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Abstract: This study considers the integration of vaccine preparation and administration decisions for 

seasonal influenza interventions. We examine actual vaccination activities of sharing multiple vaccine 

products and supplementary vaccinations. A two-stage stochastic program is formulated to determine 

the optimal ordering and allocation of vaccines under uncertain attack rates, vaccine efficacies, and 

demands. We present an algorithm based on the sample average approximation and warm-start solution 

to solve the stochastic integer program with continuous random variables. Furthermore, the optimal 

solution for the deterministic model using the expected value is analyzed and obtained directly. Our 

analysis compares the deterministic and stochastic solutions to assess the impact of uncertainties on 

the immunization outcomes and costs. The result shows that the stochastic programming model 

provides a more robust solution than the deterministic model, and uncertain characteristics should 

consider when making public health decisions. 
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1. Introduction  

Recurrent influenza epidemics have caused loses in both health and economics. Each year the 

outbreak leads to three million infections and hundreds of fatalities in Taiwan [1]. Vaccination is one 

of the most effective approaches to control influenza. A success immunization program relies on a 

robust plan to integrate vaccine preparation and administration. Currently, vaccination rates in Taiwan 

are still far below other countries and the WHO recommendations [2]. With respect to the population 
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group involving senior citizens, the vaccination rate during the 2005–2006 flu season approximately 

corresponded to 50%, and the rates then declined to 40% in the 2008–2009 flu season [3]. Whereas 

the vaccination rate for similar age groups in other countries is relatively higher than those in Taiwan. 

For example, the vaccination rates are 80% in Korea, 60% in the U.S., and 75% in the U.K [4]. 

Prior to the flu season, the government determines vaccine orders according to the historical 

coverage rate and target population. This approach ignores the random effect and is incapable to 

respond to the emergent demand. Furthermore, the dynamic of the transmission pattern causes 

mismatched vaccine distribution in terms of location and timing. Evidence can refer to the pandemic 

of new H1N1 viral in 2009, where multiple outbreaks were discovered in early than other years, and 

many infections occurred for adolescents and young adults [5]. Another challenge involves the 

uncertainty of vaccine efficacy because of the circulating viral strains and the lack of an effective 

approach to predict future epidemics. Poor immunization performance harms the tendency of an 

individual to receive vaccines. A notable example was the low vaccination rate in 2010 due to the 

adverse reactions of the monovalent vaccine in the previous season. 

An immunization program is usually carried out through multiple vaccination activities. The first 

activity is known as the regular vaccination, and it commences on the first day of October to provide 

free-vaccines to the target population. At the end of the program, recipients may receive substitute 

vaccine products if the inventory is depleted [6]. It is feasible to share vaccine products for most of the 

population wherein an adult uses two doses of the pediatric vaccine, and a pediatric dosage is equal to 

half a vial of the adult vaccine. The remaining half vial is discarded to minimize the risks of injecting 

expired vaccines and contaminations. Based on the epidemic level, the government may launch 

supplementary vaccinations that provide a second opportunity for the population to gain protection 

against influenza. Such immunization activity aims to complement regular vaccination by either 

direct outreach to the target population or to provide an easy-to-access vaccination. 

A challenge in implementing an intervention program for influenza involves vaccinating a large 

population in a short time frame. This study examines three potential vaccination activities with 

different cost settings and dose requirements: (1) administering target population using regular 

vaccines; (2) administering target population using sharing vaccines; (3) administering the non-target 

population in supplementary vaccination. We develop a stochastic programming model to capture an 

end-to-end immunization decision beginning with vaccine procurements to distributions under an 

uncertain attack rate, vaccine efficacy, and recipient arrival. The objective involves minimizing 

vaccination and infection costs of the target population as opposed to achieving herd immunity. This 

type of setting is more close to an actual application because influenza vaccines only cover partial viral 

strains, and achieving the herd immunity threshold does not ensure to eradicate epidemics. We 

proposed a solution approach based on Monte Carlo simulation and integer programming warm-start 

was presented to solve the stochastic integer program (SIP) with continuous random variables. 

Additionally, the optimal solution was analyzed for the deterministic problem by using expected values. 

We analyzed the risk of uncertainty when making decisions for seasonal influenza interventions. 

