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Abstract: Breast cancer is a commonly diagnosed cancer in women, and one of the leading causes of 
cancer-related death among female patients However, the key microRNAs involved in its 
tumorigenesis and microRNAs of prognostic values have not been fully understood. In the present 
study, we aimed to perform a systematic analysis of microRNA expression profiles to identify some 
key microRNAs associated with tumor initiation and prognosis. Using TCGA breast cancer datasets, 
we identified 110 differentially expressed microRNAs. The functional enrichment analysis of the 
upregulated microRNAs revealed signaling transduction pathways, such as Notch and Wnt signaling 
pathway, and metabolism-related pathways such as sugar and nucleotide sugar metabolism, and 
oxidative stress response. Moreover, multivariable Cox model based on three variables of 
hsa-mir-130a, hsa-mir-3677, and hsa-mir-1247 stratified patients into high-risk and low-risk groups, 
which showed significant prognostic difference. In addition, we also tested the performance of this 
model in patient cohorts of any specific breast cancer subtypes or different TNM stages. The high 
performance in risk prediction was also observed in all of breast cancer subtypes and TNM stages. 
We also observed that there were highly possible interactions between hsa-mir-130a and seven target 
genes. Among these target genes, VAV3 and ESR1 were predicted as the target genes of 
hsa-mir-130a, suggesting that hsa-mir-130a may function by regulating the expression of VAV3 and 
ESR1 in breast cancer. In conclusion, the stratification based on the multivariable Cox model showed 
high performance in risk prediction. The dysregulated microRNAs and prognostic microRNAs 
greatly improved our understanding of the microRNA-related molecular mechanism underlying 
breast cancer. 
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1. Introduction 

Breast cancer has become a major concern worldwide, as it is one of the most commonly 
diagnosed and leading causes of death among female patients with cancer [1]. The risk factors of 
breast cancer are of a great range, including pregnancy- and hormone-related factors, alcohol 
consumption and fat intakes, and environmental exposures [2]. Interestingly, though family history is 
often considered to introduce increased risks, only one out of nine breast cancer patients has an 
affected mother, sister, or daughter according to a previous study [3]. Notably, breast cancer is a 
highly heterogeneous disease. Immunopathologically, breast cancer can be categorized according to 
the receptor profile as indolent ER+ (ER+, HER2-), HER2+ (ER-, HER2+), triple positive (ER+, 
PR+, HER2+), and triple negative (TN) (ER-, PR-, HER2-) [4]. Meanwhile, 5 genetically distinct 
subtypes are reported so far based on mRNA expression profiling [5], including luminal A/B subtype, 
normal-like subtype, HER2-enriched subtype, and basal subtype [6], and prognostic outcomes 
exhibit a varying landscape among different subtypes. The luminal-A subtype is the most common 
and patients with this subtype have the best prognoses, while the prognoses of patients with 
luminal-B or normal-like subtype are slightly worse when compared with those with luminal-A 
tumors but still good; those with HER2-enriched subtype have poor prognoses as the tumors are 
highly proliferative, and the patients with basal-like subtype have the worst prognoses among all 
subtypes, as they are facing a higher risk of metastasis and early relapse [7]. Particularly, patients 
with breast cancer died mostly from chemo-resistance and metastasis [8], however, the molecular 
mechanisms underlying the progression of breast cancer are not fully understood, which is essential 
for its detection and management. 

However, high-throughput technologies have enabled researchers to examine breast cancer at a 
closer level, and microRNA (miRNA), as a popular biomarker detected in many diseases, has 
attracted much attention. MicroRNA is a class of small non-coding RNAs, functioning as an 
important regulatory molecule in the post-transcriptional regulation. MicroRNAs can control the 
expression level of their target genes through binding with certain mRNA sequences, which leads to 
mRNA cleavage or destabilization [9,10]. MiRNAs often play diverse roles in tumor manifestations, 
as several miRNAs have been identified as tumor suppressors, such as miR-15a and miR-16-1, while 
some, including miR-21 and miR-155, function as oncogenes [11]. In breast cancer, over 50 miRNAs 
have been recognized as dysregulated that are associated with different hallmarks of cancers so far [8]. 
However, the key microRNAs involved in tumorigenesis and prognostic microRNAs have not been 
fully understood. In the present study, we aimed to perform a systematic analysis of microRNA 
expression profiles to identify some key microRNAs associated with tumor initiation and prognosis. 

