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Abstract: Fatigue driving is one of the main factors which affect the safety of drivers and passengers 
in mountain freeway. To improve the driving safety, the application of fatigue driving detection 
system is a crucial measure. Accuracy, speed and robustness are key performances of fatigue 
detection system. However, most researches pay attention to one of them, instead of taking care of 
them all. It has limitation in practical application. This paper proposes a novel three-layered 
framework, named Real-time and Robust Detection System. Specifically, the framework includes 
three modules, called facial feature extraction, eyes regions extraction and fatigue detection. In the 
facial feature extraction module, the paper designs a deep cascaded convolutional neural network to 
detect the face and locate eye key points. Then, a face tracking sub-module is constructed to increase 
the speed of the algorithm, and a face validation submodule is applied to improve the stability of 
detection. Furthermore, to ensure the orderly operation of each sub-module, we designed a 
recognition loop based on the finite state machine. It can extract facial feature of the driver. In the 
second module, eyes regions of the driver were captured according to the geometric feature of face 
and eyes. In the fatigue detection module, the ellipse fitting method is applied to obtain the shape of 
driver’s pupils. According to the relationship between the long and short axes of the ellipse, eyes 
state (opening or closed) can be decided. Lastly, the PERCLOS, which is defined by calculating the 
number of closed eyes in a period, is used to determine whether fatigue driving or not. The 
experimental results show that the comprehensive accuracy of fatigue detection is 95.87%. The 
average algorithm rate is 32.29 ms/f in an image of 640 × 480 pixels. The research results can serve 
the design of a new generation of driver fatigue detection system to mountain freeway. 
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1. Introduction  

Every year road traffic accidents, especially mountain freeway accidents, have caused severe 
damage to human health. According to the statistics from the World Health Organization (WHO) in 
2015, traffic accidents are one of the main reasons of human death [1]. 

Fatigue driving in mountain freeway is one of the leading reasons of traffic accidents. National 
Sleep Foundation points out about 32% of drivers have fatigue driving experience at least once every 
month [2]. Fatigue driving is a harmful threat to the driver and other traffic participants. Countries all 
over the world have made laws to tackle this problem. For example, the Chinese Road Traffic Safety 
Law stipulates that: “Drivers are not allowed to drive continuously for more than 4 hours, and the 
rest period between every two long-duration driving should be no less than 20 minutes [3].” In 
Europe, the law requires that: “Drivers should stop and rest for every 4.5 hours of continuous driving, 
and the rest period should be no less than 20 minutes [4].” In the United States, the law provides that: 
“The cumulative maximum daily driving time must not exceed 11 hours, and the continuous daily 
rest time must not be less than 10 hours [5].” As mentioned above, fatigue driving is solely 
associated with driving duration. Without sufficient quantified indexes and reliable data analysis, it is 
subjective to determine the state of the driver. Consequently, study on the intelligent recognition of 
fatigue detection has significant practical meanings. 

Recently, driver fatigue detection methods mainly include subjective evaluation and objective 
detection [6]. The former uses the sleep quality of the driver as the evaluation index of the fatigue 
state. It mainly including Karolinska Sleepiness Scale (KSS), Visual Analog Scale (VAS) and 
Stanford Sleepiness Scale (SSS) [7,8]. The subjective evaluation methods are simple to operate. 
However, the fatigue information is difficult to quantify, and the appraise is too subjective. The latter 
is based on information technology to objectively judge the fatigue state of drivers. Typically, the 
objective identification ways are on a basis of driver’s physiological information, vehicle operation 
state, and driver’s behavior characteristics. 

Table 1. Comparison of driver fatigue detection methods. 

Methods Accuracy Stability Real time 

Subjective evaluation medium low low 

Objective detection 

Physiological information higher medium high 

Vehicle driving state lower lower medium 

Driver behavior characteristics high high high 

The method based on driver’s physiological information [9–13] need collect physiological 
information such as Electroencephalogram (EEG), Electrocardiogram (ECG) and Electromyogram 
(EMG) during driving. The method uses the physiological signal characteristics of the driver as 
evaluation index of the fatigue state, and it has high accuracy. However, it has a negative influence 
on drivers' regular operation because of the contact sensors. Besides, the results are susceptible to 
noise. So, the anti-interference ability is low in scenarios with high noise. 



3358 

Mathematical Biosciences and Engineering  Volume 17, Issue 4, 3356–3381. 

The method based on the state of the vehicle [14–18] detects the fatigue state by analyzing data. 
It includes the trajectory of the vehicle or the steering wheel angle. It is the advantage of the way that 
the data is accessible. However, the correlation between the driving state and the fatigue state is weak. 
So, it is difficult to judge the fatigue state of the driver accurately. 

The method based on driver behavior characteristics [19–24] uses the camera to catch the picture 
of the driver during driving. By analyzing the head posture, blink frequency and yawning, etc., the 
fatigue state of the driver is judged objectively. The method does not influence the regular operation of 
the driver due to non-contact sensors. Also, it has high accuracy and stability in the light stabilized 
scene. However, this method has to face mass data processing, and faster calculation speed is required. 
Besides, compared to the method of physiological information, the detection accuracy needs to be 
further improved. Table 1 is the performance comparison of driver fatigue detection methods. 

In recent years, researchers have been working on enhance the accuracy, stability and real-time 
capability of the fatigue detection algorithm. But, most algorithms only focus on a single 
performance index, instead of taking all of them into consideration. With the rapid development of 
artificial intelligence technology, it makes a significant impact on the performance of detection and 
tracking algorithms. The fatigue detection algorithm on the basis of deep learning (DL) is causing 
more and more concern. However, the DL method is still in the stage of exploration for driver fatigue 
detection. And it has not yet formed an effective and universal framework. Besides, as a fatigue state 
data set to drive the deep learning model, it also urgently needs to be constructed. Therefore, it is 
crucial to establish a data set containing the fatigue status of the driver, and construct a fatigue 
detection framework which takes the three indexes into account. 

