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Abstract: Risk monitoring has been widely used in health care, further, control charts are often used 

as monitoring methods for surgical outcomes. Most of the methods can only detect step shifts of 

position parameters, but cannot take measures on scale parameters. In this paper, we proposed four 

methods based on EWMA control charts, namely SESOP, STSSO, SESOP-MFIR and STSSO-MFIR, 

to improve the existing monitoring methods. Specifically, SESOP standardizes variable on the basis 

of an EWMA charting method; STSSO replaces the statistics of the original EWMA charting method 

with the score test statistics; for SESOP-MFIR and STSSO-MFIR, we upgrade their control limits 

from asymptotic to time-varying based on SESOP and STSSO, which enhance the timeliness of the 

earlier shifts monitoring. In order to verify the improvement of surgical outcomes monitoring, we 

respectively carry out simulation experiment and a practical application on ESOP and our four 

methods. SESOP can raise the overall efficiency of detecting shifts; STSSO led to a significant 

increase in the monitoring stability, especially for small volatilities; the optimization brought by 

SESOP-MFIR and STSSO-MFIR are more obvious, that the speed of detecting earlier shifts can 

even be reduced to half of the existing methods. Then, we apply these methods to the SOMIP 

program of Hong Kong, SESOP-MFIR and STSSO-MFIR have the best performance and can detect 

early shifts in time. According to the results, the methods we proposed can monitor both early shifts 

and scale parameters and improve the performance of surgical outcome monitoring in different 

degrees compared to those existing methods. 

Keywords: EWMA charting method; risk monitoring; FIR features; variable standardization; score 

test statistics 
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Abbreviations 

EWMA: Exponentially Weighted Moving Average; CUSUM: Cumulative Sum; SOMIP: Surgical 

Outcome Monitoring and Improvement and Improvement Program; VLAD: Variable Life-Adjusted 

Display; ARL: Average Run Length; WST: Weighted Score Test; GLMMs: Generalized Linear 

Mixed Models; IC: In Control; OC: Out of Control; FIR: Fast Initial Response; CL: Control Limit; 

ESOP: EWMA chart for Surgical Outcome; SESOP: Standardization EWMA chart for Surgical 

Outcome; STSSO: Score Test Statistics for Surgical Outcome; SESOP-MFIR: Standardization 

EWMA chart for Surgical Outcome with Modified Fast Initial Response; STSSO-MFIR: Score Test 

Statistics for Surgical Outcome with Modified Fast Initial Response. 

1. Introduction  

In today's manageable health care environment, measuring and comparing the quality of health 

care across institutions is becoming increasingly important. So, there has been a great deal of interest 

in improving the quality of health care, with particular emphasis on monitoring surgical outcomes [1]. 

In the past few years, control charts have been widely used in surgical quality, which are able to help 

identify the source of the problems and provide ideas on how to solve the problems [2]. Control 

charting methods are statistically designed charts that measure, record, and evaluate process quality 

characteristics to monitor whether the process is in a controlled state, which can either be a 

memory-type or memory-less control chart [3], the representative methods are exponentially 

weighted moving average (EWMA) charts [4–6], cumulative sum (CUSUM) charts [7–9], Variable 

Life-Adjusted Display (VLAD) charts [10,11] and Shewhart charts [12–14]. Although the concept of 

control charts was proposed earlier, the subsequent developments are basically based on the 

improvement and comparison of the above control charts [3,15–17]. 

However, unlike the relative stability of industrial processes, the target of surgical risk 

monitoring is the patient, whose the postoperative state is largely affected by the preoperative 

physical health and surgical factors, such as age, dyspnea status, magnitude of surgery, and so 

forth [18]. To accommodate such heterogeneity, the risk-adjusted charts [19–21] were used to 

monitoring the risks, in which a risk adjustment procedure was employed. Specifically, Cook et al. 

adopted a risk-adjusted EWMA chart to sequentially evaluate the results in intensive care units [19]; 

Steiner et al. introduced the logit adjusted model into CUSUM chart in order to reflect the variation 

of surgical risk among patients [20]; Jin Y et al. proposed a new risk-adjusted exponentially weighted 

moving average VLAD chart and provided a control limit that can be used with the VLAD [21]; 

Zhang et al. determined simulation-based dynamic probability control limits (DPCLs) 

patient-by-patient for the risk-adjusted Bernoulli CUSUM charts [22]. On the whole, in the existing 

methods, EWMA chart is used to monitor surgical outcomes [1,23]; CUSUM chart has been 

proposed to detect the occurrence of postoperative deterioration [24,25]; VLAD chart is widely used 

as a tool to produce clear and easy-to-understand results in monitoring of surgical outcomes [10,11]. 

Most of the monitoring methods mentioned here focus on the detection of step shifts in position 

parameters, however, online monitoring of scale parameters is a significant part of surgical 

monitoring outcomes of surgery, but it is not covered by these methods [18]. Therefore, it is 

particularly important to have appropriate surgical risk monitoring methods and assist 

decision-making by hospital administrators and health care providers. 
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As we all know, the changes in both average risk and volatility are important characteristics that 

needs to be detected in monitoring surgical outcomes [18] and has a critical impact on survival. 