2. Materials and methods 

2.1. MicroRNA and gene expression data collection 

We collected microRNA and gene expression data of TCGA breast cancer (BRCA) tissues 
and normal tissues from UCSC Xena database [12] (https://xenabrowser.net/datapages/). The 
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gene and miRNA expression data was normalized and transformed by log2 (FPKM + 1) and log2 

(RPM + 1), respectively.  

2.2. Differential expression analysis of microRNAs between breast cancer and normal tissues 

The microRNA expression values were first transformed to log2 (RPM + 1). To avoid the 
interference by the outliers, we used the Wilcoxon rank-sum test, which is a nonparametric method, 
and fold change to determine whether a given microRNA was differentially expressed. Bonferroni 
adjusted P-value < 0.05 for Wilcoxon rank-sum test and fold change >2 or <1/2 were chosen as the 
thresholds for differential expression. 

2.3. Functional enrichment analysis 

The upregulated and downregulated microRNAs were used to conduct the microRNA 
enrichment analysis, respectively. The analysis was implemented in a webserver, MiEEA, miRNA 
enrichment analysis and annotation (https://ccb-compute2.cs.uni-saarland.de/mieaa_tool/) [13]. The 
threshold for these gene sets was P-value < 0.05.  

2.4. MiRNA target prediction in breast cancer 

The mRNA-miRNA interaction network was downloaded from miRTarBase database [14]. The 
interactions for Homo sapiens were extracted. The expression of microRNAs and their target genes 
across the tumor tissues must have reverse expression patterns with Pearson correlation coefficient < 
−0.3 and P < 0.0001.  

2.5.Cox-regression based survival analysis 

For those dysregulated microRNAs in breast cancer, their expression values were then marked 
as high or low if the expression values were higher or lower than their corresponding median 
expression, respectively. The subset of microRNAs to be used in the multivariable Cox model were 
selected by Maximum Minimum Parents and Children (MMPC) algorithm, which had a higher 
statistical significance in coefficient estimation and better performance in model fitting than any 
other combinations [15]. As with the dichotomization in microRNA expression, the samples were 
stratified based on the median of risk scores estimated by the Cox model. Survival analysis was 
implemented in R programming software with coxph function in survival package. The 
Kaplan-Meier curves were used to visualize the overall survival for each group. 

3. Results 

3.1. Dysregulated microRNAs in breast cancer 

We collected microRNA expression profiles of 1195 samples, with 1091 tumor tissues and 104 
normal tissues, from TCGA breast cancer (BRCA) database. From their microRNA expression 
profiles, we quantified a total of 1881 microRNAs. To identify key microRNAs involved in 
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tumorigenesis of breast cancer, we performed differential expression analysis of identified 
microRNAs. Totally, we identified 110 differentially expressed microRNAs (Figure 1A, Bonferroni 
adjusted P-value < 0.05 and fold change > 2 or < 1/2), including 46 up-regulated and 64 
down-regulated microRNAs. The dysregulated microRNAs exhibited significantly different 
expression patterns between the tumor and normal tissues (Figure 1B).  

Among the dysregulated microRNAs, hsa-mir-21, hsa-mir-96, hsa-mir-183, hsa-mir-592, and 
hsa-mir-182 were identified as the top-five upregulated microRNAs. Moreover, the top-five 
downregulated microRNAs consisted of hsa-mir-139, hsa-mir-10b, hsa-mir-99a, hsa-mir-145, and 
hsa-let-7c (Table 1). Notably, the top-five upregulated microRNAs have been reported to play an 
oncogenic role in cancers [16–20]. In contrast, the top-five downregulated microRNAs have been 
reported to act as tumor suppressors [21–25]. These results indicated that the comparison between 
tumor and normal tissues could reveal some key microRNAs involved in tumorigenesis. 