In this paper, according to artificial intelligence technology, we propose a new universal 
three-layered framework for driver fatigue detection, called time and Robust Detection System 
(R2DS). It is a real-time and robust detection system, which has a sensational accuracy due to the 
application of deep learning method. As we know, deep learning methods, especially convolutional 
neural network model, greatly improve the accuracy of image recognition. However, the complex 
network structure reduces the algorithm speed. So, in order to improve the algorithm speed while 
ensuring the accuracy, we design a 3-layer sub-network in this paper. It greatly deals with the 
combination of accuracy, speed and robustness, with certain level of competing requirement. The 
R2DS consists of three modules specifically. The first module, facial extraction, is to obtain a 
stability facial image for the next algorithms. In the module, for facial detection and eye key points 
location, the paper designs a deep cascaded convolutional neural network (DCCNN). Besides, a face 
tracking sub-module based on improved Camshift is constructed, and on the basis of Support Vector 
Machine (SVM) classifier, a facial validation sub-module is applied to enhance the system stability. 
Then the second module named eyes region extraction is carried out. The eye areas are located 
according to the geometric features of faces and eyes. In the last module, the paper utilizes the ellipse 
fitting method to obtain the shape of driver’s pupils. Eyes state can be decided according to the 
relationship between the long and short axes of the ellipse. At last, the PERCLOS, which is defined 
by calculating the number of closed eyes in a period, is used to determine whether in fatigue or not. 

The contributions of the paper are as follows. 
1). Proposed a three-layered framework for driver fatigue detection in mountain freeway. On the 

basis of a finite state machine model, build a face detection-tracking-verification-(re)detection 
recognition loop system. It effectively enhances the accuracy capability and robustness of the driver 
fatigue detection algorithm. 
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2). DCCNN is firstly applied to face detection and eye key points location. It improves the 
detection accuracy and speed. 

3). Established a dataset containing information on the fatigue status, which compensated for 
the lack of the data sets on driver fatigue detection algorithm. 

The paper is organized as follows. The first part is an introduction to the paper. The second part 
mainly introduces the research related to this paper. The third part presents the algorithm proposed. 
The fourth part is the experimental analysis, and the fifth part is the conclusion. 

2. Related works 

As mentioned above, the method based on driver behavior characteristics becomes one of 
research hotspot. In terms of related technology, it mainly covers traditional methods such as skin 
color segmentation and template matching. The fatigue state is judged by obtaining facial feature of 
driver. Besides, method based on statistical learning such as SVM classifier, Adaboost classifier, 
artificial neural network and so on, are common algorithms for fatigue detection. Recently, with the 
rapid development of calculation, the detection methods based on deep learning have been 
significantly improved. 

Yan [25] used the facial mask to locate the eyes position, then to evaluate the fatigue state with 
PERCLOS. This method has excellent performance on individuals with obvious features, but the 
mask has a large influence on the generalization performance of the model. Niu [26] divided the face 
image in sequence into non-overlapping blocks of the same size, extracted multi-scale features by 
Gabor wavelet transform, and selected the most recognizable features for driver fatigue state 
detection with Adaboost. The algorithm proved to have good performance under different genders, 
postures and illuminations. Based on adaptive attenuation quantization, Shen [27] proposed an 
algorithm to enhance the night facial details of the driver. It can effectively improve the lower part of 
the environment with weak night light intensity, and improve the stable facial image for night driver 
fatigue detection. Besides, the application of an active infrared light source [28–34] has also become 
an important branch. Bergasa [35] located eye position with active near-infrared light source 
equipment. They used finite-state machine to confirm whether the eye is closed. They also applied a 
fuzzy system to evaluate the fatigue state. However, Bergasa’s algorithm depends highly on hardware 
level; on the other hand, the effectiveness of the “bright eye effect” strictly relies on surrounding 
light conditions. Based on human-vehicle characteristics, Gupta [36] proposed a fatigue driving 
identification method by training SVM classifier. Zheng [37] extracted eyes features from the face 
image. The algorithm estimates the pupil center in HSV space. Then, the radius of the pupil is 
evaluated and optimized. Zhao [38] proposed a driving fatigue detection algorithm on the basis on 
the Convolutional Neural Network (CNN). The first network was trained to determine whether the 
human eyes or not, and the second network was trained to identify the coordinates of the eye feature 
points. Finally, the fatigue state was judged by PERCLOS. Zhang [39] applied the Camshift tracking 
algorithm to make the targeted areas detectable, even they were under occlusion. Then, according to 
the specific proportion relationship of the facial organs, the eye feature points were obtained. Finally, 
they used PERCLOS to determine driver fatigue state. 

Although the technology of fatigue detection has made better progress and results, it still need 
to be improved. 

1) The detection method based on vision usually uses Adaboost Classifier Algorithm for face 
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localization. However, when the driver wears glasses or sunglasses, light changes, and the face is 
partially occluded, Adaboost cannot accurately locate the face position and promptly warn of 
fatigue driving. 

2) Due to its intricate network structure and enormous training data, the algorithms based on 
artificial neural network (ANN) unusually have poor real-time performance. 

Consequently, it is crucial to driver fatigue detection how to hence the accuracy, real-time 
capability and stability. 