2. Literature review 

The stochastic programming is a foundational model for the study of making decisions under 

uncertainties. In the model’s most basic format, the decision-maker faces stochastic parameters in an 

optimization problem. Given the distribution of an uncertain parameter, she/he must determine 
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decision variables to optimize the expected objective value. Birge and Louveaux provided the 

foundation of stochastic programming [7]. The applications of stochastic programming were 

summarized in the review paper [8]. Related to the vaccine supply chain, Yarmand et al. (2010) 

developed a two-stage stochastic programming model to determine vaccine allocation in different 

regions [9]. The study considered a particular scenario of administering the vaccine to the population 

in two stages. The first stage determined vaccine distribution quantities in each region at the beginning 

of the epidemic, and the second stage provided an opportunity to reinforce the vaccination campaign 

based on the vaccination outcome in the previous stage and the magnitude of the outbreak. It was 

assumed that the regional epidemics are uncertain and sampled from a stochastic disease model. The 

stochastic programming solution provided the augmented doses administered to the outbreak regions. 

The analysis suggested that reinforcing vaccines should only apply to the region without the onset 

of epidemics. 

Before implementing a vaccination activity, it is necessary to determine operational decisions that 

include vaccine composition, packaging, ordering, distribution, and vaccination. The first decision is 

to determine viral strains included in the seasonal flu vaccine. Kornish and Keeney (2008) first 

explored the vaccine composition decision with a deadline [10]. In such a setting, deferring the 

decision to select viral strains has a benefit of obtaining more information about the spread of 

influenzas but incurred the lost production for making vaccines. They developed a discrete-time model 

to capture a series of decisions under uncertain epidemics. A related study developed dynamic models 

to determine the optimal composition of the influenza vaccine under uncertain production yields [11]. 

Scholars investigated the relationship between viral strain prediction and strain composition decisions 

on immunization outcomes [12]. The problem is formulated as a multi-stage stochastic program to 

maximize societal vaccination benefits. In the aspect of vaccination strategies, a prior study developed 

disease models to evaluate vaccination timing and coverage population for controlling influenza 

epidemics [13]. 

Vaccine manufacturing decisions include package formats and doses per vial. A study developed 

an economic model to obtain the optimal vial size of the vaccine with the considerations of open-vial 

wastes and uncertain arrivals [14]. In the area of vaccine ordering and distribution, scholars studied 

vaccine-ordering decisions at the clinical level under uncertain arrivals. The study investigates the 

performances of ordering decisions in various settings of vaccine vial size and safety stock [15]. 

Recently, Chen et al. (2014) developed a mathematical programming model for determining vaccine 

distributions in low- and middle- income countries [16]. 

Sewell and Jacobson (2003) considered vaccine and injection costs for childhood immunizations 

[17]. They developed an integer programming model to determine the price of combination vaccines 

based on the immunization schedule for children. Chick et al. (2006) analyzed supply chain 

coordination between vaccine suppliers and governmental institutions and showed that both parties are 

benefited through the coordination of price contracts [18]. Recently, scholars modeled various 

selling strategies in the setting of a single vaccine manufacturer and single retailer under uncertain 

supply and demand [11]. The case study found that both supply and demand uncertainties can be 

beneficial to the retailer. 

Tanner et al. (2008) presented various stochastic programming models to analyze vaccination 

policies against influenza. The first model minimizes the total cost spent in a vaccination campaign 

subject to a chance constraint of the probability of a coverage rate that exceeds the vaccination 

threshold [19]. The second model considers minimizing the probability of the disease outbreak under 
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a limited budget with respect to vaccinations in which the objective function involves minimizing the 

probability of a reproduction number great than one. The third model relaxes the chance constraint by 

setting a penalty in the objective function, and therefore, the new objective function includes both 

vaccination cost and the penalty of violating the chance constraints. A related study by Tanner and 

Ntaimo (2010) focused on vaccine allocation decisions. The study develops a stochastic program with 

joint chance constraints [20]. The irreducibly infeasible subsystem cuts were proposed to strengthen 

the solution quality of linear programming (LP) relaxation. Computational results demonstrated the 

reductions on the runtime by posting cuts and removing redundant scenarios. 

Prior studies developed models to explore different operations in a vaccine supply chain. However, 

to the best of our knowledge, there is a paucity of studies focusing on integrated vaccine preparation 

and administration. It is crucial to understand the comprehensive process of an immunization program 

and determine a serial of decisions at the same time. The present study focuses on this unexplored area 

with the consideration of a national immunization program in Taiwan. Actual vaccination activities are 

analyzed, and the impact of uncertainties is highlighted based on a stochastic programming framework. 

