensitivity χ > 0 in the advection term contributes to the movement of
immune cells toward the gradient of chemokines. For the reader’s convenience, we provide Figure 1
introduced in [10], which shows interactions between A, C and M.

Figure 1. A simplified network of interactions between antigens and immune cells with
chemokines. (Solid lines) Source and decay/death. (Dotted lines) Activation. (Dashed line)
Attraction.

We supplement this system with the conditions of nonnegative initial values such that for p > n,

A0(x),M0(x) ∈ W1,p(Ω), C0(x) ∈ W1,∞(Ω), x ∈ Ω,

A0(x) ≥ 0, C0(x) ≥ 0, M0(x) ≥ 0, x ∈ Ω.
(1.2)
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and with the homogeneous Neumann boundary conditions

∂A
∂ν

=
∂C
∂ν

=
∂M
∂ν

= 0 x ∈ ∂Ω, t > 0, (1.3)

where ν denotes the outward normal vector to the boundary ∂Ω.
The aim of this work is to verify the global solvability of (1.1)–(1.3) and show the occurrence of

pattern formations. The rest of this paper is organized as follows. Section 2 is devoted to show the
global existence and uniqueness of classical solutions. In the one-dimensional setting, the existence can
be shown without any restriction on χ or initial conditions. However, in the case of two dimensions, due
to the similarity to the minimal Keller-Segel model, the existence can be obtained under a restriction
that depends on the initial conditions and coefficients. One of the main theorems (Theorem 2.1) will be
followed by some Lemmas and a priori estimates. In Section 3, we present the stability of nonconstant
steady states and existence of periodic orbits. Numerical results are given in Section 4. We close the
paper in Section 5 with discussions and conclusions.

Throughout this paper, c denotes a positive generic constant which may differ from line to line.

2. Global existence

In this section, we prove the existence of classical solutions to (1.1). Looking at the first equation
of (1.1), we can see that the nonlinear phagocytosis effect −λAMA, due to its negative sign, does
not play any role in the blow-up of A and thus A is uniformly bounded in time unless sA is singular.
From the second equation of (1.1), the production of chemokines can not exceed a linear proportional
to M, and we thereby find a similar structure to the Keller-Segel model. Similarly to −λAMA, the
nonlinear regulation −λM MA in the third equation of (1.1) can not be a crucial obstacle to guarantee
the boundedness of M. In general, the qualitative properties of the solutions to the minimal Keller-
Segel model like boundedness or blow-up phenomena highly depend on the spatial dimension (see
[12, 13, 14, 15, 16, 17]). For this reason, we shall provide the proofs for each dimension.

2.1. Preliminaries

First, we introduce some useful estimates related to the heat semigroup (see [18, 17]).

Lemma 2.1. Let {e∆t}t≥0 be the heat semigroup in a bounded domain with the homogeneous Neumann
boundary condition and let λ1 > 0 be the first positive eigenvalue of the Laplace operator −∆. Then,
for any 1 ≤ q ≤ p ≤ ∞, there exists c = c(p, q,Ω) > 0 such that

‖e∆tw‖Lp(Ω) ≤ c
(
1 + t−

n
2 ( 1

q−
1
p )
)
‖w‖Lq(Ω) for t > 0, (2.1)

for all w ∈ Lq(Ω);

‖∇e∆tw‖Lp(Ω) ≤ c
(
1 + t−

n
2 ( 1

q−
1
p )− 1

2
)
e−λ1t‖w‖Lq(Ω) for t > 0, (2.2)

for all w ∈ Lq(Ω).

Next, we assert the local existence of solutions to (1.1) and boundedness of L1-norm. Due to the
presence of reaction terms, the total mass is not conservative. But we can still obtain the uniform
boundedness of the total mass in time.
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Lemma 2.2. Let Ω be a smooth bounded domain of Rn, n ≥ 1. For any (A0,C0,M0) satisfying (1.2),
we have:

(1) There exists a maximal time of existence Tmax > 0 such that the system (1.1) with (1.3) has a
unique nonnegative classical solution satisfying

(A,C,M) ∈ [C0([0,Tmax); W1,p(Ω)) ∩ C2,1(Ω × (0,Tmax))]3. (2.3)

(2) If Tmax < ∞, then we have

lim
t↗Tmax

(
‖A(·, t)‖L∞(Ω) + ‖C(·, t)‖W1,∞(Ω) + ‖M(·, t)‖L∞(Ω)

)
= ∞. (2.4)

(3) There exists a positive constant C1 such that

‖A(·, t)‖L1(Ω) + ‖C(·, t)‖L1(Ω) + ‖M(·, t)‖L1(Ω) ≤ C1 for t ∈ (0,Tmax). (2.5)

In particular, we have

‖M(·, t)‖L1(Ω) ≤ M1 := max
{ ∫

Ω

M0,
sM |Ω|

µM

}
for t ∈ (0,Tmax). (2.6)

(4) There exists a positive constant C2 such that

0 ≤ A(x, t) ≤ C2 for (x, t) ∈ (Ω × (0,Tmax)). (2.7)

Proof. We let U = (M,C, A) and rewrite (1.1) with (1.2), (1.3) as
Ut = ∇ · (A(U)∇U) + F(U), x ∈ Ω, t > 0,
∂U
∂ν

= 0, x ∈ ∂Ω, t > 0,
U(0, ·) = (M0,C0, A0), x ∈ Ω,

(2.8)

where

A(U) =


DM −χM 0
0 DC 0
0 0 DA

, F(U) =


sM − λM MA − µM M

sC MA − µCC
sA − λAMA − µAA

.
The real parts of eigenvalues of A(U) are all positive and hence (2.8) is uniformly parabolic. Then, by
Amman’s well-established parabolic theory introduced in [19, Theorem 7.3] (see also see [20, 21] for
similar approaches), we obtain the local existence, uniqueness of solutions fulfilling (2.3) and blow-up
criterion (2.4). The maximum principle ensures the nonnegativity of the solution. More precisely, we
observe that the first and third component of F(U) are nonnegative, due to sM, sA > 0, when M = 0,
A = 0. Then, the nonnegative initial values (A0,M0) imply that (A,M) is also nonnegative. From the
nonnegativity of (A,M) and the initial value C0, we obtain the nonnegativity of C. To show (2.5),
we multiply the first equation, the third equation of (1.1) by sC and the second equation by λA + λM,
respectively, and add them up. Then, integrating the result over Ω gives

d
dt

(
sC

∫
Ω

A + (λA + λM)
∫

Ω

C + sC

∫
Ω

M
)