3. Methodology 

The overall structure of R2DS is shown in Figure 1. It includes three core modules, respectively, 
driver facial extraction, driver eyes extraction and driver fatigue feature extraction. Precisely, the 
facial extraction module includes three sub-modules, namely, face detection and eye key points 
location, face tracking, and face validation. The first sub-module, face detection and eye key points 
location, is designed to achieve a facial suspected area from the images captured from CCD. The 
facial area and eye key points are gathered from the images using DCCNN. The second sub-module, 
face tracking, applies an improved Camshift algorithm to track the face and reduce redundant data in 
the recognition process. The last sub-module, face validation, is arranged to accomplish a face 
verification algorithm, which is based on theory of support vector machine (SVM) with face database. 
To ensure the efficient cooperation of the three sub-modules, the paper utilizes the finite state 
machine (FSM) to coordinate the flow among sub-modules, and provides the switching conditions of 
each sub-module. Based on the process above, the recognition loop, 
detection-tracking-validation-(re)detection, is constructed. 

The driver eyes extraction module processes the output of the driver face extraction module. 
Firstly, according to the posture of the driver’s face, the rotation correction is performed. Then the 
eye areas are located according to the geometric features of the driver’s face and eye. 

The driver fatigue feature extraction module processes the output of the eyes extraction module. 
It gains the parameter which can show the fatigue status of the driver. In this module, the ellipse 
fitting method is applied to obtain the shape of the driver’s pupils. According to the relationship 
between the long and short axes of the ellipse, eyes state (opening or closed) can be decided. 
Furthermore, the fatigue status is evaluated by PERCLOS, which calculated by the number of 
eye-closed in a period. 

3.1. Driver facial extraction 

Driver facial extraction is the basis and key stage for fatigue detection based on computer vision. 
As described above, the paper designs three sub-modules, face detection and eyes positioning, face 
tracking and face validation. Among them, the face detection sub-module constructs a deep cascaded 
convolutional neural network, which extracts the suspected face region from the complex 
background quickly. The face tracking sub-module combines the improved Camshift algorithm, 
which tracks suspected driver face areas to reduce computational time. The face validation 
sub-module constructs the driver classifier based on SVM, and confirms the suspected face area 
during the tracking process. To ensure the efficient cooperation of the three sub-modules, the paper 
applies the FSM to coordinate the operation flow between the sub-modules, and gives the switching 
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conditions of each sub-module. 
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Figure 1. Driver fatigue detection algorithm structure. The solid lines in the figure show 
the direction of the data-flow when the module runs successfully. Conversely, the dashed 
lines show the direction of the data-flow when the module fails. For example, when the 
SVM verifies the face images, it transfers to the Camshift tracking module. And if not, it 
transfers to the DCCNN module. See Section 3.1 Finite State Machine for specific 
transfer logic. 

3.1.1. Face detection and eyes location based on DCCNN 

Face detection and eye key points location are the prerequisites of fatigue detection. The 
accuracy, real-time capability and robustness of the localization algorithm will be directly related to 
the result of fatigue detection. Specifically, the accuracy of the location algorithm will affect how to 
extract face and eyes from the complex background, which is beneficial to the identification of the 
subsequent fatigue state. The real-time performance of the location algorithm will determine the 
computational complexity of the algorithm, which is conducive to reducing the cost of hardware. The 
robustness of the location algorithm will improve the performance of anti-interference, which helps 
reduce the misjudgment rate of fatigue state. 

Multi-task convolutional neural network (MTCNN) [40] has higher accuracy in face detection 
and key points location. The neural network structure includes three cascaded convolutional neural 
networks of different tasks, called Proposal Network (PNet), Refine Network (RNet), and Output 
Network (ONet). The algorithm principle is as follows. Firstly, by creating an image pyramid and 
input all images to the PNet, we obtain many bounding boxes of suspected face area in the PNet. And 
then, the layer network generates a large number of face suspected area bounding boxes. Then, 
non-maximum suppression [41–43] is used to eliminate tiny or overlapping bounding boxes. 
Additionally, the PNet results are exported into the RNet. Finally, the RNet outputs are input into 
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ONet, where bounding boxes and key points of the face are explored. 
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(b) Network-2 
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(c) Network-3 

Figure 2. The structure of DCCNN. Where conv is the convolutional layer, MP is the 
largest pooled layer, and fc is the fully connected layer. 

Under the framework of MTCNN, the paper designs a DCCNN to detect the area of driver’s face. 
The network is shown in Figure 2. Similar to MTCNN, DCCNN covers three convolutional neural 
networks: Network-1, Network-2, and Network-3. Network-1 is a full convolutional neural network, 
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which will generate numerous suspected regions of the face. Network-2 processes the result of 
Network-1. The input image size of the Network is 24 × 24, so that it can adapt to different sizes of an 
image of driver’s face. By further screening, the Network-2 keeps a small number of suspected face 
areas. Network-3 processes the result of Network-2. The network has multiple convolutional layers and 
pooling layers, which can extract face images with stricter facial features. And with high confidence in 
the output layer of Network-3, coordinates of face regions and eyes points are provided. 

During training, we use the AFLW data set and the WIDER FACE data set as the driving data. 
Among them, The WIDER FACE dataset includes 32203 pictures and 393703 marked faces, which 
is one of the most common face databases. The AFLW face database contains 250 million 
hand-labeled face pictures, of which 59% are female, and 41% are male. On the basis of manually 
labeled face regions, the paper uses the WIDER_FACE and AFLW datasets to crop a number of face 
pictures. There are 2 × 105 face pictures, 5.9 × 105 partial face pictures and 8.9 × 105 non-face pictures. 

The DCCNN training process is to continuously optimize the network parameters, until 
obtaining the optimal model. In order to show the impact of various parameters on network 
performance, a loss function is introduced during training. The loss function is an indicator, which 
measures the difference between the predicted output and the actual result. There are three tasks 
during the training process of DCCNN, severally, face classification task, face region fitting task, and 
eye key points locating task. 