The following sections are organized as follows. First, the notations and the SIP formulations are 

presented. Second, the optimal condition in the deterministic environment is analyzed as a reference 

policy and compared with the stochastic solution. An approximated algorithm to solve the SIP with 

continuous random variables is then described, and the computational result is reported with respective 

to the implementation of the algorithm. Finally, the case study provides the recommendations of 

vaccine ordering and administration and highlights the value of using the stochastic solution. 

3. Method 

3.1. Stochastic programming 

The stochastic programming model provides a framework to model decision problems with 

uncertain parameters. A primitive formulation involves two-stage stochastic programming that 

determines decisions prior to and after the disclosure of unknown information. The first-stage decisions 

are determined irrespective of information related to random events, and the second-stage decisions 

are based on the first stage decision in which full information is disclosed. In the study, vaccine 

ordering quantities are determined at the first stage, and subsequently, allocation quantities are 

determined in the second stage. 

Two vaccine products are considered in our study. The adult vaccine corresponds to a volume size 

of 0.5 ml per dose applied for populations aged 3 years and over. The pediatric vaccine contains 0.25 

ml per dose for children aged less than 3 years [21]. The sharing of vaccine products is considered 

when the inventory is depleted. Thus, when the pediatric vaccine is depleted, then a recipient less than 

three years old will be vaccinated with a half vial of adult vaccine. The remaining dose in the opened 

vial must be discarded and cannot be used for other recipients. Additionally, when the adult vaccine is 

in short supply, individuals aged 3 years and above will receive two doses of a pediatric vaccine as an 

alternative for immunization purposes [22]. 

Both regular and supplementary vaccinations with different vaccination costs are considered. The 

regular vaccination refers to a situation in which a recipient is injected using a matched vaccine product 

at the vaccination location. In this phenomenon, there is a vaccination cost 𝑣1 for each injection. If 

the matched vaccine is unavailable and another product type is available, then an individual receives 

substituted vaccine products with a different cost 𝑣2. The supplementary vaccination considers all 
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target populations when any excess of vaccine stocks at the end of the vaccination program. Therefore, 

vaccination cost 𝑣3 is considered the highest, and it accounts for the lateness of immunization for a 

given population. There is no further sharing of vaccine products in the supplementary vaccinations. 

The notations used in this study are summarized in the following table. 

Table 1. The summary of notations. 

Sets 

𝐼 The set of vaccine products 𝐼 = {0, 1}, where 0 denotes the adult vaccine and 1 denotes the 

pediatric vaccine 

𝐽 The set of population groups 𝐽 = {0, 1}, where 0 denotes the adult vaccine and 1 denotes the 

pediatric vaccine 

𝛺 The set of random scenarios, 𝜔 ∈ 𝛺 

Decision variables 

𝑥𝑖 The ordered quantity of vaccine product i, 𝑖 ∈ 𝐼 

𝑟𝑖𝑗(𝜔) The number of regular vaccinations for age group j fulfilled by vaccine i in state 𝜔 

𝜋𝑖(𝜔) The binary variable, 𝜋𝑖 = 0 if the ordered quantity of vaccine product i is less than or equal to 

recipient arrivals; 𝜋𝑖 = 1 otherwise 

𝑤𝑖
+(𝜔) The number of excess vaccines in scenario 𝜔 

𝑤𝑖
−(𝜔) The unmet demands of regular vaccinations in scenario 𝜔 

𝑠𝑗(𝜔) The supplementary vaccinations for population j in scenario 𝜔 

𝑦𝑗
+(𝜔) Total vaccinated population, i.e., 𝑦𝑗

+ =  ∑ 𝑟𝑖𝑗𝑖∈𝐼 + 𝑠𝑗 

𝑦𝑗
−(𝜔) Total unvaccinated population, i.e., 𝑦𝑗

− =  𝑝𝑗 − 𝑦𝑗
+ 

Parameters 

𝑝𝑗 The population of age group j 

𝑑𝑗(𝜔) The demands of regular vaccinations in age group j in scenario ω 

𝑐 The unit cost of a vaccine 

𝑣1 The injecting cost of using a matched vaccine for regular vaccination 

𝑣2 The injection cost of using a substituted product for regular vaccination 

𝑣3 The injection cost of a supplementary vaccination 

𝑢𝑗 The infection cost 

𝛽𝑗(𝜔) The transmission rate of population j in state ω 

𝜑(𝜔) The rate of ineffective vaccination in state ω 

𝜀 A lower bound or arbitrarily small positive number 

 