However, the above methods monitor the surgical outcomes in average levels, their alarm control 

limits are also fixed values, which means the same weight for all the moments in the monitoring 

process, and make them less effective in monitoring volatility of surgical performance. Back to the 

practical applications, in the annual surgical monitoring, medical system administrators and hospital 

staffs expect to detect abnormalities of surgical outcomes at the early stage of monitoring process, 

which can implement the intervention earlier to correct the identified problems. However, the 

existing surgical monitoring methods are difficult to respond to early changes in a timely manner. 

In 2008, a program was launched from the Hospital Authority of Hong Kong named Surgical 

Outcome Monitoring and Improvement and Improvement Program (SOMIP), which annually audits 

the surgical performance of all public hospitals in the area and has significant effects in monitoring 

30-day mortality risk and identifying deterioration. Specifically, SOMIP takes advantage of physical 

and biochemical factors like age and albumin as preoperative factors to estimate the postoperative 

surgery risk, and uses them as benchmark to measure the surgical performance [18]. Figure 1 is a 

VLAD chart for 30-day mortality of a hospital in SOMIP project over a four-year period (from 1 Jul 

2009 to 30 Jun 2013), in which the vertical axis indicates the difference between the actual number 

of deaths and the expected number of death. It could be observed that the quality of this hospital 

started to deteriorate at the beginning. Some methods were proposed to online monitor such changes 

in surgical risks. Based on the in-control data that are collected in phase I, those approaches can be 

used in phase II to consecutively judge whether the risks significantly deviate to the in-control state 

as the cases occur sequentially. However, previous surgical monitoring methods may give a 

delay alert because it usually takes a certain time to trigger the alarm. Therefore, a more 

efficient monitoring method for early-stage changes could help to identify the surgical quality 

problems earlier. 

 

Figure 1. VLAD chart for 30 day mortality based on 4 year model. 

Specifically, a shortcoming of both EWMA and CUSUM control charts is that they have 

asymptotic control limits, and using an asymptotic control limit rather than a time-varying limit may 

result in a slightly higher zero-state ARL that would make a monitoring chart less sensitive to 

start-up quality problems [26]. To enhance the sensitivity of the EWMA control chart to start-up 

quality problems, Steiner et al. [26] proposed a single EWMA control chart based on fast initial 

response (FIR) adjustment. In terms of the application maturity, Lucas and Crosier [27] proposed a 
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fast initial response method for CUSUM control chart, which improved the sensitivity of monitoring 

volatilities of CUSUM control chart. In the following decades of application, the rationality of FIR 

method has been well developed [26,27,29]. In this article, on the one hand, we extend the work of 

Liu et al. (named ESOP) [18], propose a new monitoring chart based on ESOP and further improve 

the performance in monitoring surgical outcomes using a modified FIR adjustment; on the other 

hand, we propose a monitoring method based on a new weighted score test (WST) and further 

enhance the sensitivity to start-up quality problems. 

The remainder of this article is organized as follows. Existing monitoring method ESOP and our 

proposed methods are introduced in Section 2. In Section 3, simulation studies and a real-world 

application are carried out to evaluate the performance of the proposed monitoring methods under 

different indicators. Finally, the results discussion and conclusion are shown in the remainder parts. 

2. Materials and method 

2.1. EWMA control statistic for surgical outcomes 

Proposed by Liu et al. [18], a “risk-adjusted” method, which named ESOP, has been accounted 

for surgery’s risk. ESOP is based on weighted score test (WST), which could be extended to a 

generalized condition where various types of outcomes modeled by generalized linear mixed models 

(GLMMs) can be monitored. Taking into account the actual situation of patient postoperative risk 

monitoring, a charting statistic 𝑍𝑛 is proposed, 

𝑍𝑛 = ∑ 𝜆(1 − 𝜆)𝑛−𝑖[(𝑦𝑖 − 𝑝𝑖)
2 − 𝑝𝑖(1 − 𝑝𝑖)]𝑡

𝑖=1                      (2.1) 

where 𝑛  is the current time point, 𝑖  is the past time points, 𝜆  denotes smoothing factor, 

𝜆(1 − 𝜆)𝑛−𝑖  is exponentially weighted, 𝑝𝑖  denotes the surgical failure rate, 𝑦𝑖  is independent 

binary surgical outcomes, when the surgical operation fails, 𝑦𝑖 = 1, otherwise, 𝑦𝑖 = 0. Equation 

(2.1) is equivalent to 

𝑍𝑛 = (1 − 𝜆)𝑍𝑛−1 + 𝜆𝑌𝑛,      𝑛 = 1,2, …                   (2.2) 

with 

𝑌𝑛 = (𝑦𝑛 − 𝑝𝑛)2 − 𝑝𝑛(1 − 𝑝𝑛)                        (2.3) 

First, we construct a risk-adjusted model 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑛) = 𝑥𝑛𝛽 + 𝛼                           (2.4) 

where 𝑥𝑛 is a sequence of independent and identically distributed normal random variables, which 

denotes the risk factor of 𝑛th patient 𝑦𝑛, 𝛼 is an intercept parameter, 𝛽 is another parameter, by 

equation (2.4) we can obtain 𝑝𝑛 =
𝑒𝑥𝑝 (𝑥𝑛𝛽+𝛼)