For the first task, the cross entropy [44] loss function is applied during training. For any 

sample ix , the cross-entropy loss function is: 

1 1 1 1 1( log( ) (1 )(1 log( )))i i i i iL y p y p=- + - -  (1) 

Where 1
ip  is the output of network, 1

iy  is the real label of (face/non-face) ix . 

The second and third tasks are used to forecast the coordinates of the face region, which is a 
regression problem. Consequently, we apply the Euclidean loss functions during training. The loss 
function of face region fitting task is shown in Eq (2). And the loss function of eye key points 
locating task can be expressed by Eq (3). 

22 2 2

2i i iL p y= -  (2) 

Where 2
ip  is the predicted coordinates of face region, and 2

iy  is the real coordinate of the face 

region. 
22 2 2

2i i iL p y= -  (3) 

Where 3
ip  is the predicted coordinates of the key points of eyes, and 3

iy  is the real coordinates of 

the key points. 

3.1.2. Face tracking based on improved camshift 

So far, the DCCNN has achieved the extraction of driver facial features. However, the driving 
fatigue detection system usually requires a fast speed in practical applications. The deep learning 



3364 

Mathematical Biosciences and Engineering  Volume 17, Issue 4, 3356–3381. 

network requires a large amount of calculation time, resulting in that the real-time capability cannot 
meet the demands of the driving fatigue detection system. 

Target tracking aims to reposition the target quickly in the subsequent image, which is based on 
target detection. The application of target tracking can improve system speed significantly because of 
less unnecessary counting. To improve the speed of facial extraction, it is essential to design a 
tracking algorithm to enhance the real-time capability of the framework. Presently, face tracking 
algorithms mainly include Kalman filtering [45,46], particle filtering [47], meanshift [48], and 
Camshift [49–51]. Among them, the Camshift face tracking algorithm is simple and fewer 
calculations, which is suitable for face tracking of the driver. However, the Camshift tracking 
algorithm is sensitive to the color like skin, which leads to misjudgment of the face region. Therefore, 
we propose an improved Camshift face tracking algorithm. Based on Camshift algorithm, the paper 
introduces the variable weight histogram method. To avoid the problem of the tracking window 
flowing caused by background noise interference, it uses the detected face window as the initial 
window to enhance the weight of the face target area. 

Assuming that the DCCNN detect that the center of the face window is 0 0( , )x y , the image size 

is *m n  pixels, and the weight function is introduced as Eq (4). 

0 0

( , )
( , ) ( ( , ), )

( , )

m n
u c c

c
x x y y u

q x y
x y f b x y u

p x y
w

- -

=åå  (4) 

Where ( , )u c cq x y   is the probability density function of the target window, ( , )u c cp x y  is the 

probability density function of the candidate window; ( , )b x y  is the Eigen function; ( ( , ), )f b x y u  

is a function for determining whether ( , )b x y   is an eigenvector. 

After the weight function is introduced, the new search window center can be expressed by Eqs (5) 
and (6): 

0 0

0 0

( , ) ( , )

( , ) ( , )
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x x y y

x y xI x y
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- -
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( , ) ( , )
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x x y y

c m n

c c
x x y y

x y yI x y

y
x y I x y

w

w

- -

- -

=
åå

åå
  (6) 

Where ( , )cI x y  is the gray value of the pixel points ( , )x y  position. 

3.1.3. Face validation based on SVM 

As mentioned above, the paper uses the face detection sub-module to mark the suspected region 
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of driver face. And then, the improved Camshift algorithm is applied to track the suspected area of 
the face in the image stream. However, the initial window of the mark is inevitably subject to small 
errors. After operating the tracking mode for a certain period, the face window may be shifted to the 
non-face area due to the accumulation of errors. 

Thus, the paper designs a face validation sub-module to confirm the suspected face of the 
marked face, and judges whether there is a face in the marked box. When the tracking window drifts 
to the non-face window, the face validation sub-module provides identification feedback, thereby 
restarting the face detection sub-module. 

To verify the suspected region of the face, there are two problems to be solved: The description 
of the face features and the discrimination of face. For the face feature description, the Histograms of 
Oriented Gradient (HOG) [52] maintains good invariance to image geometry and optical deformation. 
Besides, the HOG feature allows for subtle changes in the behavior of target. Thus, the paper selects 
HOG as the description method of facial features. For the discrimination of face, Support Vector 
Machine (SVM) [53] is suitable for binary classification problems with obvious machine learning 
characteristics, for instance, HOG. It can effectively avoid dimensionality disasters and simplify 
classification and regression problems. The paper chooses SVM as the face of the suspected area of 
the face and non-face validation algorithm. Figure 3 shows part of the positive and negative samples 
of the SVM classifier training. 

 

Figure 3. SVM face classifier training sample. 

3.1.4. Facial collaborative recognition based on finite state machine 

As mentioned above, the paper constructs the DCCNN to complete the driver face detection. 
Then, to improve the system calculation speed, an improved Camshift algorithm is designed for 
tracking the face that the DCCNN has detected. With the SVM classifier, it is verified that the result 
of the tracking is a face. To ensure that the three sub-modules work efficiently and orderly, the paper 
combines the finite state machine to control the operation flow between each sub-module, which 
form the detection-tracking-validation-(re)detection recognition loop. The Finite State Machine 
(FSM) can represent a limited number of states and behaviors, such as transitions and actions 
between states. Also, it is widely used in computers, communications, digital logic design, and 
software engineering [54]. 