+ sCµA

∫
Ω

A + µC(λA + λM)
∫

Ω

C + sCµM

∫
Ω

M

≤ sC(sA + sM)|Ω|. (2.9)
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Letting sC

∫
Ω

A(·, t) + (λA + λM)
∫

Ω
C(·, t) + sC

∫
Ω

M(·, t) := y(t), we infer from (2.9) that there exist
positive constants c1, c2 such that

y′(t) + c1y(t) ≤ c2 for t ∈ (0,Tmax),

which guarantees the uniform boundedness (2.5). As to (2.6), we integrate the third equation of (1.1)
over Ω to obtain

d
dt

∫
Ω

Mdx ≤ sM |Ω| − µM

∫
Ω

M for t ∈ (0,Tmax). (2.10)

Solving the ordinary differential inequality (2.10) with M0, we obtain (2.6). For the last, we consider
the following parabolic auxiliary problem for the equation of A

∂tÃ = DA∆Ã + sA − µAÃ, x ∈ Ω, t > 0,
Ã(x, 0) = A0(x), x ∈ Ω,
∂A
∂ν

= 0, x ∈ ∂Ω, t > 0.
(2.11)

Now, we apply (2.1) to the Duhamel formulation of (2.11) as

Ã(x, t) = e(DA∆−µA)tA0(x) +

∫ t

0
e(DA∆−µA)(t−s)sAds for (x, t) ∈ Ω × (0,∞). (2.12)

Then, we have

‖Ã(·, t)‖L∞(Ω) ≤ ce−µAt‖A0‖L∞ + c
∫ t

0
e−µA(t−s)ds ≤ c(‖A0‖L∞(Ω),Ω,DA, sA, µA) for any t > 0.

By the standard comparison principle for parabolic equation (see [22]), we obtain

0 ≤ A(·, t) ≤ Ã(·, t) for t ∈ (0,Tmax).

This completes the proof. �

2.2. One dimensional case

In this subsection, we consider an one-dimensional problem. In this case, gradient estimate of C is
essential to show the global existence.

Lemma 2.3. Let n = 1 and (A,C,M) be a classical solution of (1.1) in Ω × (0,Tmax). Then, we have∫
Ω

|Cx(·, t)|2dx ≤ c for t ∈ (0,Tmax), (2.13)

where the positive constant c is independent of Tmax.

Proof. We apply the estimates of Lemma 2.1 to the Duhamel formulation of second equation of (1.1)
as the following equation

C(x, t) = e(DC∆−µC)tC0(x) +

∫ t

0
e(DC∆−µC)(t−s)sC(MA)(x, s)ds for (x, t) ∈ Ω × (0,Tmax). (2.14)
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Using (2.1), (2.6) and (2.7), we deduce from (2.14) that for any t ∈ (0,Tmax)

‖Cx(·, t)‖L2(Ω) ≤ ‖∂xe(DC∆−µC)tC0‖L2(Ω) + sC

∫ t

0
‖∂xe(DC∆−µC)(t−s)MA(·, s)‖L2(Ω)ds

≤ ce−µC t‖∂xC0‖L2(Ω) + c
∫ t

0
e−(λ1+µC)(t−s)

(
1 + (t − s)−

3
4
)
‖M(·, s)‖L1(Ω)ds

≤ c‖∂xC0‖L2(Ω) + c
∫ t

0
e−(λ1+µC)(t−s)ds + c

∫ t

0
e−(λ1+µC)(t−s)(t − s)−

3
4 ds,

≤ c, (2.15)

where c is independent of t and λ1 is the first positive Neumann eigenvalue of the Laplace operator −∆

on Ω. Since the two integral terms in (2.15) are uniformly bounded in t, this completes the proof.
�

The boundedness of ‖M‖Lp follows from (2.13).

Lemma 2.4. Let n = 1, p > 1 and (A,C,M) be a classical solution of (1.1) in Ω × (0,Tmax). Then, we
have

‖M(·, t)‖Lp(Ω) ≤ c for t ∈ (0,Tmax), (2.16)

where the positive constant c depends on p.

Proof. Testing the last equation of (1.1) by Mp−1 for any p > 1, we have

1
p

d
dt

∫
Ω

Mp +
4DM(p − 1)

p2

∫
Ω

|∇M
p
2 |2 ≤

2χ(p − 1)
p

∫
Ω

M
p
2∇M

p
2 · ∇C +

∫
Ω

sM Mp−1 −

∫
Ω

µM Mp.

(2.17)
Using (2.13), the Gagliardo-Nirenberg inequality, and Hölder’s inequality, we compute

2χ(p − 1)
p

∫
Ω

M
p
2∇M

p
2 · ∇C

≤
2χ(p − 1)

p
‖M

p
2 ‖L∞(Ω)‖∇M

p
2 ‖L2(Ω)‖∇C‖L2(Ω)

≤
c3(p − 1)

p
‖∇M

p
2 ‖L2(Ω)

(
‖∇M

p
2 ‖

1
2
L2(Ω)‖M

p
2 ‖

1
2
L2(Ω) + ‖M

p
2 ‖L2(Ω)

)
≤

c3(p − 1)
p

‖∇M
p
2 ‖L2(Ω)

(
DM

c3 p
‖∇M

p
2 ‖L2(Ω) +

c3 p
4DM

‖M
p
2 ‖L2(Ω) + ‖M

p
2 ‖L2(Ω)

)
≤

2DM(p − 1)
p2

∫
Ω

|∇M
p
2 |2 + c4 p2(p − 1)

∫
Ω

Mp, (2.18)

where c3 and c4 are positive constants independent of p. Combining (2.17) and (2.18), we see that

d
dt

∫
Ω

Mp +
2DM(p − 1)

p

∫
Ω

|∇M
p
2 |2 ≤ c4 p3(p − 1)

∫
Ω

Mp + p
∫

Ω

sM Mp−1 − p
∫

Ω

µM Mp

≤ c4 p3(p − 1)
∫

Ω

Mp + (p − 1)
∫

Ω

Mpdx + (p − 1)sp
M |Ω|

≤ c5 p3(p − 1)
∫

Ω

Mp + (p − 1)sp
M |Ω|, (2.19)
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where c5 = c4 + 1. Note from the Gagliardo-Nirenberg inequality and (2.6) that∫
Ω