1+𝑒𝑥𝑝(𝑥𝑛𝛽+𝛼)
. In general, the above situation is called in control 

(IC), which means that 𝑦𝑛~Bernoulli(1, 𝑝𝑛). With the change of time, suppose 𝑦𝑛 enter another 

state at a change-point 𝜀 , and the corresponding surgical failure rate becomes 𝑝𝑛
∗ , thus 

𝑦𝑛~Bernoulli(1,𝑝𝑛
∗). If all data follow an identical distribution (𝑝𝑛 = 𝑝𝑛

∗), the process is IC; 

otherwise, the process enter out of control (OC) state, which makes more sense in monitoring 

surgical outcomes. Therefore, in order to achieve the purpose of evaluating the outcomes of surgery, 

we need to test the following hypotheses: 
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𝐻0: 𝑝𝑛
∗ = 𝑝𝑛      versus      𝐻1: 𝑝𝑛

∗ ≠ 𝑝𝑛 

Specifically, the reasons for 𝑝𝑛
∗ ≠ 𝑝𝑛 are various [19], and two typical cases are selected for 

consideration in this paper. On the one hand, from 𝑝𝑛 =
𝑒𝑥𝑝 (𝑥𝑛𝛽+𝛼)

1+𝑒𝑥𝑝(𝑥𝑛𝛽+𝛼)
 (IC) to 𝑝𝑛

∗ =
𝑒𝑥𝑝 (𝑥𝑛𝛽+𝛼+𝛿)

1+𝑒𝑥𝑝(𝑥𝑛𝛽+𝛼+𝛿)
 

(OC) may be caused by shift of the location parameter; on the other hand, scale parameter’s shift 

could cause a change in surgical failure rate, such as from 𝑝𝑛 =
𝑒𝑥𝑝 (𝑥𝑛𝛽+𝛼)

1+𝑒𝑥𝑝(𝑥𝑛𝛽+𝛼)
 (IC) to 𝑝𝑛

∗ =

𝑒𝑥𝑝 (𝑥𝑛𝛽+𝛼+𝜔)

1+𝑒𝑥𝑝(𝑥𝑛𝛽+𝛼+𝜔)
 (OC), where 𝜔 is a random effect and can be defined as 𝜔 = 𝜏𝜗, τ denotes a 

constant, 𝜗 follows an unspecified distribution. 

Then, we proposed an EWMA charting method (SESOP) to monitor outcomes of surgery, which 

standardizes 𝑌𝑛  on the basis of ESOP, and makes 𝑌𝑛  generally obey the standard normal 

distribution, thereby improving the performance of monitoring surgical outcomes, details as follows: 

𝑌𝑛 =
(𝑦𝑛−𝑝𝑛)2−𝑝𝑛(1−𝑝𝑛)

√𝑝(1−𝑝)(1−2𝑝)2
                           (2.5) 

2.2. One-sided score-type test for surgical outcomes 

Similarly to Silvapulle et al. [30], we use a test statistics 𝑇 for 𝐻0: 𝜎2 = 0 against 𝐻1: 𝜎2 > 0 

as 

𝑇 = 𝑈0
𝑡𝐷̃−1𝑈0 − 𝑖𝑛𝑓{(𝑈0 − 𝑏)𝑡𝐷̃−1(𝑈0 − 𝑏): 𝑏 > 0}             (2.6) 

According to the characteristics of surgical outcome monitoring, we made the following 

definitions: 

𝑈0 =
1

2
[(𝑦 − 𝑈)2 − 𝑉]                         (2.7) 

𝐷̃ =
1

4
[(1 − 2𝑈)2𝑉]                           (2.8) 

where 𝑈 = 𝑝, 𝑉 = 𝑝(1 − 𝑝), 𝑝 denotes the surgical failure rate. Similarly, the statistics 𝑍𝑛 can be 

expressed as 

𝑍𝑛 = (1 − 𝜆)𝑍𝑛−1 + 𝜆𝑇, 𝑛 = 1,2, …                   (2.9) 

Note that using the values of time series to replace the variables in the above equations. 

Thereafter, we refer to the chart using the 𝑍𝑛 as the control statistics as STSSO to monitor surgical 

outcomes. For positive 𝜎2, the score in (2.6) at zero is positive, so that the infimum gets zero. When 

𝜎2 is negative, the score at zero is also negative, so 𝑇 = 0 [31]. 

2.3. FIR features for control charts 

Through the above descriptions, we have proposed two EWMA control charts (SESOP and 

STSSO) to monitor surgical outcomes, which all perform well, especially when the data has small 

volatilities; however, the control limits of SESOP and STSSO are asymptotic control limits, which 



3135 

Mathematical Biosciences and Engineering  Volume 17, Issue 4, 3130–3146. 

make them less sensitive to identify start-up problems. Back to the actual situation, the early 

volatilities are crucial in surgical risk monitoring. For example, the SOMIP in Hong Kong is 

officially evaluated once a year, it is also helpful to improve the quality of surgery if it can identify 

start-up problems as early as possible. To improve this problem, we introduce a fast initial response 

(FIR) feature, which is proposed by Lucas et al. [27] to enhance the performance of a control chart 

especially when the control chart gives an OC signal. Then, Steiner et al. [26] proposed a single 