As shown in Figure 4, when the face detection and eye key points location network are ready, 
the FSM starts from the initial state (INIT_STATE) and transitions to the detection state 
(DETECTION_STATE). Under DETECTION_STATE, the DCCNN detects the face of the driver 



3366 

Mathematical Biosciences and Engineering  Volume 17, Issue 4, 3356–3381. 

and locates eye key points from the video stream image. If the driver’s face is detected, the running 
state is switched to the tracking window initialization state (TRACK_INIT). Under TRACK_INIT, 
the face suspected region obtained by the DCCNN is used as the initial window of the improved 
Camshift tracking algorithm. After the initialization is successful, the running state is transferred to 
the tracking state (TRACKING_STATE). In the TRACKING_STATE, Camshift initializes the 
window to detect the face of the subsequent image stream. After the tracking algorithm acquires the 
suspected area of the face in the subsequent video image, the running state is transferred to the face 
validation state (VALIDATION_STATE). Under VALIDATION_STATE, if the face is verified, it 
will move to the tracking state (TRACKING_STATE), and if it does not pass, it will be transferred to 
the face detection state (DETECTION_STATE) again. 

DETECTION_S
TATE

TRACK_INIT

TRACKING_ST
ATE

VALIDATION_
STATE

INIT_STATE

tracking succeed

validation passed

detection ok

face detected

initialize succeedvalidation failed

 

Figure 4. Driver facial extraction finite state machine model. 

x

y

 

x

y

 

(a) original image (b) image after rotation operation 

Figure 5. Rotating operation diagram. 
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3.2. Driver eyes regions extraction 

In Section 3.1, the closed-loop is identified to extract the facial image from a complex 
background. The key steps above lay the foundation for the positioning of the eye area and the 
analysis of the eye state. According to the output of the DCCNN, the key points of the eyes are 
located, and the geometric features of faces and eyes is used to reposition the eyes area of driver. 
Considering that the head of the driver may have a certain degree of rotation during driving, the 
paper corrects the rotation of the face image, as shown in Figure 5. 

The image is rotated by q   degrees around the center points according to the left eye key points 

coordinates 1 1( , )L x y , right eyes 2 2( , )L x y  and the image center points coordinate ( / 2, / 2)O H W . 

The rotation calculation formula is as shown in Eqs (7–9). 

1 2

2 2
1 2 1 2

=arcsin( )
( ) ( )

y y

x x y y
q

-

- + -
  (7) 

cos 0 cos
2

sin cos (sin cos )
2

0 0 0

H

H
T

q q

q q q q

é ù
ê ú-
ê ú
ê ú
ê ú= - +ê ú
ê ú
ê ú
ê ú
ê ú
ë û

  (8) 

1P TP=   (9) 

Where T  is the rotation matrix, H  is the image height, W  is the image width, 1 0 0( , ,1)TP x y=  

is the pixel coordinates before rotation, and ( , ,1)TP x y=  is the pixel coordinates after rotation. 

After the rotation correction, a frontal image of the face can be obtained, as shown in Figure 5(b). 

The left and right eyes coordinates are ' '
1 1( , )L x y  and ' '

2 2( , )L x y . The center distance of the two eyes is 

calculated from the centers coordinates of the left and right eyes after the rotation correction, as shown 
in the Eq (10), and the eyes region is positioned by Eqs (10–12).  

' '
1 2d x x= -   (10) 

The coordinates ( , )x y   of the upper left corner of the left eyes area are: 

'
1 / 8x x d= -   (11) 

'
1 / 4y y d= -   (12) 

The width and high of driver’s eyes area are / 2d  and / 4d  . 
Based on the driver facial extraction, the paper extracts and verifies the suspected area of the 

eyes in the image. Then, by identifying the movement characteristics of the driver eyes, the fatigue 
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state of the driver is analyzed. Therefore, the correct positioning of the eyes is related to the result of 
the fatigue state discrimination. 

To enhance the accuracy of the eyes area extraction and avoid the problem of poor image 
quality due to errors, the eyes validation module is introduced in this paper, and the HOG feature is 
combined with the SVM classifier method. The eyes validation module is constructed similarly to 
face validation, and will not be described here. 

3.3. Parameter extraction and fatigue detection 

After the eyes position is obtained, the driver fatigue feature extraction and the driver fatigue 
state determination are performed. Driver fatigue is a description of the state, and its corresponding 
fatigue level is a dynamic process. Drivers' facial changes are abundant, and with the occurrence of 
fatigue, drivers often show sleepiness and yawning. Therefore, the characteristic index of fatigue can 
be extracted from the eyes movement state, the head posture and the mouth state, thereby 
recognizing the fatigue state. Among them, when the driver is fatigued, the eyes of the driver 
movement state changes significantly, providing an observation dimension for fatigue detection. 
Wierwille [55] proposed the Percentage of Eyes Closure (PERCLOS) as a valid indicator for fatigue 
driving, which was widely accepted and adopted by a large number of researchers. 

Given this, the paper chooses PERCLOS as an essential parameter for the fatigue state of the 
driver. PERCLOS [56] is a physical quantity that measures the state of human fatigue (sleepiness), 
defined as the time taken by the eyes to close in unit time. The US Federal Highway Administration 
and the US National Highway Traffic Safety Administration simulated driving in the laboratory, 
verifying the effectiveness of PERCLOS in characterizing the fatigue state. As defined by PERCLOS, 
it is important to conclude whether the eyes are opening or closed. Presently, PERCLOS usually has 
three criteria: 1) P80, namely, if the eyelid covers the pupil area more than 80%, it will be classified 
as closed; 2) P70, namely , if the eyelid covers the pupil area more than 70%, it will be classified as 
closed; 3) EM, namely, if the eyelid covers the pupil area more than 50%, it will be classified as 
closed. After experimental validation [57], the P80 standard has the best accuracy. Therefore, the 
paper uses the P80 standard as the fatigue state judgment index, that is, when the eyelid of driver 
covers the pupil area over 80%, it is determined that the eyes are closed in the present image, and the 
proportion of the eyes closure is counted in the specified time. The state of human fatigue is assessed. 
The formula for PERCLOS is: 

100%close

total

N
PERCLOS

N
= ´   (13) 

Where closeN   is the number of closed eye images and totalN   is the total number of images. 