Mp = ‖M
p
2 ‖2L2(Ω)

≤ c6‖M
p
2 ‖

2θ1
W1,2(Ω)‖M

p
2 ‖

2(1−θ1)

L
2
p (Ω)

≤ c7

(
‖∇M

p
2 ‖L2(Ω) + ‖M

p
2 ‖

L
2
p (Ω)

)2θ1

‖M
p
2 ‖

2(1−θ1)

L
2
p (Ω)

≤ c8

(
‖∇M

p
2 ‖2L2(Ω) + 1

)θ1
(2.20)

holds for some positive constants c6, c7, c8 and θ1 =
p/2−1/2
p/2+1/2 ∈ (0, 1). Plugging (2.20) into (2.19), we

obtain
d
dt

∫
Ω

Mp ≤ −
2DM(p − 1)

c8 p

(∫
Ω

Mp

) 1
θ1

+ c5 p3(p − 1)
∫

Ω

Mp + c9,

where c9 = (p − 1)sp
M |Ω| +

2DM(p−1)
p . Since 1

θ1
> 1, by a standard ODE comparison, we conclude that

‖M(·, t)‖Lp(Ω) ≤ c for t ∈ (0,Tmax),

where the positive constant c depends on p. �

By the application of bootstrap arguments, we prove the uniform boundedness of A, C and M as
desired.

Lemma 2.5. Let n = 1 and (A,C,M) be a classical solution of (1.1) in Ω × (0,Tmax). Then, we have

‖A(·, t)‖L∞(Ω) + ‖C(·, t)‖W1,∞(Ω) + ‖M(·, t)‖L∞(Ω) ≤ c for t ∈ (0,Tmax),

where the positive constant c is independent of Tmax.

Proof. Let 0 < T < Tmax. The boudnedness of A for t ∈ (0,T ) is a direct consequence of (2.7). As
to the estimate of C, applying the estimates of Lemma 2.1 to (2.14) with (2.7) and (2.16), we have for
any p > 1

‖Cx(·, t)‖L∞(Ω) ≤ ce−µC t‖∂xC0‖L∞(Ω) + c
∫ t

0
e−(λ1+µC)(t−s)

(
1 + (t − s)−

1
2p−

1
2
)
‖MA(·, s)‖Lp(Ω)ds

≤ c‖C0‖W1,∞(Ω) + c
∫ t

0
e−µC(t−s)

(
1 + (t − s)−

1
2p
)
‖M‖Lp(Ω)‖A(·, s)‖L∞(Ω)ds

≤ c‖C0‖W1,∞(Ω) + c
∫ t

0
e−(λ1+µC)(t−s)

(
1 + (t − s)−

1
2p−

1
2
)
ds

≤ c‖C0‖W1,∞(Ω) + c
∫ t

0
e−(λ1+µC)σdσ + c

∫ ∞

0
e−(λ1+µC)σσ−

1
2p−

1
2 dσ

≤ c for t ∈ (0,T ),

where c is independent of T . Now, we apply the Moser-Alikakos iterative technique [23] to show the
boundedness of M. Adding p3(p − 1)

∫
Ω

Mpdx to the both sides of (2.19), we have

d
dt

∫
Ω

Mp + p3(p − 1)
∫

Ω

Mp ≤ −
2DM(p − 1)

p

∫
Ω

|∇M
p
2 |2 + c10 p3(p − 1)

∫
Ω

Mp + (p − 1)sp
M |Ω|,

(2.21)
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where c10 = c5 + 1. Interpolation inequality entails

c10 p3(p − 1)
∫

Ω

Mp ≤
2DM(p − 1)

p

∫
Ω

|∇M
p
2 |2 + c11 p7(p − 1)

(∫
Ω

M
p
2

)2

,

where c11 is a positive constant independent of p. Therefore, (2.21) turns into

d
dt

∫
Ω

Mp + p3(p − 1)
∫

Ω

Mp ≤ c11 p7(p − 1)
(∫

Ω

M
p
2

)2

+ (p − 1)sp
M |Ω|. (2.22)

We integrate (2.22) in time to obtain∫
Ω

Mp ≤

∫
Ω

Mp
0 + c12 p4 sup

0≤t≤T

(∫
Ω

M
p
2

)2

+
sp

M |Ω|

p2 , (2.23)

where c12 is a positive constant independent of p. We define

F(p) := max
{
‖M0‖L∞(Ω), sup

0≤t≤T

(∫
Ω

Mp

) 1
p

, sM

(
|Ω|

p2

) 1
p }
.

Thus, we rewrite (2.23) as

F(p) ≤ c
1
p

13 p
4
p F(

p
2

) for p ≥ 2,

where c13 is a positive constant independent of p. Taking p = 2i, i = 1, 2, · · · , we have

F(2i) ≤ c2−i

13 2i2−i+2
F(2i−1) ≤ c2−i+2−i+1

13 2i2(−i+2)+(i−1)2(−i+3)
F(2i−2) ≤ · · · ≤ c14F(1),

where c14 = c1324
∑∞

j=1
j

2 j . Letting i→ ∞, we have

‖M(·, t)‖L∞(Ω) ≤ c14F(1) ≤ c14 max{‖M0‖L∞(Ω),M1, sM |Ω|} for all t ∈ [0,T ], (2.24)

where c14 is independent of t. Since T < Tmax is arbitrary, we complete the proof. �

2.3. Two dimensional case

In this subsection, we deal with the case of two spatial dimensions. First, we derive the uniform
boundedness of ‖M log M‖L1(Ω) and ‖∇C‖L2(Ω)under a smallness condition on M1. When the total mass
of M is conserved, a Lyapunov functional is a helpful tool to prove the global existence (see [15]).
However, due to reaction terms, the construction of a Lyapunov functional for this problem is very
challenging. Instead, we use the Poincare inequality and the Cauchy-Schwarz inequality.