EWMA control chart based on fast initial response (FIR) adjustment, which is named 𝐹𝐼𝑅𝑎𝑑𝑗 and 

given by 

𝐹𝐼𝑅𝑎𝑑𝑗 = 1 − (1 − 𝑓)1+𝑎(𝑡−1)                     (2.10) 

and stated the EWMA control chart combined with FIR feature is more sensitive to early process 

volatilities, especially when the EWMA weight is small. On the basis of FIR adjustment (𝐹𝐼𝑅𝑎𝑑𝑗), 

Abdul et al. [28] further improved the performance of 𝐹𝐼𝑅𝑎𝑑𝑗 by using a power transformation with 

respect to time 𝑡, which is named modified 𝐹𝐼𝑅𝑎𝑑𝑗 (𝑀𝐹𝐼𝑅𝑎𝑑𝑗) and given by 

𝑀𝐹𝐼𝑅𝑎𝑑𝑗 = {1 − (1 − 𝑓)1+𝑎(𝑡−1)}
1+

1

𝑡                     (2.11) 

Specifically, the function of the adjustment parameter 𝑎 can reduce the influence of 𝑀𝐹𝐼𝑅𝑎𝑑𝑗 

after time 𝑡; 𝑓 is a proportion that determines the distance between the control limit of the first 

sample point and the starting value. As can be seen, MFIR feature uses a power transformation about 

time 𝑡 compared to FIR feature, which helps in further decreasing the control limits and makes the 

EWMA control chart more sensitive when detecting earlier shifts. 

We extend the work of Abdul et al. [28] and combine 𝑀𝐹𝐼𝑅𝑎𝑑𝑗 with SESOP and STSSO to 

turn asymptotic control limits into time-varying control limits. The SESOP and STSSO based on 

𝑀𝐹𝐼𝑅𝑎𝑑𝑗  are named as SESOP-MFIR and STSSO-MFIR respectively. The control limits of 

SESOP-MFIR control chart is as follows: 

𝐶𝐿𝑡 = ℎ{1 − (1 − 𝑓)1+𝑎(𝑡−1)}
1+

1

𝑡                     (2.12) 

where ℎ is the asymptotic control limit (CL) of SESOP. STSSO-MFIR is similar to SESOP-MFIR. 

2.4. Detail description and method overview 

Different from those methods that have the same weight for all data, the methods proposed in 

this paper based on EWMA chart assign different weights according to time series. In general, more 

recent observations receive more weight, which is also consistent with the temporal characteristic of 

the surgical outcomes data. In SESOP and STSSO, we define their control limits as the same 

asymptotic control limits as ESOP, in order to verify the improvement of the EWMA chart 

performance by standardization and one-sided score test. In SESOP-MFIR and STSSO-MFIR, we 

upgrade asymptotic control limits to time-varying control limits based on SESOP and STSSO, which 

improve the timeliness of the earlier shifts monitoring. 

The status of the monitoring process includes IC and OC, the initial state is generally IC, which 

is called Phase I; after a period of time, it either keep in IC or change to OC, we call it Phase II. In 

Phase I, when we obtain an observation, we can get the chart statistics 𝑍𝑛  through 𝑝𝑛 =
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𝑒𝑥𝑝 (𝑥𝑛𝛽+𝛼)

1+𝑒𝑥𝑝(𝑥𝑛𝛽+𝛼)
 and equations (2.2)(2.3). In Phase II, when we obtain a new observation, we calculate 

the chart statistics 𝑍𝑛 similarly and compare it with the control limit. If 𝑍𝑛 exceeds the control 

limit, the monitoring system gives an OC signal, otherwise, it continues to monitor new observations. 

It can be seen that the difference between combining 𝑀𝐹𝐼𝑅𝑎𝑑𝑗 or not is whether the control limit in 

Phase II is a value changing with time or a fixed value. It is worth noting that the 𝑝𝑛’s value 

corresponding to different 𝑛 is not equal, it is intractable to determine the exact distribution of 𝑍𝑛. 

Therefore, we adopt a Monte Carlo simulation to further determine the control limits. The above 

process description also reflects the online monitoring of our methods, that is, the in-control state is 

determined by using the data in Phase I, and the risk-adjusted model is generated by training the 

historical data; then, the surgical risks are monitored consecutively on each of cases in Phase II. Thus 

the proposed method can online determine when the underlying risk of surgery deviates to the 

historical average level (in-control state). 

3. Results 

3.1. Experimental protocol 

To explore the monitoring performance of the proposed methods, we run a series of simulations 

using simulated data and a set of real data experiments. During the experiment, we compare the four 

methods we have proposed, and also introduce ESOP and CUSUM as comparison methods. The 

reason for choosing only ESOP is that the literature [18] have indicated that ESOP can detect 

changes in location parameters and scale parameters, which is more efficient than other existing 

methods in detecting the small shifts. Similarly to the previous study [18], the CUSUM control chart [20], 

which is another commonly used monitoring method, is also selected in the comparison. It is worth 

mentioning that ESOP is a two-sided chart that can be used to monitor upward shifts and downward 

shifts, but in this section we only consider the case where surgical performance is deterioration using 

a one-sided chart--upper-sided chart (𝑝𝑛
∗ > 𝑝𝑛 ). This is because the principle of monitoring 

improvement in surgical performance is the same as deterioration, and monitoring deterioration 

makes more sense in reality. 