We develop a two-stage stochastic programming model integrated ordering and allocation 

decision in the vaccine supply chain for influenza interventions. The recourse problem (RP) model 

determines the optimal decisions before and after the disclosure of the uncertain information. Detail 

formulations state as the following: 

𝑚𝑖𝑛 ∑ 𝑐 𝑥𝑖𝑖∈𝐼 + 𝐄 [∑ ∑ 𝑣1 𝑟𝑖𝑗𝑗∈𝐽,𝑗=𝑖𝑖∈𝐼 + ∑ ∑ 𝑣2 𝑟𝑖𝑗𝑗∈𝐽,𝑗≠𝑖𝑖∈𝐼 + ∑ 𝑣3 𝑠𝑗𝑗∈𝐽 +
(1) 
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∑ 𝑢𝑗  𝛽𝑗(𝜔) (𝜑(𝜔) 𝑦𝑗
+(𝜔) + 𝑦𝑗

−(𝜔))𝑗∈𝐽 ]  

s.t. 

𝑥𝑖 − 𝑝𝑗 𝜋𝑖(𝜔) + 𝜀 ≤ 𝑑𝑗(𝜔)                                          ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, 𝑖 = 𝑗, ∀𝜔 ∈ 𝛺, 

 𝑥𝑖 + 𝜀 ≥ 𝑑𝑗(𝜔) − 𝑝𝑗(1 − 𝜋𝑖(𝜔))                              ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, 𝑖 = 𝑗, ∀𝜔 ∈ 𝛺, 

 𝑟𝑖𝑗(𝜔)  ≥ 𝑑𝑗(𝜔) − 𝑝𝑗 (1 − 𝜋𝑖(𝜔))                            ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, 𝑖 = 𝑗, ∀𝜔 ∈ 𝛺, 

 𝑟𝑖𝑗(𝜔) ≥ 𝑥𝑖 − 𝑝𝑗  𝜋𝑖(𝜔)                                                ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, 𝑖 = 𝑗, ∀𝜔 ∈ 𝛺, 

 𝑥𝑖  ≤ 𝑝𝑗                                                                              ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, 𝑖 = 𝑗, ∀𝜔 ∈ 𝛺, 

𝑤𝑗
−(𝜔)  ≤ 𝑝𝑗  (1 − 𝜋𝑖(𝜔))                                            ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, 𝑖 = 𝑗, ∀𝜔 ∈ 𝛺, 

 𝑤𝑗
+(𝜔)  ≤ 𝑝𝑗  𝜋𝑖(𝜔)                                                       ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, 𝑖 = 𝑗, ∀𝜔 ∈ 𝛺, 

𝑥𝑖 − 𝑤𝑗
+(𝜔) + 𝑤𝑗

−(𝜔) = 𝑑𝑗(𝜔)                                  ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, 𝑖 = 𝑗, ∀𝜔 ∈ 𝛺, 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

𝑟01(𝜔)  ≤  𝑤0
+(𝜔)                                                              ∀𝜔 ∈ 𝛺, 

𝑟00(𝜔) + 𝑟10(𝜔) ≤ 𝑑0(𝜔)                                                ∀𝜔 ∈ 𝛺, 

(10) 

(11) 

𝑟10(𝜔)  ≤ 𝑤1
+/ 2                                                                 ∀𝜔 ∈ 𝛺, 

𝑟11(𝜔) + 𝑟01(𝜔)  ≤ 𝑑1(𝜔)                                               ∀𝜔 ∈ 𝛺,  

(12) 

(13) 

∑ 𝑟𝑖𝑗(𝜔)𝑖∈𝐼 + 𝑠𝑗(𝜔) = 𝑦𝑗
+(𝜔)                                          ∀𝑗 ∈ 𝐽, ∀𝜔 ∈ 𝛺,  (14) 

𝑦𝑗
+(𝜔) + 𝑦𝑗

−(𝜔) = 𝑝𝑗                                                         ∀𝑗 ∈ 𝐽, ∀𝜔 ∈ 𝛺,  (15) 

𝑥𝑖 ≥ 0                                                                                    ∀𝑖 ∈ 𝐼, (16) 

𝑟𝑖𝑗(𝜔), 𝑤𝑖
+(𝜔), 𝑤𝑖

−(𝜔), 𝑠𝑗(𝜔), 𝑦𝑗
+(𝜔)𝑦𝑖

−(𝜔) ≥ 0       ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀𝜔 ∈ 𝛺, (17) 

𝜋𝑖(𝜔) ∈ {0,1}                                                                      ∀𝑖 ∈ 𝐼, ∀𝜔 ∈ 𝛺. (18) 