Lemma 2.6. Let n = 2 and (A,C,M) be a classical solution of (1.1) in Ω × (0,Tmax). Then, for a
sufficiently small M1, we have

‖M log M‖L1(Ω) + ‖∇C‖L2(Ω) ≤ c for t ∈ (0,Tmax),

where the positive constant c is independent of Tmax.
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Proof. Testing the third equation of (1.1) by log M, the integration by parts implies

d
dt

∫
Ω

M log M + DM

∫
Ω

|∇M|2

M
=

∫
Ω

χ∇M · ∇C +

∫
Ω

(sM − λM MA − µM M) log M

= −

∫
Ω

χM∆C +

∫
Ω

(sM − λM MA − µM M) log M

≤
χ2

2DC

∫
Ω

M2 +
DC

2

∫
Ω

|∆C|2 +

∫
Ω

(sM − λM MA − µM M) log M,

(2.25)
where we used Young’s inequality. Using (2.7), we find that there exists a positive constant c15 > 0
such that

−

∫
Ω

λM MA log M ≤ c15.

Thus, (2.25) turns into

d
dt

∫
Ω

M log M + DM

∫
Ω

|∇M|2

M
+ µM

∫
Ω

M log M ≤
χ2

2DC

∫
Ω

M2 +
DC

2

∫
Ω

|∆C|2 + sM

∫
Ω

M + c15,

(2.26)
where we used the inequality x − log x > 0 for x > 0. On the other hand, we test the second equation
of (1.1) by −∆C to obtain

1
2

d
dt

∫
Ω

|∇C|2 + DC

∫
Ω

|∆C|2 + µC

∫
Ω

|∇C|2 ≤
∫

Ω

sC MA(−∆C) ≤
s2

CC2
2

2DC

∫
Ω

M2 +
DC

2
|∆C|2. (2.27)

Combining (2.26) and (2.27), we have

d
dt

(∫
Ω

M log M +
1
2

∫
Ω

|∇C|2
)

+ DM

∫
Ω

|∇M|2

M
+ µM

∫
Ω

M log M + µC

∫
Ω

|∇C|2

≤

(
χ2

2DC
+

s2
CC2

2

2DC

) ∫
Ω

M2 + sM

∫
Ω

M + c15. (2.28)

Adding (2µC − µM)
∫

Ω
M log M to the both sides of (2.28), we obtain

d
dt

(∫
Ω

M log M +
1
2

∫
Ω

|∇C|2
)

+ DM

∫
Ω

|∇M|2

M
+ 2µC

(∫
Ω

M log M +
1
2

∫
Ω

|∇C|2
)

≤

(
χ2

2DC
+

s2
CC2

2

2DC

) ∫
Ω

M2 + (2µC − µM)
∫

Ω

M log M + sM

∫
Ω

M + c15. (2.29)

If µM ≤ 2µC, then (2.29) turns into

d
dt

(∫
Ω

M log M +
1
2

∫
Ω

|∇C|2
)

+ DM

∫
Ω

|∇M|2

M
+ 2µC

(∫
Ω

M log M +
1
2

∫
Ω

|∇C|2
)

≤

(
χ2

2DC
+

s2
CC2

2

2DC
+ 2µC − µM

) ∫
Ω

M2 + sM

∫
Ω

M + c15. (2.30)
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For the other case µM > 2µC, due to the positive uniform bound of −x log x for x > 0, we find a positive
constant c16 such that

d
dt

(∫
Ω

M log M +
1
2

∫
Ω

|∇C|2
)

+ DM

∫
Ω

|∇M|2

M
+ 2µC

(∫
Ω

M log M +
1
2

∫
Ω

|∇C|2
)

≤

(
χ2

2DC
+

s2
CC2

2DC

) ∫
Ω

M2 + sM

∫
Ω

M + c16. (2.31)

Now letting Mave(t) := 1
|Ω|

∫
Ω

M(·, t), the Poincare inequality gives

‖M‖2L2(Ω) = ‖M − Mave‖
2
L2(Ω) + |Ω|M2

ave ≤ c2
Ω‖∇M‖1L1(Ω) + |Ω|M2

ave, (2.32)

where cΩ is a positive constant satisfying

‖M −
1
|Ω|

∫
Ω

M‖L2(Ω) ≤ cΩ‖∇M‖L1(Ω) for M ∈ W1,1(Ω).

By the Cauchy-Schwarz inequality, we deduce from (2.32) that

‖M‖2L2(Ω) ≤ c2
Ω‖M‖

2
L1(Ω)

∫
Ω

|∇M|
M

2

+
1
|Ω|
‖M‖2L1(Ω). (2.33)

Plugging (2.33) into (2.30) or (2.31), it follows from (2.6) that

d
dt

(∫
Ω

M log M +
1
2

∫
Ω

|∇C|2
)

+ DM

∫
Ω

|∇M|2

M
+ 2µC

(∫
Ω

M log M +
1
2

∫
Ω

|∇C|2
)

≤ c17M2
1

∫
Ω

|∇M|2

M
+ c18 (2.34)

for some c17, c18 > 0. Note that c17 depends on χ and it is independent of M1, whereas c18 depends on
M1. Therefore, if M1 is sufficiently small so that M2

1 ≤
DM
C17

, then (2.31) ends up with

d
dt

(∫
Ω

M log M +
1
2

∫
Ω

|∇C|2
)

+ 2µC

(∫
Ω

M log M +
1
2

∫
Ω

|∇C|2
)
≤ c18.

Solving this inequality directly, we completes the proof. �

Thanks to the work done by Bellomo et al. [24], the boundedness of
∫

Ω
M log M and

∫
Ω
|∇C|2 are

sufficient to obtain the global existence.

Lemma 2.7. Let n = 2 and (A,C,M) be a classical solution of (1.1) in Ω × (0,Tmax). Then, for the
same assumption on M1 as in Lemma 2.6, we have

‖M‖L∞(Ω) + ‖C‖W1,∞(Ω) ≤ c for t ∈ (0,Tmax), (2.35)

where the positive constant c is independent of Tmax.

Proof. Detailed proofs can be found in [24, Lemma 3.3]. �
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Now, we are in position to prove our first main theorem which gives the existence of a global-in-time
classical solution to (1.1) for n = 1, 2.

Theorem 2.1. Let Ω be a smooth bounded domain of Rn. If n = 1 or M1 is sufficiently small for
n = 2, then, the system (1.1)–(1.3) possesses a unique global-in-time nonnegative uniformly bounded
classical solution (A,C,M) in Ω × (0,∞) such that

‖A(·, t)‖L∞(Ω) + ‖C(·, t)‖W1,∞(Ω) + ‖M(·, t)‖L∞(Ω) ≤ c for any t > 0.