The performance of each control chart is assessed in terms of average run length (ARL), which 

is defined as the average of the run length distribution. Specifically, run length is a random variable 

equal to the number of samples required to observe the first out-of-control signal [28]. We select 

ARL and standard deviation of ARL as specific evaluation indicators, which are expressed as ARL 

and standard deviation of ARL respectively. As indicators for evaluating the monitoring methods of 

the surgical outcomes, the smaller values of ARL and standard deviation of ARL, the better the 

corresponding method. 

Now we make some explanations on the setting of experimental parameters. Control limit (CL) 

is determined by the in control (IC) ARL, considering comprehensively, we set IC ARL in the 

simulation data experiment as 400, and set it to 500 in the real-world data experiment. Similar to 

ESOP, we assign values 0.5 and -1.386 to 𝛽 and 𝛼 respectively. In practice, 𝛽 and 𝛼 can be 

estimated according to an IC sample. The 𝑎 value of the time-varying control limits is set to 0.014, 

which is derived from 𝑀𝐹𝐼𝑅𝑎𝑑𝑗  = 0.99 at t = 400. 𝜆's choice is very similar to choose the smoothing 

parameter of a traditional EWM-type chart. Liu et al. suggest choosing 𝜆 ∈ [0.005, 0.1] on the basis 
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of empirical results, and verify that a small value of 𝜆 is good at quickly detecting small shifts, 

while a large value of λ is good at quickly detecting large shifts [18]. Since our purpose is not to 

verify the effect of 𝜆’s value on the monitoring performance, we take an intermediate value 0.01 as 

the value of 𝜆. According to [18], we set 𝜌 = 2 in CUSUM, which ensures it has better performance. 

We consider from two aspects: the fixed shifts and the random effects, which are regulated by 

parameters 𝛿 and 𝜏, respectively. In order to make the experiment results credible, all the ARL 

results are obtained from 10,000 replications. 

3.2. Simulation performance evaluation 

First, we use ESOP, CUSUM, SESOP and STSSO charts to detect the deterioration in surgical 

performance. The results are shown in Tables 1 and 2, where Table 1 corresponds to fixed shifts and 

Table 2 records the results under random effects. In Table 1, we can see that when 𝛿 is less than 1.0, 

that is, the fixed drift is small, both SESOP and STSSO perform better than ESOP and CUSUM in 

different aspects. Specifically, SESOP has always been in a dominant position in ARL, indicating 

that SESOP can always detect shifts in the process earlier. In terms of standard deviation of ARL, 

STSSO shows better stability than other three methods when shifts are small and SESOP has 

smallest standard deviation when 𝛿 is between 0.4 and 1.0. Therefore, when 𝛿 is smaller than 1.0, 

if users focus on the stability of control chart, they can use STSSO when the study aims to detect 

small shifts, and adopt SESOP while the expected shifts are large. The CUSUM chart performs better 

when the fixed shifts are large. Specifically, when 𝛿 ≥1.0, the CUSUM is the best one in terms of 

ARL. Table 2 reflects a different situation from Table 1. When 𝜏 is less than 0.5, CUSUM has a 

smaller ARL. But with random effects gradually increasing, ESOP and SESOP outperform CUSUM 

in ARL. On the other hand, STSSO is still in absolute advantage in terms of ARL standard deviation, 

which means STSSO is most stable when random effects occur. We translate Table 1 and 2 into 

Figure 2 for easy demonstration of the difference. 

Table 1. ARL performance of ESOP, CUSUM, SESOP and STSSO with different fixed shifts. 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑛) 𝑥𝑛𝛽 + 𝛼 + 𝛿 

𝛿 0.0 0.1 0.2 0.3 0.4 0.5 0.7 1.0 1.5 2.0 3.0 

ESOP 
mean 400.00 225.84 141.68 99.65 72.96 56.60 38.17 24.43 14.51 10.30 6.72 

sd 424.94 225.67 133.10 87.20 60.35 44.53 27.83 16.07 8.91 5.90 3.60 

CUSUM 
mean 400.00 262.27 169.32 117.48 86.64 62.96 39.12 23.40* 13.00* 8.94* 5.76* 

sd 402.97 258.00 162.71 107.51 77.53 53.70 30.21 16.03 7.55* 4.51* 2.32* 

SESOP 
mean 400.00 215.46* 138.32* 95.16* 70.88* 54.21* 36.82* 23.43 14.27 9.99 6.70 

sd 421.18 214.57 132.87 82.86 58.28* 41.95* 26.09* 15.40* 8.58 5.65 3.54 

STSSO 
mean 400.00 283.07 210.94 167.36 137.76 115.76 86.23 61.23 39.84 29.43 20.19 

sd 260.66* 166.65* 110.21* 79.02* 60.49 46.80 31.96 20.29 11.92 8.30 5.08 

Note: * is used to mark the optimal value. 
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Table 2. ARL performance of ESOP, CUSUM, SESOP and STSSO with random effects. 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑛)  𝑥𝑛𝛽 + 𝛼 + τϑ 