 

The objective function is to minimize the total expected costs, where the first term is 

deterministic representing the vaccine costs, and the second term involves uncertain parameters for 

various costs spent on vaccinations. The first type corresponds to the total cost of injecting matched 

vaccines for pediatric patients and adults during the regular vaccination ∑ ∑ 𝑣1 𝑟𝑖𝑗𝑗∈𝐽,𝑗=𝑖𝑖∈𝐼 , the second 

type corresponds to the total cost of injecting substituted vaccines for population ∑ ∑ 𝑣2 𝑟𝑖𝑗𝑗∈𝐽,𝑗≠𝑖𝑖∈𝐼 , 

and the last type corresponds to the cost of supplementary vaccination ∑ 𝑣3 𝑠𝑗𝑗∈𝐽 . Subsequently, the 

infection costs ∑ 𝑢𝑗  𝛽𝑗(𝜔) (𝜑(𝜔) 𝑦𝑗
+(𝜔) + 𝑦𝑗

−(𝜔))𝑗∈𝐽   are described. The number of susceptible 

population members is equal to the sum of ineffective vaccinations 𝜑(𝜔) 𝑦𝑗
+(𝜔) and unvaccinated 

individuals 𝑦𝑗
−(𝜔) . Thus, the infection cost corresponds to the unit cost by multiplying the 

transmission rate and the susceptible population. The disjunctive constraints (2) and (3) are set to 

determine whether the ordering quantity exceeds the arrival in case of the regular vaccination. The 

population 𝑝𝑗 is used as an upper bound to tighten the constraints. Constraints (4) and (5) are set to 

determine the allocation quantity of matched vaccine types in the regular vaccination equal to the 

minimum value of the ordering quantity and regular arrivals. Constraint (6) specifies the upper bound 

on the ordering quantity. The quantities of unmet demand and excess inventory are defined by 

Constraints (7) and (8), respectively. In constraint (9), the ordered vaccines subtracted from overstocks 

and added unmet demands are equal to the regular arrivals. Constraints (10) and (11) are used to obtain 

the number of shared adult vaccines with respect to pediatric demands. It is only possible to cover 

pediatric demand per adult vaccine. Additionally, it is not possible for the number of pediatric patients 
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injected with matched and substituted vaccines to exceed the number of regular arrivals 𝑟00(𝜔) +

𝑟10(𝜔) ≤ 𝑑0(𝜔). Similarly, constraints (12) to (13) correspond to sharing pediatric vaccines for adult 

demands. Each adult demand requires two doses of a pediatric vaccine, and thus the sharing quantity 

is less than or equal to the surplus pediatric vaccines divided by two. Additionally, the total number of 

injected adults should be less than or equal to the number of arrivals. In constraint (14), the sum of 

regular and supplementary vaccinations is equal to the total vaccinated population. Constraint (15) 

involves calculating vaccinated and unvaccinated populations. Constraints (16) and (17) define the 

non-negative continuous variables in the first and second stages, respectively. Constraint (18) 

corresponds to the binary variable in the second stage. 

This problem corresponds to a two-stage stochastic program with a fixed recourse, while the 

coefficients associated with the second-stage decision variables of every constraint are fixed. The 

unfixed parameters are only associated with the objective function and the right-hand-side value of the 

second-stage constraint. The first-stage problem determines ordering quantities irrespective of the 

uncertain parameters. Consequently, the second-stage problem determines the allocation decision 

based on the first-stage solution and the realization in each scenario. The vaccine ordering quantity 𝑥𝑖 

is assumed as a non-negative continuous variable, and thus the first-stage problem can be easily solved 

as an LP. The second-stage problem is a mix-integer programming (MIP) problem, in which the 

variable 𝜋𝑖(𝜔) is binary, and the other variables are continuous. The problem size increases rapidly 

with the number of scenarios and posts a challenge to solve the optimal solution directly. In the later 

section, an algorithm is introduced to obtain an approximate solution for the two-stage program with 

continuous random variables. 