Table 1. The top-five significantly up-regulated and down-regulated miRNAs in 
breast cancer. 

miRNA 
Primary 

Tumor (mean) 
Primary Tumor (sd.) Normal (mean) Normal (sd.) P-value 

Log2 Fold 

Change 

hsa-mir-21 17.83  0.62  15.59  0.86  3.69 × 10-59 2.23  

hsa-mir-96 5.05  1.14  2.20  0.87  1.65 × 10-56 2.85  

hsa-mir-183 13.81  1.12  10.89  1.00  1.82 × 10-56 2.92  

hsa-mir-592 2.10  1.15  0.20  0.39  1.81 × 10-51 1.90  

hsa-mir-182 15.23  1.04  12.97  0.96  1.75 × 10-50 2.26  

hsa-mir-139 5.29  1.04  8.50  0.83  4.79 × 10-61 −3.22  

hsa-mir-10b 15.78  0.96  17.95  0.46  9.93 × 10-59 −2.17  

hsa-mir-99a 9.05  1.22  11.44  0.65  7.37 × 10-56 −2.39  

hsa-mir-145 10.14  1.03  12.57  0.87  2.31 × 10-54 −2.43  

hsa-let-7c 10.87  1.12  12.90  0.57  2.76 × 10-53 −2.03  

3.2. Functional enrichment analysis of the dysregulated microRNAs 

Similar to gene set enrichment analysis (GSEA), to reveal the biological functions of these 
dysregulated microRNAs, we performed microRNA enrichment analysis (MEA) using miRNA 
enrichment analysis and annotation [13] (MiEAA, 
https://ccb-compute2.cs.uni-saarland.de/mieaa_tool/). The upregulated microRNAs were mostly 
enriched in cancer related signaling transduction pathways (P-value < 0.05, Figure 2A), such as 
Notch and Wnt signaling pathway, which exhibited high concordance with the gene set enrichment 
analysis of the dysregulated genes [26,27]. Moreover, metabolism-related pathways such as sugar 
and nucleotide sugar metabolism, and oxidative stress response were also enriched by these 
upregulated microRNAs (P-value < 0.05, Figure 2A). In addition to these pathways, the target genes 
of upregulated microRNAs, such as TUBA1C, SYMPK, RPS2, HSP90AA1, EIF4EBP2, and BCL2, 
were identified by the MEA (Figure 2B). Particularly, BCL2, a favorable prognostic biomarker in 
breast cancer [28], was also downregulated in breast cancer samples compared with the normal 
tissues (P < 0.0001, Figure 2C, Supplementary Table S1), with an opposite expression pattern of 
those upregulated microRNAs. In contrast, although the downregulated microRNAs were not 
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significantly enriched in any pathways and no target genes were found, they were significantly 
enriched in some Gene Ontology (GO) terms, such as COPII vesicle coat, mesenchymal cell 
development, protein phosphatase type 2a regulator activity, and hosphatidylinositol 3 4 5 
trisphosphate binding (Figure 2D, Supplementary Table S2). The mesenchymal cell development 
indicated that the downregulated microRNAs may participate in the epithelial-mesenchymal 
transition (EMT). The functional enrichment analysis revealed some breast cancer-related pathways, 
target genes, and GO terms that the dysregulated microRNAs may be involved in. 

 

Figure 1. Overview of the dysregulated microRNAs in breast cancer. A. The points with 
red and blue colors represent the upregulated and downregulated microRNAs, 
respectively. B. Each row of the heatmap represents one of dysregulated microRNAs. 
The color band on the top represent the original tissues. 