Proof. Suppose that Tmax < ∞. According to Lemma 2.5 and Lemma 2.7, there exists c > 0 such that

‖A(·, t)‖L∞(Ω) + ‖C(·, t)‖W1,∞(Ω) + ‖M(·, t)‖L∞(Ω) ≤ c for t ∈ (0,Tmax),

where c is independent of Tmax. This is contrary to Theorem 2.2 which implies Tmax = ∞. We complete
the proof. �

3. Stability and bifurcation

In this section, we analyze the bifurcation of the system (1.1). For simplicity, we consider the
one-dimensional case :

At = DAAxx + sA − λAMA − µAA, x ∈ (0, L), t > 0,
Ct = DCCxx + sC MA − µCC, x ∈ (0, L), t > 0,
Mt = DM(Mx − χMCx)x + sM − λM MA − µM M, x ∈ (0, L), t > 0,
Ax(x, t) = Cx(x, t) = Mx(x, t) = 0, x = 0, L, t > 0,
A(x, 0) = A0(x),C(x, 0) = C0(x),M(x, 0) = M0(x), x ∈ (0, L),

(3.1)

where the domain length L is a positive constant. Recalling the work in [10], we find that the system
(1.1) has the unique positive equilibrium (A,C,M) such that

A =
−µAµM + λM sA − λAsM +

√
κ

2λMµA
,

C =
sC(µAµM + λM sA + λAsM −

√
κ)

2λMλAµC
,

M =
−µAµM − λM sA + λAsM +

√
κ

2λAµM
,

(3.2)

where
κ = 4µAµMλM sA + (µAµM − λM sA + λAsM)2.

We the following functions spaces:

H := [L2(0, L)]3, H1 := {w ∈ [H2(0, L)]3|
∂w
∂x

= 0 on x = 0, L.}.

From the equilibrium (3.2), we can rewrite the system (3.1) in the following abstract form:
zt = Lχz + Gχ(z), x ∈ (0, L), t > 0,
∂z
∂x = 0, x = 0, L, t > 0,
z(x, 0) = (A0(x) − A,C0(x) −C,M0(x) − M), x ∈ (0, L),

(3.3)
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where z(x, t) = (a, c,m) := (A − A,C −C,M − M), and Lχ : H1 → H, Gχ : H1 → H satisfy

Lχ =


−µA − λAM − DA

∂2

∂x2 0 −λAA
sC M −µC − DC

∂2

∂x2 sCA
−λM M χM ∂2

∂x2 −µM − λMA − DM
∂2

∂x2

,
Gχ(z) =


−λAma
sCma

χ(mcx)x − λMma

.
To obtain the principle of exchanging stability, we focus on the linearized system of (3.3)

zt = Lχz. (3.4)

Now, we express z = (a, c,m) as

a =

∞∑
k=1

eΛktak cos
kπx
L
,

c =

∞∑
k=1

eΛktck cos
kπx
L
,

m =

∞∑
k=1

eΛktmk cos
kπx
L
,

(3.5)

and then the linearized system (3.4) is equivalent to the following eigenvalue problem:

Λk


ak

ck

mk

 =Mk


ak

ck

mk

 for k = 1, 2, 3, · · · , (3.6)

whereMk is a 3 × 3 matrix such that

Mk =


−µA − λAM − DA

(
kπ
L

)2
0 −λAA

sC M −µC − DC

(
kπ
L

)2
sCA

−λM M χM
(

kπ
L

)2
−µM − λMA − DM

(
kπ
L

)2

.
The principle of exchanging stability is determined by the sign of eigenvalues of eachMk, and we have
the following proposition (see [10, Lemma 1]).

Proposition 3.1. The equilibrium (A,C,M) of (3.1) is locally asymptotically stable if χ < χc =

mink≥1{χ
S
k , χ

H
k } and it is unstable if χ > χc, where

χS
k =

Rk,0

Rk,1
,

χH
k =

PkQk,0 − Rk,0

PkQk,1 − Rk,1

(3.7)
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with

Pk = µA + µC + µM + λAM + λMA + (DA + DC + DM)
(
kπ
L

)2

,

Qk,0 =

µA + λAM + DA

(
kπ
L

)2µC + DC

(
kπ
L

)2 +

µA + λAM + DA

(
kπ
L

)2µM + λM M + DM

(
kπ
L

)2
− λAλM MA +

µC + DC

(
kπ
L

)2µM + λMA + DM

(
kπ
L

)2,
Qk,1 = sC MA

(
kπ
L

)2

,

Rk,0 = (µC + DCαk)
µA + λAM + DA

(
kπ
L

)2µM + λM M + DM

(
kπ
L

)2 − λAλM MA
,

Rk,1 =

µA + DA

(
kπ
L

)2sC MA
(
kπ
L

)2

.

(3.8)

Proof. Let Λ1
k , Λ2

k , and Λ3
k be eigenvalues of Mk. By the Routh-Hurwitz criterion, ReΛi

k < 0 for all
k = 1, 2, 3, · · · and j = 1, 2, 3 if and only if

Pk > 0, PkQχ
k − Rχ

k > 0, and Rχ
k > 0, (3.9)

where
Pk = −trMk,

Qχ
k = det

−µA − λAM − DA

(
kπ
L

)2
0

sC M −µC − DC

(
kπ
L

)2


+ det

−µA − λAM − DA

(
kπ
L

)2
−λAA

−λM M −µM − λMA − DM

(
kπ
L

)2


+ det

−µC − DC

(
kπ
L

)2
sCA

χM
(

kπ
L

)2
−µM − λMA − DM

(
kπ
L

)2


= Qk,0 − χQk,1,

Rχ
k = − detMk = Rk,0 − χRk,0.

Then, one can easily check that (3.9) completes the proof. The details can be found in [10, Lemma
1]. �

3.1. Pitchfork bifurcation

In this section, we examine the nonconstant steady state solution to (3.1) when χc = mink≥1 χ
S
k <

mink≥1 χ
H
k . Then, there exists k0 ≥ 1 such that χS

k0
= χc. Let Λ1

k(χ), Λ2
k(χ) and Λ3

k(χ) be the eigenvalues
of Mk with ReΛ1

k(χ) ≥ ReΛ2
k(χ) ≥ ReΛ3

k(χ). Then, Λ1
k0

(χ) is the first real eigenvalue of (3.1) which
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changes its stability at χ = χc, i.e., we have

Λ1
k0

(χ)


< 0 i f χ < χc,

= 0 i f χ = χc,

> 0 i f χ > χc,

ReΛ
j
k(χc) < 0 ∀(k, j) , (k0, 1), (k, j) ∈ N × {1, 2, 3}.