3.2. Stochastic programming 

This subsection considers the decisions of ordering quantity and allocations when all parameters 

are deterministic. We apply the expected value of uncertain parameters to construct the deterministic 

model, known as the expected value problem (EV). We assume that the infection cost for either an 

adult or a pediatric case is significantly greater than the total cost of vaccination, that is 𝑐 + 𝑣1, 𝑐 +

𝑣2, 𝑐 + 𝑣3 ≪ 𝑢𝑗 . Furthermore, the cost of injecting a matched vaccine is less than that of using 

substituted vaccines 𝑣1 < 𝑣2. This assumption considers the additional costs of labor and syringes to 

reconstitute the substituted vaccine. Finally, the cost of the supplementary vaccination exceeds that of 

the regular vaccination 𝑣2 < 𝑣3 , and this assumption considers the additional expenditures of 

transportation and personnel to implement the supplementary vaccination. The sharing quantities are 

bound by the number of excess doses after the inventories are consumed by the regular arrivals as 

expressed in constraints (10) and (12). To minimize the total cost, the optimal allocation of using 

substituted vaccine is established in Proposition 1. 

Proposition 1. The optimal sharing quantity is zero for the deterministic problem, i.e., 𝑟𝑖𝑗
∗ = 0, ∀𝑖 ∈

𝐼, ∀𝑖 ∈ 𝐼, 𝑖 ≠ 𝑗. 

The optimal allocation quantities can be found in Theorem 1 as a consequence of the zero sharing 

quantity. Additionally, Theorem 1 is used to establish the optimal ordering quantity in Theorem 2. 

Theorem 1. If 𝑐𝑖 + 𝑣1 + 𝑢𝑗  𝜑 𝛽𝑗 < 𝑢𝑗  𝛽𝑗, then the optimal allocation quantity in regular vaccination 
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is 𝑑𝑗   otheriise, 0 . If 𝑐 + 𝑣3 + 𝑢𝑗  𝜑 𝛽𝑗 < 𝑢𝑗  𝛽𝑗 , then the optimal allocation quantity of 

supplementary vaccination is 𝑝𝑗 − 𝑑𝑗  otheriise, 0. 

Proof. By Proposition 1, only the allocation quantities using the matched vaccine in a regular 

vaccination (𝑟𝑖𝑗, ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, 𝑗 = 𝑖 ) and a supplementary vaccination (𝑠𝑗 )) are considered. If the 

infected cost of the unvaccinated population exceeds the total cost of the regular vaccination, then the 

optimal allocation quantity involves serving all arrival recipients. In contrast, there is no regular 

vaccination if the unvaccinated cost is cheaper than the vaccination. Additionally, if the cost of the 

supplementary vaccination is less than the unvaccinated cost, then the lowest cost is associated with 

covering the overall population. □ 

Theorem 2. The optimal ordering quantity for the deterministic problem is: 

𝑥𝑖
∗ = {

𝑑𝑖 𝑐 + 𝑣1 + 𝑢𝑗  𝜑 𝛽𝑗 < 𝑢𝑗  𝛽𝑗  < 𝑐 + 𝑣3 + 𝑢𝑗  𝜑 𝛽𝑗

𝑝𝑖 𝑐 + 𝑣3 + 𝑢𝑗  𝜑 𝛽𝑗 < 𝑢𝑗  𝛽𝑗                                       

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                  

, ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, 𝑗 = 𝑖. 

Proof. Using Proposition 1 and Theorem 1, the optimal ordering quantity is easy to argue, which is 

exactly equal to the optimal allocations in various circumstances. Thus, there are no excess orders in 

the optimal solution. In the first condition, the optimal ordering quantity is equal to the regular 

vaccinations. In the second condition, the ordering quantity is equal to the population if the total cost 

of the supplementary vaccination is cheaper than the infection cost of the unvaccinated population. 

Finally, the ordering quantity is zero if the infection cost of the unvaccinated population is less than 

the cost of the vaccinated population with respect to any vaccination activity. □ 

3.3. The sample average approximation iith MIP iarm start 

This study assumes that the transmission rate, vaccine efficacy, and arrivals are continuous 

uniform distributions. The sample-average approximation (SAA) is applied to generate a finite set of 

scenarios from the underlying distribution for constructing the stochastic program [7]. Furthermore, 

our algorithm reuses the optimal solution of the previous iteration and then solves the stochastic integer 

program in an incremental manner. We utilized the mathematical programming language to construct 

the RP problem, where a general model was formulated beforehand, along with the sampled 

parameters to populate mathematical programs in each iteration. The procedure of the proposed 

algorithm is as follows. 