3.3. Prognostic performance of the dysregulated microRNAs in breast cancer 

Among the dysregulated microRNAs, some may be associated with the patients’ prognosis. 
Based on univariate Cox regression model, we selected 9 microRNAs significantly associated with 
the overall survival of breast cancer patients (Figure 3A, Log-rank test, P-value < 0.05). The four 
upregulated microRNAs were associated with poor overall survival, while the five downregulated 
microRNAs had a favorable effect on the breast cancer patients (Figure 3A). To build a multivariable 
Cox regression model, we used MMPC algorithm [15] to select features. Finally, we selected 
hsa-mir-130a, hsa-mir-3677, and hsa-mir-1247 as the variables of the multivariable Cox model 
(Figure 3B). The samples were then stratified into high-risk and low-risk groups based on their risk 
scores estimated by the Cox model. The high-risk group showed significantly worse overall survival 
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than the low-risk group (Figure 3C, log-rank test, P-value = 0.00017). These results suggested that a 
combination of the dysregulated microRNAs had a high performance in the prediction of breast 
cancer prognosis. 

 

Figure 2. Pathway, microRNA target and Gene Ontology enrichment analysis. A. The 
signaling pathways enriched by the upregulated microRNAs. B. The microRNA targets 
enriched by the upregulated microRNAs. C. The expression patterns of the BCL2 in 
TCGA breast cancer and normal tissues. D. GO terms enriched by the downregulated 
microRNAs.  
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Figure 3. Prognostic microRNAs in breast cancer. A. The forest plot represents the 
prognostic microRNAs in breast cancer by univariate Cox model. B. The expression 
profiles of the three prognostic microRNAs in the Cox model. C. The Kaplan-Meier 
curves for the high-risk and low-risk groups stratified by the risk scores estimated by the 
multivariable Cox model. 

3.4. The microRNA-based stratification is an independent prognostic factor in breast cancer 

To further investigate the performance of the microRNA-based stratification, we also tested 
their independence from both breast cancer subtypes and TNM stages. Specifically, we observed that 
the high-risk group showed worse prognosis than the low-risk group in luminal-A (n = 384), 
luminal-B (n = 110), HER2-positive (n = 33), and triple-negative (n = 99) breast cancers at the 
significance level of 0.1 (Log-rank test, Figure 4A–D). Notably, despite of minimal sample size, the 
HER2-positive subtype still had worse prognosis in high-risk group than in the low-risk group at a 
relatively higher significance level (Figure 4C). 
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Moreover, we also tested the difference in the overall survival between the high-risk and 
low-risk groups for a specific TNM stage. Except for samples of the stage IV, which had a smaller 
sample size (n < 30) and were excluded in this analysis, samples of the other three stages (the sample 
sizes for I, II, and III: 183, 609, and 242) were used to compare the overall survival of high-risk 
group with that of low-risk group. Consistently, the high-risk group still exhibited poorer overall 
survival than low-risk group in all the three TNM stages (Figure 5, P-value < 0.05). These results 
indicated that the microRNA-based stratification is a prognostic factor independent of subtypes and 
TNM stages in breast cancer.  

 

Figure 4. The Kaplan–Meier curves for the breast cancer subtypes The Kaplan-Meier 
curves for luminal-A, luminal-B, HER2-positive, and triple negative subtypes are 
illustrated in A, B, C and D, respectively. 

3.5. The target genes of the microRNAs used in the Cox model 

As the microRNAs function by binding to the 3’ untranslated regions (3’ UTR) of their target 
genes, we then investigated the target genes of the three microRNAs used in the Cox model. We 
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first collected 322,160 experimentally validated microRNA-mRNA pairs from the miRTarBase 
database [14]. Given a stringent threshold of P-value < 0.0001 (Correlation test), we only identified 
7 pairs of microRNAs and target genes, which consisted of one microRNA (hsa-mir-130a) and seven 
target genes. The samples were then classified into two groups (high or low expression of 
hsa-mir-130a), and higher expressions of the seven target genes were observed in the samples with low 
expression of hsa-mir-130a (Figure 6, Wilcoxon rank-sum test, P-value < 0.0001). Among these target 
genes, VAV3 and ESR1 have been widely reported to be implicated in breast cancer [29,30], suggesting 
that hsa-mir-130a may function by regulating the expression of VAV3 and ESR1 in breast cancer.  