After selecting the fatigue state evaluation parameters, it is crucial to obtain the proportion of 
the eyelid covering pupil from the eye image. As shown in Figure 6, the pixel distribution of opening 
eyes images has a significant difference from closed. In the closed eyes, the eyelids completely cover 
the pupil, and the proportion of skin pixels in the image is large. Except for the eyelash area, the 
pixels in other areas are more evenly distributed. In the opening state, the proportion of black pupil 
pixels is large, and compared to the closed eyes state, the opening state image has a larger pixel 
distribution difference in the vertical direction. According to this, in conjunction with the P80 
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standard, the state of the eyes in the image can be determined.  

 

Figure 6. Pixel distribution in opening and closed eyes. 

As can be seen from Figure 6, when the driver’s eyes are completely open, the pupil is elliptical. 
Therefore, the paper first splits the eyes from the image and then performs ellipse fitting on the black 
pupil. The ratio of the long and short axes of the obtained ellipse is defined as the fatigue 
characteristic parameter. To simplify the calculation, rate  is used as the ratio of the pupil area to the 

pupil area. As shown in the Eq (14), when raterate Th< , it is determined that the eyes are closed. 

/rate a b=   (14) 

Where a  is the elliptical minor axis length. b  is the length of major axis and rateTh  is the 

threshold. According to P80 standard, rateTh is set to 0.2 

Based on extracting the driver fatigue characteristic parameter rate , the proportion of the eyes 
closed in a predetermined time is analyzed, and the PERCLOS   value is calculated. When 

PERCLOSPERCLOS Th> , the driver is determined to be in a fatigue driving state. 

4. Experiments 

To certify the effectiveness of the framework, the paper designs a series of experiments. Firstly, 
using public dataset FDDB and the self-built dataset FSD as the test data, the performance of the 
DCCNN is evaluated. Secondly, a contrast experiment is arranged to corroborate the reasonability of 
detection-tracking-validation-(re)detection method. Finally, we construct an experiment to test the 
accuracy and speed of R2DS. And then, it is compared with relative algorithms. 
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4.1. Experimental environment and data sets 

The experimental platform is the Intel Core i5-8400 with x86 architecture, and the CPU clock 
speed is 2.80 GHz. Graphics card is GTX1060 with Pascal architecture (CUDA: 9.2; CUDNN: 7.2), 
The RAM is 8 G DDR4, and the opencv3.4.6 image library is used. The deep learning computing 
framework is TensorFlow1.7. The environment of the program is in python 3.6. 

As mentioned before, during training, we use the AFLW data set and the WIDER FACE data set 
as the driving data. But, in the phase of the experiment, different data is applied in the experiments, 
including public data sets and self-built data sets. The public data set is Face Detection Data Set and 
Benchmark (FDDB) [58]. FDDB is one of the prevalent evaluation datasets for face recognition 
algorithms. It includes 2845 images with 5171 faces, and the coordinates of each face region are 
marked already. However, FDDB data sets lack the information of the driver’s eyes state, resulting in 
inability to evaluate the accuracy of fatigue detection algorithms. Consequently, we establish a 
Fatigue State Dataset (FSD), which contains 1,560 images of the driver. It adds the information of eyes 
state by manual marking. Among them, male drivers and female drivers accounted for 60 and 40%, 
with 835 eyes-opening images and 725 eyes-closing images. The experimental data sets information is 
shown in Table 2. 

Table 2. Data sets. 

data sets 
Total 

images 
Face 

number 
Eyes-opening 

images 
Eyes-closing 

images 
Face 

border 
Eyes 

coordinates 
Eyes state 

WIDER FACE 32203 393703 0 0 √ × × 

AFLW 250 million 250 million 0 0 √ × × 

FDDB 2845 5171 0 0 √ √ × 

FSD 1560 1560 835 725 √ √ √ 

4.2. DCCNN performance evaluation 

The DCCNN is a deep learning network, which identifies the driver’s face and locates the key 
points of eyes. The performance of the DCCNN is directly related to the accuracy of the driver 
fatigue detection algorithm. Therefore, this paper evaluated the performance of DCCNN on the 
FDDB data sets and the FSD data sets firstly. 

The paper selected accuracy (ACR) and ROC curve [59] as performance evaluation indexes. 
The accuracy is the ratio of the number of correctly detected samples to the number of all samples, 
which is an intuitionistic index to evaluate the performance of the network. However, the accuracy 
index is difficult to express the performance of the network, when the number of positive and 
negative samples is unbalanced. In the pattern recognition task, Sensitivity is the proportion of all 
positive samples are detected correctly. And specificity indicates the proportion of all negative 
samples are detected correctly. ROC curve is a comprehensive evaluation index that combines 
sensitivity and specificity. 

4.2.1. Accuracy 

In the tasks of face detection and eye key points location, the ACR is the ratio of the number of 
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detected images to the number of all images, as shown in Eq (15) 

det ected

total

N
ACR

N
=   (15) 

Where det ectedN  is the number of detected images and totalN  is the total number of images 

In the stages of training and validation of DCCNN, to measure the similarity between the 
suspected face area and the actual area of face, the Intersection over Union (IoU) parameter is 
introduced. IoU [60], a parameter, is used to evaluate the accuracy of detecting relevant objects in the 
peculiar data sets, as shown in Figure 7, where is the face area detected by the DCCNN, and is the 
marked area of face. The IoU can be computed by Eq (16). 