τ  0.0 0.1 0.2 0.3 0.4 0.5 

ESOP 
mean 400.00 396.74 370.14 341.15 306.43 264.83 

sd 424.94 422.55 395.64 357.63 316.09 267.05 

CUSUM 
mean 400.00 366.78* 320.08* 284.71* 263.74* 242.69* 

sd 402.97 367.54 314.94 277.81 256.87 237.59 

SESOP 
mean 400.00 383.00 360.47 337.48 295.62 261.60 

sd 421.18 402.07 381.69 347.33 304.14 266.71 

STSSO 
mean 400.00 395.52 378.51 360.46 335.95 304.93 

sd 260.66* 264.48* 248.54* 230.55* 206.25* 186.32* 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑛)  𝑥𝑛𝛽 + 𝛼 + τϑ 

τ  0.0 0.7 1.0 1.5 2.0 3.0 

ESOP 
mean 400.00 195.86 125.49 72.00* 50.18* 32.84* 

sd 424.94 194.44 114.97 60.13 39.45* 23.20* 

CUSUM 
mean 400.00 202.00 165.46 125.40 101.44 73.18 

sd 402.97 195.64 157.07 117.76 92.64 64.60 

SESOP 
mean 400.00 191.21* 125.16* 72.84 50.92 33.45 

sd 421.18 192.16 118.33 61.15 39.94 23.79 

STSSO 
mean 400.00 252.40 191.81 131.13 99.99 72.91 

sd 260.66* 142.37* 97.33* 56.76* 40.21 26.89 

Note: * is used to mark the optimal value. 

Then, in order to verify the improvement of surgical performance monitoring by time-varying 

control limits, we select SESOP and SESOP-MFIR for the comparative experiment, and change 𝑓 

value to further explore the effect of different 𝑓 values on the performance. It is clear that changing 

the asymptotic control limit to the time-varying control limit can improve the monitoring 

performance, especially about ARL. Table 3 and 4 show that the dynamic control limit has a greater 

monitoring ability than the asymptotic control limit, and the smaller the 𝑓 value is, the earlier the 

shifts can be detected. Specifically, when shifts are fixed values, SESOP-MFIR with 𝑓 = 0.3 

outperforms SESOP-MFIR with 𝑓 = 0.5 in terms of the ARL, and SESOP-MFIR with 𝑓 = 0.5 is 

more efficient than SESOP in detecting the fixed shifts. Results indicate that the addition of 

time-varying control limit can detect the early-stage anomalies more quickly. The value of 𝑓 affects 

the trend of the control limit at the initial stage, the smaller the value, the more sensitive it is to drift 

at the initial stage. But it should be noted that too small 𝑓 value may lead to a few unstable results. 

The time-varying control limit increases the standard deviation of ARL in the case of small shifts. 

However, the 𝑓 value influences the standard deviation in a different way when shifts are large. 

Therefore, it is reasonable to believe that if we only focus on the optimization of the ARL, we can 

continue to reduce the value of 𝑓 to achieve this goal. A visual display of the results is shown in 

Figure 3. 
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(a)                                               (b) 

  

(c)                                                (d) 

Figure 2. ARL performance of ESOP, CUSUM, SESOP and STSSO with different 

fixed shifts (a, b) and random effects (c, d). 

Table 3. ARL performance of SESOP and SESOP-MFIR with different fixed shifts. 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑛)  𝑥𝑛𝛽 + 𝛼 + 𝛿 

𝛿  0.0 0.1 0.2 0.3 0.4 0.5 

SESOP 
mean 400.00 225.84 141.68 99.65 72.96 56.60 

sd 424.94* 225.67 133.10 87.20 60.35 44.53 

SESOP-MFIR (f = 0.5) 
mean 400.00 207.47 130.35 87.84 64.43 49.46 

sd 452.21 224.02* 129.92 83.21 57.09 42.34 

SESOP-MFIR (f = 0.3) 
mean 400.00 203.81* 113.71* 77.46* 56.68* 44.13* 

sd 512.76 246.41 126.16* 76.64* 53.30* 38.51* 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑛)  𝑥𝑛𝛽 + 𝛼 + 𝛿 

𝛿  0.0 0.7 1.0 1.5 2.0 3.0 

SESOP 
mean 400.00 38.17 24.43 14.51 10.30 6.72 

sd 424.94* 27.83 16.07 8.91 5.90 3.60 

SESOP-MFIR (f = 0.5) 
mean 400.00 33.15 21.18 12.62 8.70 5.69 

sd 452.21 25.79 15.34 8.06 5.24 3.22 

SESOP-MFIR (f = 0.3) 
mean 400.00 28.75* 18.66* 11.17* 7.82* 5.08* 

sd 512.76 23.46* 13.83* 7.41* 4.92* 2.99* 

Note: * is used to mark the optimal value. 
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Table 4. ARL performance of SESOP and SESOP-MFIR with random effects. 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑛)  𝑥𝑛𝛽 + 𝛼 + τϑ 

τ  0.0 0.1 0.2 0.3 0.4 0.5 

SESOP 
mean 400.00 383.00* 360.47* 337.48 295.62 261.60 

sd 421.18* 402.07* 381.69* 347.33* 304.14* 266.71* 

SESOP-MFIR (f = 0.5) 
mean 400.00 384.16 368.83 343.95 293.34 252.15 

sd 452.21 421.30 404.92 387.79 317.97 273.59 

SESOP-MFIR (f = 0.3) 
mean 400.00 394.39 373.87 326.67* 284.80* 243.87* 

sd 512.76 511.73 480.81 413.42 367.05 309.01 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑛)  𝑥𝑛𝛽 + 𝛼 + τϑ 