 

Figure 5. The Kaplan-Meier curves for the breast cancer patients within one of TNM 
stages The Kaplan-Meier curves for stages I, II, and III are illustrated in A, B, and C, 
respectively.  

4. Discussion 

Breast cancer is one of the most diagnosed cancers in women. It contributes greatly to 
cancer-related death among female patients with cancer [1], and raises concern all over the world. 
However, the key tumorigenic and prognostic microRNAs have not been fully uncovered.  
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Figure 6. The expression patterns target genes of hsa-mir-130a in breast cancer samples 
with high or low expression of hsa-mir-130a The samples with high and low expression 
of hsa-mir-130a are colored in blue and red, respectively. 

In the present study, we aimed to perform a systematic analysis of microRNA expression 
profiles to identify some key microRNAs associated with tumor initiation and prognosis. We 
collected microRNA expression profiles of 1195 samples, with 1091 tumor tissues and 104 normal 
tissues, from TCGA breast cancer (BRCA) database. Totally, we identified 110 differentially 
expressed microRNAs (Figure 1A, Bonferroni adjusted P-value < 0.05 and fold change >2 or <1/2), 
including 46 up-regulated and 64 down-regulated microRNAs. The top-five upregulated microRNAs 
have been reported to play an oncogenic role in cancers [16–20]. Among the top-five upregulated 
microRNAs, hsa-mir-21, overexpression in human breast cancer, is associated with advanced clinical 
stage, lymph node metastasis and patient poor prognosis [31]. Notably, the miR-183/-96/-182 
cluster is up-regulated in most breast cancers and increased cell proliferation and migration are 
observed [32]. The top-five down-regulated microRNAs, hsa-mir-139, hsa-mir-10b, hsa-mir-99a, 
hsa-mir-145, and hsa-let-7c, were famous tumor suppressors [21–25]. The functional enrichment 
analysis of the upregulated microRNAs revealed signaling transduction pathways, such as Notch and 
Wnt signaling pathway, and metabolism related pathways such as sugar and nucleotide sugar 
metabolism, and oxidative stress response (P-value < 0.05, Figure 2A). Moreover, the downregulated 
microRNAs were significantly enriched in GO terms, such as COPII vesicle coat, mesenchymal cell 
development, protein phosphatase type 2a regulator activity, and hosphatidylinositol 3 4 5 
trisphosphate binding (Figure 2D). The mesenchymal cell development indicated that the 
downregulated microRNAs may participate in the epithelial-mesenchymal transition (EMT). 
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In addition, we also examined the prognostic values of the dysregulated microRNAs. 
Multivariable Cox model based on three variables of hsa-mir-130a, hsa-mir-3677, and hsa-mir-1247 
stratified samples into high-risk and low-risk groups, which exhibited significant prognostic 
difference. Moreover, we also tested the performance of this stratification method in any specific 
breast cancer subtype or TNM stage. The high performance in risk prediction was also observed in 
all of breast cancer subtypes and TNM stages. These results not only indicated that the stratification 
based on the multivariable Cox model had high performance in risk prediction, but also demonstrated 
the high efficiency of the algorithm for the feature selection. Among the target genes of hsa-mir-130a, 
VAV3 and ESR1 have been widely reported to be implicated in breast cancer [29,30], suggesting that 
hsa-mir-130a may function by regulating the expression of VAV3 and ESR1 in breast cancer. 

However, some limitations still existed in the present study. First, these dysregulated 
microRNAs should be further investigated by experimental validation. Second, more samples are 
needed to further validate the predictive performance of three microRNAs in the multivariable Cox 
model. We hope to conduct further research with functional experiments and more samples in the near 
future. In conclusion, we have identified key microRNAs implicated in breast cancer, which improved 
our understanding of the microRNA-related molecular mechanism underlying breast cancer.  
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