(3.10)

By Proposition 3.1, the system (3.1) bifurcates from the equilibrium (A,C,M) to another steady state
solution as χ increases passing through χc. Before we state the theorem of steady state bifurcation
below, we introduce the following parameter K3:

K3 :=
K̃3

(z1
k0
, z1∗

k0
)
, (3.11)

where

K̃3 =λAMχS
k0

(
k0π

L

)2µA + λAM + DA

(
k0π

L

)2µC + DC

(
k0π

L

)2µM + DM

(
k0π

L

)2 ∫ L

0
cos2 k0πx

L
ψ1(x)dx

−
1
2
λAMA(χS

k0
)2
(
k0π

L

)2µA + λAM + DA

(
k0π

L

)2µC + DC

(
k0π

L

)2 ∫ L

0
cos2 k0πx

L
ψ2(x)dx

−λAAχS
k0

(
k0π

L

)2µC + DC

(
k0π

L

)2
×

[
λAM

µM + DM

(
k0π

L

)2 +
1
2

µA + λAM + DA

(
k0π

L

)2µM + λMA + DM

(
k0π

L

)2 − 1
2
λMλAMA

]
×

∫ L

0
cos2 k0πx

L
ψ3(x)dx,

(z1
k0
,z1∗

k0
) = λAMAχS

k0

(
Qk0,0 − χ

S
k0

Qk0,1

)(k0π

L

)2 ∫ L

0
cos2 k0πx

L
dx > 0,

and ψ(x) = (ψ1(x), ψ2(x), ψ3(x)) ∈ H1 satisfies

Lχψ = −GχS
k0

(
ξ1

k0
cos

k0πx
L

)
(3.12)

with

ξ1
k0

=


−λAMAχS

k0
( k0π

L )2(
µA + λAM + DA( k0π

L )2
)(
µM + λMA + DM( k0π

L )2
)
− λMλAMA(

µA + DA( k0π
L )2

)
χS

k0
M( k0π

L )2

. (3.13)

Theorem 3.1. Let χS
k0

= mink∈N χ
S
k < mink∈N χ

H
k for some k0 ∈ N, and let K3 be given as in (3.11).

Suppose that χ > 0 satisfies χ > χS
k0

. If K3 > 0, then there exist two bifurcated solutions zχ± =

(aχ, cχ,mχ)T to (3.1), which are attractors. Moreover, zχ± can be expressed as

zχ± = ±(K3)−
1
2 (Λ1

k0
(χ))1/2ξ1

k0
cos

k0πx
L

+ o(|Λ1
k0

(χ)|1/2), (3.14)

where ξ1
k0

is given as in (3.13). And if K3 ≤ 0, then there are no bifurcated solutions.

Mathematical Biosciences and Engineering Volume 17, Issue 4, 3426–3449.



3440

Proof. We use a similar method introduced in [25, Theorem 4.2] based on the center manifold theory
(see e.g., [26]). Let Φ be the center manifold function of the equation (3.3) at χ = χc. SinceMk0 |χ=χc

has a simple zero eigenvalue with the eigenvector ξ1
k0

in (3.14), we can express z as

z = yz1
k0

+ Φ(yz1
k0

) with z1
k0

= ξ1
k0

cos
k0πx

L
,

and the equation (3.3) is decomposed as the following:(yz1
k0

)t = P1(Lχz + Gχ(z)),
Φt = P2(Lχz + Gχ(z)),

(3.15)

where P1 : H → span{z1
k0
} ⊂ H and P2 : H → span{z1

k0
}⊥ are the natural projections. Then the

bifurcation type of the equation (3.3) completely depends on the first equation of (3.15). Let z1∗
k0

=

ξ1∗
k0

cos k0πx
L , where ξ1∗

k0
is the eigenvector ofM∗

k0
|χ = χc corresponding to the zero eigenvalue. Taking

the H-inner product to the both sides of the first equation of (3.15) by z1∗
k0

, we can get the following
equation:

y′ = Λ1
k0

(χ)y + g(y) with g(y) =
(Gχ(yz1

k0
+ Φ(yz1

k0
)), z1∗

k0
)

(z1
k0
, z1∗

k0
)

,

where (·, ·) denotes the H-inner product. Since we consider χ near χS
k0

, Gχ can be approximated by
GχS

k0
. Due to the form of GχS

k0
and Φ(yz1

k0
) = O(y2) (see [26]), we can express g as

g(y) = K2y2 − K3y3 + o(y3).

Direct calculations yield that

K2 =

(
GχS

k0
(z1

k0
), z1∗

k0

)
(z1

k0
, z1∗

k0
)

,

which has the factor
∫ L

0
cos3 k0πx

L dx = 0. To calculate K3, we let

G2(u, v) = (−λAu3v1, sCu3v1,−χ
S
k0

(u3v2,x)x − λMu3v1)T

with u = (u1, u2, u3)T and v = (v1, v2, v3)T . Then, we can write GχS
k0

(z) = G2(z, z). Since Φ(yz1
k0

) = O(y2),
we have

Φ(yz1
k0

) = ψy2 + o(y2) , ψ = (ψ1, ψ2, ψ3) ∈ H1, (3.16)

and, with the aid of Theorem A.1.1 in [26], Φ satisfies LχΦ = −P2GχS
k0

(yz1
k0

). Note that GχS
k0

(yz1
k0

) ∈

span{z1
k0
}⊥ = {w ∈ H|(w, z1∗

k0
) = 0} because

∫ L

0
cos3 k0πx

L dx = 0. Therefore, ψ satisfies (3.12) and we have

K3 =
(G2(z1

k0
, ψ) + G2(ψ, z1

k0
), z1∗

k0
)

(z1
k0
, z1∗

k0
)

, (3.17)

which is calculated as in (3.11). Hence, the system (3.1) has a pitchfork type bifurcation and we
complete the proof as desired. �
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3.2. Hopf bifurcation

In this subsection, we consider the case χc = mink≥1 χ
H
k < mink≥1 χ

S
k , which may give rise to the

existence of periodic solutions. Let k1 be the positive integer satisfying χk1 = χc. Then, there exists
at least one eigenmode k such that χH

k < χS
k . Recalling from Lemma 1 in [10], we calculate the

characteristic polynomial of Mk as Λ3 + PkΛ
2 + (Qk,0 − χQk,1)Λ + (Rk,0 − χRk,1) with Pk, Qk,0, Qk,1,

Rk,0 and Rk,1 given in (3.8). By the Routh-Hurwitz criterion, for a such mode k with χH
k < χS

k and the
choice of χ = χH

k ,Mk has two pure imaginary and one negative eigenvalues:

Λ1,2
k (χH

k ) = ±i
√

Qk,0 − χ
H
k Qk,1, Λ3

k(χH
k ) = −Pk < 0.