τ  0.0 0.7 1.0 1.5 2.0 3.0 

SESOP 
mean 400.00 191.21 125.16 72.84 50.92 33.45 

sd 421.18* 192.16* 118.33 61.15 39.94 23.79 

SESOP-MFIR (f = 0.5) 
mean 400.00 189.75 121.50 67.01 46.87 29.99 

sd 452.21 199.78 122.15 59.84 39.22 23.18 

SESOP-MFIR (f = 0.3) 
mean 400.00 176.97* 105.74* 58.32* 40.59* 26.87* 

sd 512.76 216.39 116.37* 55.52* 34.89* 22.32* 

Note: * is used to mark the optimal value. 

 

  

(a)                                                (b) 

 

                       (c)                                                 (d) 

Figure 3. ARL performance of SESOP and SESOP-MFIR with different fixed shifts (a, 

b) and random effects (c, d). 
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Finally, we continue the previous experiments, reducing the 𝑓 value, and do a comparative 

experiment on ESOP, CUSUM, SESOP-MFIR with 𝑓 = 0.1 and STSSO-MFIR with 𝑓 = 0.2. Since 

the influence of 𝑓  value on ARL and the standard deviation of ARL has been verified, in 

consideration of memory consumption and time cost, we focus on ARL in this experiment. As shown 

in Table 5, SESOP-MFIR and STSSO-MFIR are both more effective in detecting shifts than ESOP 

and CUSUM in most cases, especially the advantages of STSSO-MFIR are more obvious. For 

example, when shift 𝛿 = 0.1, from CUSUM to SESOP-MFIR, the value of ARL is reduced from 

262.27 to 135.49, and finally optimized to 77.91 of STSSO-MFIR. The difference value between 

STSSO-MFIR and CUSUM is as high as 184.36, which is a huge improvement. Another point to 

note is that, according to the previous experimental results, the smaller the value of 𝑓, the better the 

result of ARL. It could be observed that STSSO-MFIR with 𝑓 = 0.2 has lower ARL results than 

SESOP-MFIR with 𝑓 = 0.1, suggesting that STSSO-MFIR with f = 0.2 may be more efficient in 

detecting changes in practical implementation. The visualization results are shown in Figure 4. 

Table 5. The performance of ARL of ESOP, CUSUM, SESOP-MFIR (𝑓 = 0.1) and 

STSSO-MFIR (𝑓 = 0.2). 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑛) 𝑥𝑛𝛽 + 𝛼 + 𝛿 

𝛿 0.0 0.1 0.2 0.3 0.4 0.5 0.7 1.0 1.5 2.0 3.0 

ESOP 400.00 225.84 141.68 99.65 72.96 56.60 38.17 24.43 14.51 10.30 6.72 

CUSUM 400.00 262.27 169.32 117.48 86.64 62.96 39.12 23.40 13.00 8.94 5.76 

SESOP-

MFIR 
400.00 135.49 78.60 57.65 43.89 33.82 23.37 16.02 9.51 6.78 4.49 

STSSO-

MFIR 
400.00 77.91* 41.05* 31.11* 25.81* 22.34* 16.53* 11.79* 7.77* 5.69* 3.69* 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑛) 𝑥𝑛𝛽 + 𝛼 + τϑ 

τ 0.0 0.1 0.2 0.3 0.4 0.5 0.7 1.0 1.5 2.0 3.0 

ESOP 400.00 396.74 370.14 341.15 306.43 264.83 195.86 125.49 72.00 50.18 32.84 

CUSUM 400.00 366.78* 320.08* 284.71 263.74 242.69 202.00 165.46 125.40 101.44 73.18 

SESOP-

MFIR 
400.00 387.94 325.73 263.50 227.76 183.66 115.57 75.99 44.31 32.71 20.89 

STSSO-

MFIR 
400.00 367.67 324.12 244.24* 173.75* 102.46* 56.55* 36.29* 24.99* 18.95* 14.57* 

Note: * is used to mark the optimal value. 
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                         (a)                                                 (b) 

Figure 4. ARL performance of ESOP, CUSUM, SESOP-MFIR and STSSO-MFIR with 

different fixed shifts (a) and random effects (b). 

3.3. A practical application in Hong Kong 

In this section, we apply ESOP, SESOP, STSSO, SESOP-MFIR, STSSO-MFIR and CUSUM to 

the SOMIP program from the Hospital Authority of Hong Kong. The data source is the surgical 

outcomes of hospital A between 2009 and 2013, We follow the rule as Liu et al. [18] to estimate the 

risks of 30-day mortality based on surgical outcomes from 2009 to 2013. Specifically, data from 

2009 to 2012 utilizes 𝑝𝑛
∗ =

𝑒𝑥𝑝 (𝑥𝑛𝛽+𝛼+𝜔)

1+𝑒𝑥𝑝(𝑥𝑛𝛽+𝛼+𝜔)
 , then we calculate the charting statistics 𝑍𝑛 for each 

data in 2013 according to the principle of each method. Starting from the first case in 2013, we can 

use the established method to online monitor the risk at each surgery case. In order to obtain the 

control limits, the bootstrapping technology is adopted to process the data from 2009 to 2012, and 

ARL is set as 500, which is because 500 basically matched the annual operation volume of a hospital 

with the same size. Similar to the previous simulation, we still only show the results of monitoring 

deterioration in this section.  