_face d

face

_face d face

 

Figure 7. Diagram of IoU. 

( _ )

( _ )

Area face d face
IoU

Area face d face
=




  (16) 

Where ( _ )Area face d face   is the area of _face d face  and _ )Area face d face（   is the 

area of _face d face  . 

 

Figure 8. Accuracy of driver face detection and eye key points location. 



3372 

Mathematical Biosciences and Engineering  Volume 17, Issue 4, 3356–3381. 

 

Figure 9. ROC curve in face detection and eye key points location. 

As show in Figure 7 and Eq (16), it is indicating that the higher of IoU, the larger of overlap 
between prediction face area by DCCNN and the actual face area. Ideally, if 1IoU = , it means that 
the prediction area overlaps with the actual area. Generally speaking, it is considered that the 
accuracy of target detection network is excellent if 0.5IoU > . In [40], the author think the face is 
detected when the IOU above 0.65. In this paper, considering that the accuracy of DCCNN will 
affect the performance of follow-up algorithms, we affirm that face of driver is detected correctly 
when 0.75IoU > . 

As mentioned above, the driver face detection model based on the DCCNN include three 
cascaded sub-convolution neural networks. Each sub-network are trained and validated 
independently. 

Step 1: Train the Network-1 with 12 12´  pixel image as the input. 
Step 2: Use the candidate face area output of Network-1 as the input of Network-2, train the 

Network-2. 
Step 3: Train the Network-3 with the candidate image output of Network-2.  
As show in Figure 8, with the increase of the training steps, the ACR is gradually enhanced. The 

final ACR of the Network-1 is 94.7%, the final ACR of the Network-2 is 97.5%, and the final ACR 
of the Network-3 is 98.2%. 

4.2.2. ROC curve 

Sensitivity and specificity are important evaluation indexes of the pattern recognition model [61]. 
The TP , TN , FP   and FN  represent the amount of true positive, true negative, false positive and 
false negative data. The sensitivity and specificity can be expressed by Eqs (17) and (18). 

n

TP
S

TP FN
=

+
  (17) 
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p

TN
S

TN FP
=

+
  (18) 

The ROC curve can be drawn with nS  and 1 pS- . In the pattern recognition tasks, the closer 

the ROC curve is to the upper left corner, the higher the accuracy of the test is. Figure 9 shows the 
ROC curve in the face detection and eye key points location tasks. It indicates that the DCCNN has 
excellent performance in face detection and key points location. 

In summary, the accuracy of face detection and eye key points location, on FDDB datasets and 
FSD datasets, shows that the DCCNN proposed in this paper has outstanding efficiency. Besides, 
ROC curve indicates that the DCCNN can avoid two kinds of errors in pattern recognition, that is, to 
confirm that the face can be detected correctly in the image while avoiding the wrong judgment. 

4.3. Driver facial extraction 

Except for considering accuracy, the real-time capability and stability of driver fatigue detection 
framework are also critical. In this section, based on finite state machine, three experiments are 
designed to compare the real-time capability and stability of the 
detection-tracking-validation-(re)detection model. 

The paper selected 10 test drivers of different ages, genders and driving ages. For safety reasons, 
the fatigue driving experiments videos were taken from the simulator in mountain freeway. The test 
driver participated in three comparative tests: Test A, Test B, Test C, and their personal information is 
shown in Table 3. 

Test A (Detecting): Only use the DCCNN to identify the face and locate eye key points. No 
tracking and validation module are applied. 

Test B (Detecting + Tracking): Run DCCNN to identify the face and locate the eye key points. 
Then, apply the improved Camshift algorithm to track the face area in video stream. 

Test C (Detecting + Tracking + Validating): Take the detection-tracking-validation-(re)detection 
framework, the specific steps are as follows: 

Step 1: Use DCCNN to detect the suspected area of face and locate the eye key points. based on 
the suspected area, establish an initial window to for the improved Camshift tracking module. 

Step 2: Apply the improved Camshift algorithm to track the face area of driver in video stream. 
Step 3: Determine whether the tracking area is the face of driver with the SVM classifier. If yes, 

repeat step 2. Otherwise, transform to step 1. 
Figure 10 is the algorithm speed of 10 subjects under different tests. It can be seen that the face 

detection sub-module based on the DCCNN has a slow speed, and the average speed is 46.34 ms/f. 
After applying the face tracking sub-module, the speed of driver facial extraction is greatly improved. 
The average speed is 19.30 ms/f, and the average speed of the 
detection-tracking-validation-(re)detection model is 23.67 ms/f. 

Furthermore, to illustrate the importance of the face validation sub-module, the paper uses 
DCCNN to identify the face region as the ground truth bound, improved Camshift tracking suspected 
face area as candidate bound. Compare the difference between IoU with face validation sub-module 
and without face validation sub-module. 
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Table 3. Personal information of test drivers 

 Gender Age Driving age Resolution Total frames 

1 Male 23 2 480p 23280 

2 Male 26 3 480p 21120 

3 Male 41 7 480p 18300 

4 Male 22 1 480p 15890 

5 Male 37 6 480p 12876 

6 Female 21 1 480p 20482 

7 Female 26 4 480p 30144 

8 Female 32 8 480p 25680 

9 Female 40 10 480p 19630 

10 Female 24 4 480p 32018 

 

Figure 10. Algorithm speed of different tests. 