To obtain the existence of the Hopf bifurcation, we apply the bifurcation theory from [27] and we
check the transversality condition. The similar proof can be found in [28, Theorem 3.1].

Theorem 3.2. Let mink∈N χ
H
k < mink∈N χ

S
k . For each k ∈ N, we suppose that 0 < χH

k < χS
k and

χH
j , χH

k for any j , k, j ∈ N. Then, there exist δ > 0 and a unique one-parameter family of
nontrivial periodic orbits ρk(s) = (zk(s, x, t),Tk(s), χk(s)) : s ∈ (−δ, δ)→ C3(R,H1)×R+ ×R satisfying
(zk(0, x, t),Tk(0), χk(0)) =

(
0, 2π

ζk
, χH

k

)
and

zk(s, x, t) = s
(
ξ1

k eiζkt + ξ2
k e−iζkt

)
cos

kπx
L

+ o(s) (3.18)

such that (zk(s), χk(s)) is a nontrivial solution of (3.3) and zk(s) is periodic with period Tk(s) ≈ 2π
ζk

where ζk =

√
Qk,0 − χ

H
k Qk,1 and ξ1,2

k are the eigenvectors of Mk|χ=χH
k

corresponding to Λ1,2
k (χH

k ).
Moreover, ρk(s1) , ρk(s2) for all s1 , s2, s1, s2 ∈ (−δ, δ) and all nontrivial periodic solutions
of (3.3) around (0, χH

k ) must be on the orbit ρk(s) in the sense that, if (3.3) has a periodic solu-
tion z̃(x, t) with period T for some χ ∈ R around ρk(s) such that for small ε > 0 |χ − χH

k | < ε,
|T − 2π/ζk| < ε and maxt>0,x∈[0,L]|z̃(x, t)| < ε, then there exist numbers s ∈ (−δ, δ) and some θ > 0 such
that (T, χ) = (Tk(s), χk(s)) and z̃(x, t) = zk(s, x, t + θ).

Proof. The proof is based on Theorem 1.11 in [27]. Consider the case of an eigenmode k ∈ N with
χH

k < χS
k . Since the diffusion coefficients DA, DC and DM are all positive, the system (3.3) is normally

parabolic. Also since χH
k , χ

H
j for all k , j, k, j ∈ N, the matrix Mk|χ=χH

k
has no eigenvalues of the

form iNζk for N ∈ Z − {−1, 1}, and by the Routh-Hurwitz criterion, 0 is not an eigenvalue ofMk|χ=χH
k
.

Let Λ1,2
k (χ) = η(χ) ± iζ(χ) and Λ3

k(χ) be the eigenvalues ofMk with χ around χH
k . To complete the

proof, we check the following transversality condition

∂η

∂χ

∣∣∣∣∣
χ=χH

k

, 0. (3.19)

By the relation between the roots and coefficients of the caracteristic equation ofMk, we obtain that

−Pk = 2η(χ) + Λ3
k(χ),

Qk,0 − χQk,1 = η2(χ) + ζ2(χ) + 2ηΛ3
k(χ),

−(Rk,0 − χRk,1) = (η2(χ) + ζ2(χ))Λ3
k(χ).

(3.20)
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Differentiating the above equations with respect to χ, we obtain that

2η′(χ) + Λ3
k
′(χ) = 0,

and (
−Qk,1

Rk,1

)
=

(
η(χ) − Λ3

k(χ) 2η(χ)
η2(χ) + ζ2(χ) − ηΛ3

k(χ) 2ηΛ3
k(χ)

)(
Λ3

k
′(χ)

ζ′(χ)

)
. (3.21)

Since η(χH
k ) = 0 and Λ3

k(χH
k ) = −Pk, we solve (3.21) with χ = χH

k to obtain

Λ3
k
′(χH

k ) = −
PkQk,1 − Rk,1

P2
k + ζ2

k

< 0

so that η′(χH
k ) = −1

2Λ3
k
′(χH

k ) > 0. This completes the proof. �

4. Numerical simulations

In this section, we provide numerical examples of stable and time-periodic solution to the system
(3.1) for the one dimensional case. We use the upwind finite volume scheme introduced in [29, 30].
The parameter sets are given in Table 1 introduced in [10]. Since the model is simplified, it is not easy
to find all the parameters estimated from the experiments. The diffusion coefficients and decay/death
rates are usually known (see [31, 9] and references therein). For example, the diffusion coefficient DM

is estimated in a range of 10−11–10−7cm2/h (see [32]). In this work, we choose DM = 5× 10−7cm2/h in
the range. We choose domain length L = (half of some integers)×0.005m, which is relevant to contain
a sufficient number of cells considering the size of the cells.

Table 1. Parameter values used for numerical simulations. Values of some groups (diffusion
coefficients and decay/death rates) are from typical biological ranges [31, 9] and the others
are estimated.

Parameter Description Steady case Time periodic case

DA 3 × 10−9 6 × 10−8

DC Diffusion coefficients 6 × 10−8 6 × 10−8

DM 5 × 10−7 5 × 10−7

sA External source of antigen 5 × 10−3 5 × 10−3

sC Chemokine secretion rate by M 4 × 10−5 4 × 10−5

sM Source of immune cells 0.05 0.05
λA Rate of phagocyte 1 1
λM Self regulation strength 5 5
µA Antigen decay 4 × 10−6 0.01
µC Chemokine decay 0.01 0.01
µM Immune cell death 0.1 0.1
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4.1. Nonconstant stable steady states

By direct computations with (3.2) and Proposition 3.1, we obtain a positive constant equilibrium
(A,C,M) ≈ (1.86 × 10−2, 1.93 × 10−5, 2.59 × 10−1) and Qk,0Rk,1 > Qk,1Rk,0 for all k ∈ N, which implies
that χS

k < χ
H
k for all k ∈ N.