The algorithm of SAA iith MIP iarm start 

1. While k <= Sample sizes 

2.   Sample the uncertain parameters of 𝛽𝑗(𝑘), 𝜑(𝑘) and 𝑑𝑗(𝑘); 

3.   Construct the RP problem with k random scenarios; 

4.   For 𝜔 = 0 to k - 1 

5.      Fix the binary variable 𝜋𝑖(𝜔) in RP by using the optimal solution obtained in the 

previous iteration; 

6.   End 

7.   Solve the RP; 
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8.   If the RP is infeasible then 

9.     Unfixed the binary variable and return line 7; 

10.  End 

11.  k++  

12. End 

4. Results 

The algorithm is developed in C# using the CPLEX 12.6 callable library. Our experiments are 

performed on an Intel i5 CPU with a processing speed of 2.3 GHz and a 12 GB memory. The following 

sections first describe the data collection and model parameters. Subsequently, the optimal solutions 

for deterministic and stochastic problems are presented in conjunction with the computational result 

of solving the recourse problem by using the proposed algorithm. A comparison of deterministic and 

stochastic solutions is presented as insights of the value of stochastic solutions. 

4.1. Data and parameters 

We consider the following uncertain factors: vaccine efficacy, attack rate, and arrival demand. 

Each parameter is constructed as a continuous uniform distribution. For setting the lower and upper 

bounds of the uniform distribution for vaccine efficacy, we refer to the prior literature, which reports 

multi-year vaccine efficacies in different countries based on randomized controlled trials [23]. 

Additionally, the review study includes findings from a wide spectrum of laboratory experiments 

conducted in different time periods and population groups. We use the range of 50% to 60% for vaccine 

efficiency to cover most likelihood cases. The attack rate is the number of newly infected cases during 

a year divided by the population at the start of the year. Based on WHO reports, the global annual 

attack rates are estimated as being between 5% to 10% for adults and 20% to 30% for children [2]. 

Vaccination demands were volatile in populations. For example, in the period 2012–2015, the coverage 

rates ranged between 40.79% to 42.66% for the population of senior citizens, that for children aged 4 

years to 6 years ranged between 39% and 49%, and that for children aged 6 months to 3 years ranged 

from 61% to 65% [24]. For our model setting, the demand is based on the actual vaccination coverage 

rate of each age-group population during the 2014–2015 influenza season. 

The vaccine cost is based on the 2015 vaccine budget document published by the Ministry of 

Health and Welfare of the Republic of China [25]. Note that the cost presented in the following sections 

is in New Taiwan dollars. According to the report, the unit cost of the influenza vaccine corresponded 

$130 per dose. We set the vaccination cost to $300 per person to cover the expenses on the care service 

and syringes. The information regarding the exact cost of treating the infected individual is 

unavailable. We thus assume that costs are $20,000 for each adult and $10,000 for each pediatric.  

4.2. The deterministic and stochastic solutions 

The expected value solution involves constructing a deterministic programming model by 

replacing unfixed parameters with expected values. For the problem in the present study, the average 

vaccine efficacy corresponds to 55%, the average adult attack rate corresponds to 8.6%, the average 

pediatric attack rate corresponds to 34.5%, the average arrival demand of adult cases corresponds to 
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2,674,181, and the average arrival demand of pediatric cases corresponds to 252,126. The RP considers 

each realization from the sampling. The fixed parameters for both EV and RP are common. Figure 1 

illustrates the optimal objective values of EV and RP in different sample sizes. The objective value of 

EV (denoted by the dashed line) is approximately 8.4 million. The RP solution values vary based on 

the sample sizes, and the objective value tends to become stationary at 8.9 million with respect to 

sample sizes beyond three thousand. 

 

Figure 1. The objective values of EV and RP with different sample sizes. 

A decision that uses the expected values can be careless and obtain a lessening performance in 

scenarios deviated from the average. The expectation of the expected value solution (EEV) is a 

frequently-used measure to provide insights on the robustness of the EV solution. To obtain EEV, the 

first-stage decision variable is fixed as the EV solution, and this is followed by solving for the second-

stage variables in each realization. The EEV considers the expectation of the objective values for all 

realizations. In the following figure, each dot represents the optimal objective value of using the EV 

solution in a realization. The objective values range between 6 million and 12 million. The EEV 

corresponds to $8,899,142. 

Figure 3 illustrates the computational result of using the proposed algorithm to solve the RP in 

different sample sizes. The criterion that involves terminating the branch-and-bound procedure is set 

as 1%. The runtime continues to increase as the problem incorporates higher sample sizes. Most 

problems can be solved within 20 s. However, in a few circumstances, the runtime approximately 

corresponds in the range of 60–70 seconds. 
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Figure 2. The objective value of using the EV solution in each realization. 

 

Figure 3. Runtime for solving the RP with different sample sizes (relative MIP gap < 1%). 