Figure 11 shows the self-adaptive adjustment procedure with the face validation sub-module, 
which includes 4 stages. Stage 1 shows the process of face detection and eye key points location 
using DCCNN, and then put the detected face as the initial window for tracking. Stage 2 is the face 
tracking process. In this process, the improved Camshift algorithm is used to detect the suspected 
area of the face in the subsequent video stream. In stage 3, the face validation sub-module is not 
applied. The tracking window drifts to non-face area due to external interference. The IoU drops 
from 0.7 to 0 qiuckly and remains at 0 for a long time. The result indicates that the system does not 
have the capabilities of self-adaptive adjustment. The face validation sub-module is applied in stage 4. 
Therefore, when the tracking windows drifts to non-face area, the system will restart the face 
detection and eye key points location sub-module. The IoU rises from 0 to 0.7 quickly, which 
indicates that the system is robust with applying the face validation sub-module. 
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Figure 11. Self-adaptive adjustment procedure with face validation sub-module. 

In summary, the recognition loop we proposed, detection-tracking-validation-(re)detection, 
considers both accuracy and real-time capability. In addition, through the introduction of the face 
validation sub-module, the framework has strong adaptive adjustment ability when encountering 
external interference. 

4.4. Driver facial extraction 

Face detection and eye key location are the foundation of fatigue detection. As described above, 
after segmenting the eye image from the original image, the ellipse fitting algorithm is used to fit the 
boundary of the pupil. Then, the ellipse length and short axis ratio is used as the fatigue state 
evaluation index. The driver fatigue evaluation test is divided into two steps. 

Table 4. Fatigue detection accuracy and algorithm speed. 

 accuracy/% 

speed / 1ms f -⋅
Face detection and eye key points location 1AC  Fatigue detection 2AC  

1 98.01 96.32 31.83 

2 97.85 95.82 32.76 

3 98.24 96.46 32.02 

4 96.97 94.79 29.65 

5 97.04 94.96 35.18 

average 97.62 95.87 32.29 
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Table 4 indicates the driving fatigue detection accuracy and algorithm speed. As we can see, the 
average accuracy of face detection and eye key points location is 97.62%. The average accuracy of 
fatigue detection is 95.87%, and the average algorithm speed of the framework is 32.29 ms/f. 

Step 1: Randomly obtain 1000 images from the FSD data set as a group of samples for 5 times, 
then calculate the accuracy of face detection and eye key points location and fatigue detection. The 
accuracy of face detection and eye key points location can be obtained by Eq (15). If the number of 

images judged correctly in the sample is fatigueR , the accuracy of the driving fatigue detection can be 

expressed by Eq (19): 

2
1 *

fatigueR
AC

AC N
=   (19) 

Where, 1AC  is the accuracy of face detection and eye key points location. N  is number of samples. 

Step 2: Select 5 driving videos to evaluate the real-time capability of the driving fatigue 
detection framework. 

To prove the effectiveness of PERCLOS in fatigue detection, we select two videos with typical 
state (fatigue and non-fatigue) to calculate the PERCLOS within 30 seconds. Figure 12 shows the 
PERCLOS curve of the two typical states. It can be seen from the figure that the PERCLOS is always 
kept below 0.4 in non-fatigue state. In the fatigue state, the PERCLOS is mostly greater than 0.4. 
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Figure 12. PERCLOS curve of fatigue and non-fatigue. 

Table 5. Fatigue detect algorithm comparison. 

Algorithms accuracy/ %  speed/ms·f-1 

MTCNN + LRCN [62] 91.00 52.97 

MTCNN + LSTM [63] 95.83 132.34 

Ours 95.87 32.29 



3377 

Mathematical Biosciences and Engineering  Volume 17, Issue 4, 3356–3381. 

As illustrated in Table 5, the paper compared the framework proposed with the related 
algorithms. It indicates that compared with the MTCNN + LRCN [62] and MTCNN + LSTM [63] 
algorithms, the proposed method has higher accuracy of fatigue detection. Moreover, because of the 
application of detection-tracking-validation-(re)detection, the speed of fatigue detection algorithm 
has been significantly improved. 

5. Experiments 

In the mountain freeway, the traffic accidents caused by fatigue driving will bring severe 
losses. The driver fatigue detection system is an objective supplement to the laws and regulations. 
Accuracy, real-time capability and robustness are essential evaluation indexes for driver fatigue 
detection algorithm. 

This paper constructs a new real-time and robust framework for fatigue detection named R2DS. 
To avoid extracting feature manually and enhance the accuracy of face detection algorithm, a deep 
convolutional neural network is designed to identify the face of driver and locate eye key points. The 
performance of the deep learning network is evaluated on the public dataset FDDB and the self-built 
dataset FSD, indicating that the proposed network has higher accuracy. On this basis, a recognition 
loop, detection-tracking-validation-(re)detection, is constructed. We designed a face detection 
sub-module using DCCNN, then applied an improved Camshift for face tracking sub-module. Finally, 
a trained SVM classifier was used for face validation sub-module. Experiments show that with the 
recognition loop proposed in the paper, the speed of face detection and eye key points location was 
enhanced significantly. Besides, the robustness of the system was significantly enhanced. Based on 
face detection and eye key points location, we perform the face rotation correction according to the 
coordinates of the key points firstly. Then, the eyes areas are located according to the geometric 
features of faces and eyes. Lastly, the ellipse fitting algorithm is used to fit the boundary of the pupil, 
and evaluating the driver fatigue state by calculating PERCLOS. Experiments show that the 
comprehensive accuracy of the driver fatigue detection framework proposed in the paper can 
reach 95.87%, and the algorithm speed is 32.29 ms/f in the 640 × 480 resolution image. 

In the future, we will concentrate on the following research. 
1). Upload the results of the fatigue detection to the cloud platform, and combine the big data 

analysis techniques to analyze the driver's fatigue period.  
2). Integrate the fatigue driving detection algorithm into ADAS (Advanced Driving Assistant 

System).  
3). Expand the applicable environment of the algorithm and explore the driver fatigue detection 

algorithm in night environment. 
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