Figure 2. Stable steady states of antigens, chemokines, and immune cells with χ =

1.15, 2, 3. The parameters are chosen as DA = 6 × 10−8, µA = 0.01 and the others
being them of Table 1. We choose the domain size L = 0.005 and the initial condition
(A0(x),C0(x),M0(x)) =

(
A(1 − cos 2πx

L

)
,C,M).

First we observe the chemotactic effect in a fixed domain length L = 0.005 with varying χ. In this
case, we have mink∈N χ

S
k = χS

2 ≈ 1.097. Thus, if we choose χ > 1.097, then the system bifurcates from
the equilibrium to another stable steady state solution. In Figure 2, we illustrate steady state solutions
of A, C and M with χ taken to be 1.15, 1.6 and 2. We see that A has an interior spike, and C and M
have boundary layers on each boundary. As χ increases, the solutions become more aggregated.

Figure 3. Space-time color map with two different initial conditions. Initial conditions
are chosen as

(
A(1 ∓ cos 2πx

L

)
,C,M) in the first and second column respectively. We set

L = 0.005 and χ = 1.15. We see that there exist two bifurcated solutions.

In Figure 3, there are two steady state solutions with different structures. Theorem 3.1 indicates
that the system (3.1) has two bifurcated stable steady solutions in case of χc = mink∈N χ

S
k < mink∈N χ

S
k .

Figure 3 shows that the structure of bifurcated solutions depends on the initial condition. Figure 4
illustrates the simulation in several cases of domain lengths, L = 0.0025, 0.005, 0.01, 0.015, and for
each case, χ = 1.2, 1.15, 1.07, 1.065 are chosen. We see from Table 2 that the stable steady solutions
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have the profile cos k0πx
L when χ is slightly bigger than χS

k0
= mink∈N χ

S
k . These numerical results in

Figure 3 and 4 agree with the theoretical results of Theorem 3.1.

Table 2. k0 and χS
k0

corresponding to L where k0 = argmink∈Nχ
S
k .

L 0.025 0.005 0.01 0.015
k0 1 2 3 5
χS

k0
1.096 1.097 1.060 1.062

Figure 4. Space-time color maps (first row) and stable steady states (second row) of the
antigen concentration A in the case of L = 0.005, 0.01, 0.015 respectively. In each case, we
choose χ = 1.15, 1.07, 1.065, respectively, which are slightly bigger than χS

k0
= mink∈N χ

S
k .

The stable steady states have spatial profile cos k0πx
L .

4.2. Time-periodic solutions

From Table 1, we find the positive constant equilibrium (A,C,M) = (2.00×10−2, 2.00×10−5, 2.50×
10−1) and mink∈N χ

H
k ≈ 1.04 < mink∈N χ

S
k ≈ 14. In this case, by Theorem (3.2), the system (3.1)

posseses time-periodic solutions.
Figure 5 illustrates time-periodic solutions to (3.1) with parameters of Table 1 and L = 0.005 when

χ = 1.085 is chosen slightly bigger than mink∈N χ
H
k = χH

2 ≈ 1.08. Letting ζk(χ) =
√

Qk,0 − χQk,1,
we compute the period of the solution as T = 2π

ζk(χH
2 ) ≈ 49.2. Figure 6 shows the spatial pro-

file of time periodic solutions featuring cos k1πx
L , where k1 = argmink∈Nχ

H
k for varying domain size

L = 0.0025, 0.005, 0.01, 0.0125. Then, k1 and χH
k1

= mink∈N χ
H
k are given in Table 3.

Table 3. k1 and χH
k1

corresponding to L, where k1 = argmink∈Nχ
H
k .

L 0.0025 0.005 0.01 0.0125
k1 1 2 3 4
χS

k0
1.080 1.080 1.060 1.062
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Figure 5. Space-time color maps of A, C and M respectively (first row) and (A,C,M) trajec-
tories at x = 0, x = L

4 and x = L
2 (second row). The parameters are employed from Table 1

and L = 0.005 is chosen. Then mink∈N χ
H
k = χH

2 ≈ 1.08 and so we choose χ = 1.085 in this
simulation. Each component of the solution has a profile cos 2πx

L and a period 56.4 second.

Figure 6. Space-time color maps of A with L = 0.0025, 0.005, 0.01, 0.0125 respectively.
We observe that the solution of each case is time-periodic and has spatial profile cos k1πx

L .
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5. Conclusions and discussions

In this paper, we investigate the global solvability and bifurcation dynamics of the system (1.1) with
the boundary condition (1.3) introduced in [10]. The system (1.1) has a minimal type of chemotactic
sensitivity, i.e., constant χ = const. Due to a similar structure to the classical Keller-Segel model (see
[11]), the global solvability of the problem depends on the dimension. In the one dimensional case,
the global existence and uniform boundedness of solutions can be proved for any χ > 0. However, in
the two dimensional case, the global solvability of this model is obtained under smallness assumptions
(see [15] for Keller-Segel model case).

In view of the stability analysis, it is known that the system has a single positive constant equi-
librium (A,C,M) described in (3.2) and there exists a threshold χc = mink∈N{χ

S
k , χ

H
k } of χ such that

the equilibrium (A,C,M) is asymptotically stable when χ < χc and unstable when χ > χc (see [10]).
This study goes further from the work in [10] by means of local bifurcation theory. As χ increases
passing through the threshold value χc, the equilibrium (A,C,M) becomes unstable and two different
type bifurcated solutions can occur; If χS

k0
< χH

k for all k ∈ N, then there exist nonconstant steady states
whose structure depends on initial values, and if χH

k1
< χS

k for all k ∈ N, then we obtain time-periodic
solutions. Moreover, we obtain the information of wave modes of bifurcated solutions in both cases.
However, in Hopf bifurcation case, the information of wave modes is local which means that the so-
lution can have different dynamics from the form of (3.18) when χ is much bigger than χc = χH

k1
. We

see this dynamics, via the example illustrated in Figure 7. The global bifurcation will be investigated
in the future.

Figure 7. Space-time color maps of A, C and M respectively(first row) and (A,C,M) trajec-
tories at x = 0, x = L

4 and x = L
2 (second row) when χ = 1.8 and L = 0.0025. The profiles of

each component are quite different from cos 2πx
L .
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