Table 2 presents the optimal ordering and allocation quantities for the RP and EV solutions. The 

EV solution orders amount to 2,674,181 doses of adult vaccines and 252,126 doses of pediatric 

vaccines. All adult vaccines are administered to adults in regular vaccination. Similarly, pediatric 

vaccines are only administered for pediatric cases. There is no sharing of vaccines and supplementary 

vaccination. With respect to the RP solution, the first-stage decision variable values from the problem 

with the largest sample size are reported while 2,406,959 adult vaccines and 226,919 pediatric vaccines 

are ordered. The second stage decisions are varying with the scenarios. 

Table 3 reports the objective values of RP and EV. Additionally, the expectation of objective values 

of using the EV solution is calculated. For general stochastic programs, the relationship between RP 

and EEV can be established as the following inequality RP ≤ EEV. With respect to the minimization 
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problem, RP obtains a lower objective value because the solution considers all possible scenarios. 

However, the EEV only makes the decision once by referring to the average values. A detailed proof 

can be found in the study by Madansky in 1960 [26]. With respect to the problem outlined in the 

present study, the RP is less than EEV ($8,884,969 < $8,899,142), and this result satisfies the 

theoretical condition. Next, the gap between EEV and RP is measured, and this is termed the value of 

the stochastic solution (VSS), where VSS = EEV - RP. Evidently, VSS is non-negative because RP is 

always less than or equal to EEV with respect to minimization problems. The gap represents the 

potential loss of using the expected value to make a decision. The objective values and VSS are 

summarized in the following table, where VSS is significantly less than then EEV. This is because the 

uncertain parameters have minor variations. In other cases of highly variant, RP would be much 

desirable give it would reduce more costs from the EEV solution. 

Table 2. The optimal solutions of the RP and EV problems. 

 RP EV 

Ordering quantity     

Adult vaccines 2,406,959 2,674,181 

Pediatric vaccines 226,919 252,126 

Regular vaccinations using matched vaccines   

Adults (Varying for each scenario) 2,674,181 

Pediatrics (Varying for each scenario) 252,126 

Regular vaccinations using substituted vaccines   

Adults (Varying for each scenario) 0 

Pediatrics (Varying for each scenario) 0 

Supplementary vaccinations   

Adults 0 0 

Pediatrics 0 0 

Table 3. Comparing costs between the deterministic and stochastic solutions. 

RP EV EEV VSS 

$8,884,969 $8,425,071 $8,899,142 $14,173 

 

5. Discussion and conclusions 

This study examines the important challenge in vaccine supply chains to aid public health 

decisions to control influenza. Ordering and allocation decisions are integrated into a vaccine supply 

chain by considering uncertain infection, vaccine efficacy, and recipient arrival. A two-stage stochastic 

programming model is proposed to determine the optimal vaccine ordering quantity and allocation. 

Constraints in the stochastic programming model were formulated according to the WHO guidelines 

on vaccine characteristics and usages. Our model can be used for not only analyzing vaccine policies 

in Taiwan but also for other countries against influenza pandemics. 

We present an algorithm based on Monte Carlo simulation with MIP warm-start to solve the SIP 

with continuous random variables. The algorithm is not limited to any probability distributions. 
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Furthermore, the optimal solution for the deterministic problem is analyzed and directly solved as 

opposed to using a conventional solver to obtain the optimal solution. The uncertain effect is 

investigated by comparing the deterministic and stochastic solutions in realizations. The result 

indicated that an additional cost of $14,143 incurred if policymakers ignore uncertain effects by simply 

determining a decision based on the expected values (Table 3). 

Assumptions and limitations in this study state as follows. We assume an unlimited vaccine supply. 

Additionally, the vaccine ordering quantity is not bound by a budget. However, these two assumptions 

can be relaxed by adding additional constraints. Another assumption is that the adult and pediatric 

vaccines can apply to all age groups when the vaccine inventory is in short. In reality, concerns exist 

with respect to the substituted vaccine in populations. Additionally, the supplementary vaccination is 

assumed to cover all target populations in the study, while this may not be applicable in real-world 

scenarios. Finally, the second-dose requirement is ignored in the case of first-time vaccine recipients 

under eight years of age, and this may impact both ordering and allocation decisions. Both 

deterministic and stochastic models consider the influenza intervention by incorporating the actual 

vaccination activities in Taiwan. Despite the variation in vaccine usages in different countries, the 

proposed approach can be generalized and reused with minor modifications. 
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