ESOP, SESOP, STSSO, SESOP-MFIR, STSSO-MFIR and CUSUM evaluate hospital A’s 

performance in 2013 based on the overall performance from 2009 to 2012, specifically, we fit 

surgical data from 2009 to 2012 with a logical model, then use this model to monitor adjusted risk of 

the data in 2013. The results are shown in Figure 5. In Figure 5(a), after the 320th case, several 

deteriorations are detected by ESOP. If the SESOP is used (Figure 5(b)), the deterioration, which is 

not detected, may occurred at early stage. Similarly, neither STSSO nor CUSUM detects the possible 

deteriorations. In Figure 5(d) and 5(e), we can visually observe that the control limits are 

time-varying, and SESOP-MFIR discovers volatilities after 300th case, in addition, both 

SESOP-MFIR and STSSO-MFIR can detect the deteriorations between 100th case and 170th case, 

which means that the time-varying control limits make the initial small shift more easily detected, 

indicating that SESOP-MFIR and STSSO-MFIR are more sensitive to small changes at early stage, it 

also corresponds to the results in the simulation experiments. 
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(a)                                  (b)                                 (c)   

 

 

               (d)                                  (e)                                   (f) 

Figure 5. Monitoring charts for hospital A: (a) ESOP chart; (b) SESOP chart; (c) 

STSSO chart; (d) SESOP-MFIR chart; (e) STSSO-MFIR; (f) CUSUM chart. The 

X-axis represents the number of cases, the Y-axis represents the Z-statistic, and the red 

dotted line represents the control limit of the corresponding method. This graph reflects 

the changes in the Z-statistic with the addition of cases and the sensitivity of the control 

limit of different methods to monitoring for deterioration. 

4. Discussion 

Based on the several sets of simulations and a real-world application in Hong Kong, SESOP, 

STSSO, SESOP-MFIR and STSSO-MFIR can be improved in different degrees on surgical outcome 

monitoring performance compared with ESOP. 

The first finding worth noting is that standardizing variables can effectively reduce the ARL 

when an out-of-control (OC) signal is sent, that is, it can react to changes in a timely manner. The 

one-sided test statistics 𝑇 can bring significant optimization in terms of ARL standard deviation, 

especially when the shifts are small, which shows that STSSO has more stable performance during 

the monitoring process. 

Subsequently, we combine a kind of fast initial response (FIR) feature with SESOP and STSSO 

respectively, which named SESOP-MFIR and STSSO-MFIR, to transform the asymptotic control 

limits into the time-varying control limits. Through the experimental results, we observe that the 

dynamic control limits can greatly reduce the ARL, which brings more rapid responses to the 

monitoring process, and is great significance for postoperative risk monitoring. It's a slight pity that 

the dynamic control limits perform slightly worse than the asymptotic control limits in the IC state 

(shift is zero). 
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Therefore, we recommend using SESOP or STSSO at the beginning of the process. If there is a 

change, it will be converted to SESOP-MFIR or STSSO-MFIR. This combination can bring 

satisfactory monitoring results. Of course, users can develop monitoring plans according to their own 

needs and the characteristics of methods. 

5. Conclusion 

In this article, we propose EWMA control charting methods--SESOP and STSSO, then add the 

FIR features based on these two, and further put forward SESOP-MFIR and STSSO-MFIR. The 

main difference between them is the control limit, the former is asymptotic, the latter is time-varying. 

Both the location and scale parameters can be monitor by these new charting methods in the surgical 

outcomes model simultaneously, and they have their own expertise, which can be confirmed in 

simulation experiments compared to the ESOP and CUSUM. The four methods improve the 

performance of surgical outcomes monitoring in different degrees and aspects compared to those 

existing methods. Specifically, SESOP has more excellent and stable performance in the optimization 

of ARL, which means it can detect a shift faster, whether the shift is large or small. Correspondingly, 

STSSO combines a score test statistics, so that it has better performance of ARL standard deviation 

when small volatilities occur, that is, monitoring in this case is more stable. Due to the time-varying 

control limits, SESOP-MFIR and STSSO-MFIR have significantly improvement on efficiency of 

shifts detection. Subsequently, we apply the proposed monitoring methods to the hospital A’s data 

from SOMIP project of the Hong Kong’s Hospital Authority and used logistic regression models to 

fit the binary surgical outcomes. It can be visually observed that the control limits of SESOP-MFIR 

and STSSO-MFIR are time-varying, and they can detect early shifts that other methods cannot easily 

find, which means these two control charts are more sensitive to small changes at early stage, it also 

corresponds to the results in the simulation experiments. The comprehensive results of the real-world 

application show that the performance of hospital A in 2013 is more excellence than that of the 

previous three years. In general, we optimize the surgical outcomes monitoring control charts 

through the standardization of variables, the score test statistic and the combination of FIR features, 

both the simulation study and the practical application verified their excellence performance. By 

using the risk adjusted model that is built in Phase I, the proposed method can online monitor the 

surgical risks, which has great significance for making timely alters. 
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