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Abstract: MicroRNAs are known to regulate gene expression either by repressing translation or by
directing sequence-specific degradation of target mRNAs, and are therefore considered to be key
regulators of gene expression. A gene-regulatory pathway involving heterochronic genes controls the
temporal pattern of Caenorhabditis elegans postembryonic cell lineages. Based on experimental data,
we propose and analyze a mathematical model of a gene-regulatory module in this nematode involving
two heterochronic genes, lin-14 and lin-28, which are both regulated by /in-4, encoding a microRNA.
The conditions under which the model experiences bifurcations are investigated. We determine the
parameter regimes for which the system exhibits monostability and bistability, the latter associated
with a biological switch. We observe in particular that bistability occurs without co-operativity, in
keeping with knowledge about the regulatory behaviour of lin-14 and lin-28. The analytical results
are confirmed by numerical simulations that illustrate how the microRNA [/in-4 plays a crucial role in
determining of the qualitative dynamics of the model.

Keywords: microRNA [in-4; heterochronic genes (/in-14 and lin-28); mathematical modelling;
biological switches

1. Introduction

Mathematical modelling of gene-regulatory networks is a relatively new area which plays an
important role in systems-biology investigations. The control and coordination of large sets of genes
is intrinsic to the ability of multicellular organisms to produce specific types of cells, in the proper
place and at the right time during development. The perception and integration of cellular and
environmental signals are essential in controlling gene expression during development. The roles of
specific proteins as gene-regulatory factors are well established; in addition, recent studies of small
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RNAs, particularly microRNAs (miRNAs), have generated considerable excitement. Lee et al. [1]
first described this phenomenon in 1993, though the term microRNA was introduced only in 2001 [2].
MicroRNAs are a class of small non-coding RNAs. At a post-transcriptional level, they enter the
RNA interference (RNA1) pathway to regulate the expression of protein-coding genes. They regulate
gene expression by blocking translation (by ribosomes) and by triggering the degradation of mRNA
in, for example, both Drosophila melanogaster and Caenorhabditis elegans (see [3—5] and references
therein). MicroRNAs are, therefore, key components of an evolutionarily conserved system of
RNA-based gene regulation in eukaryotes. In addition, they play crucial roles in many molecular
interactions, including defence against viruses and regulation of gene expression during development,
cell proliferation and apoptosis. For instance, DCL1 (DICER-LIKE 1) mRNA in plants is a miRNA
target, and the defects associated with dc// mutants include over-proliferation of meristems (which
contain pluripotent stem cells), conversion of normally determinate floral meristems into
indeterminate meristems, over-proliferation of embryonic suspensor cells, delayed flower timing and
leaf polarity defects [6]. Similarly, bantam miRNA, a microRNA identified in D. melanogaster,
functions to repress apoptosis and to promote cell proliferation in the developing fly, by repressing the
translation of the mRNA for Hid, a key activator of programmed cell death [6]. It is also believed that
the alterations in miRNA expression patterns might be involved in cancer development in humans [7];
this includes evidence for cancer-related miRNAs that regulate cellular proliferation, death and
tumorigenesis in a variety of tumors, including Burkitt’s lymphoma, glioblastoma, colorectal, lung
and breast cancers [8]. MicroRNAs can also control Nodal/activin signalling in some cases [9].
Recently, mir-34 microRNA has been identified as a key component of the DNA damage response
both in the nematode C. elegans and in human breast cancer cell lines [10]. In addition, studies
illustrate the role of a miRNA in well-established tumour-suppressor networks associated with
p53 [11-13]. Moreover, microRNAs have emerged as a class of gene-expression regulators that have
also been linked to environmental stress responses, such as low temperature, high-salinity and
drought. Liu et al. [14] identified 14 stress-inducible miRNAs using microarray data in which the
effects of abiotic stresses were surveyed in Arabidopsis thaliana. Such findings augment the current
view of miRNAs as ubiquitous regulators under stress conditions.

Our goal here is to study a specific regulatory module that involves three interacting genes in
C. elegans, one of which encodes a microRNA (similar genetic circuity of course also arises in other
contexts): lin-4 encodes a microRNA, /in-28 a RNA-binding protein and /in-14 a transcription factor,
the network being shown schematically in Figure 1. In the following paragraphs we discuss their
functions in C. elegans.

In the middle of the first larval stage (L1), expression of /in-4 is first observed [15]. Up-regulation
of this gene results in the down-regulation of the production of LIN-14 protein, which then allows the
transition from expression of L1 stage to the expression of L2 (second larval) developmental events to
occur [16].

In an experimental study, Feinbaum and Ambros [15] observed that over-expression of /in-4 in the
L1 stage results in precocious down-regulation of LIN-14 protein and precocious expression of larval
phenotypes, and noted that most of the precocious phenotypes in lin-4 over-expressing lines were
strong, consistent with a potent premature repression of LIN-14 in C. elegans. However, the L1
defects (precocious expression of L2 cell lineage patterns in the L1 stage) were relatively weak.
Perhaps lin-4 is not expressed at sufficiently high levels for full repression of LIN-14 synthesis until
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later L1. The authors of [15] pose a question "Does lin-4 level function as a gradient or a switch?".

In the current study, we try to give a possible answer of the question posed by [15] via mathematical
modelling.

In summary, several heterochronic genes, such as lin-4, lin-14 and lin-28, collaborate to control the
timing of specific postembryonic developmental events in C. elegans. How these three genes interact
to control a particular stage-specific event of the lateral hypodermal cell lineages is described in [17].
Here, we also focus on these specific genes: Our goal is to develop and analyse a mathematical model
for a specific gene-regulatory network (described below) in which a particular miRNA plays crucial
role. It is hoped that the results will be of more general relevance in enhancing the understanding of
the types of phenomena just described.

2. Assumptions and model formulation

In developing the mathematical model, we adopt the general assumption that biochemical reactions
are reversible. Next we summarize the mathematical notation and existing experimental data, along
with the specific assumptions upon which the mathematical model is built (see also [18]).

(Al): [N] and [L] denote the concentrations of the mRNAs of /in-14 and lin-28, respectively, and
[W] denotes the concentrations of the /in-4 miRNA.

(A2): Seggerson et al. [19] have suggested that /in-28 and lin-14 are repressed by lin-4 during
normal development by a mechanism that acts on their respective mRNAs after translation initiation.
This inhibition is reversible and seems to involve interference with the growing protein chain that is
being translated from the mRNA. The microRNA interactions occur at the far (3’) end of the mRNA
molecule, even though the process of translation is initiated at the opposite (5°) end. We denote the
concentrations of the inactive complexes of [N] and of [L] with [¥] by [Cy] and [C.], respectively.
These reactions are reversible and are represented by

k k
N+¥=Cy, L+¥=C,, 2.1)
k-1 ko

where k;’s are the rate constants.

(A3): We treat lin-14 and lin-28 as positively regulating each other, although in both cases this is in
reality mediated through two successive negative regulatory steps, see Figure 7 of Seggerson et al. [19];
it is believed that the mutual positive regulation of /in-28 and lin-14 is achieved through a two-step
negative regulation involving the miRNA lez-7 [19-22].

(A4): lin-4 is robustly expressed from late L1 through to peak levels at .3 and persistently into
adulthood [15]. We take lin-4 to have expression rate {; by increasing the value of the parameter ¢
we will be able to investigate its effect from the late L1 stage through to the L2 stage. Note that the
numerical value of the parameter { is influenced by the amount of food during the time of hatching as
lin-4 is repressed by starvation and activated by nutrition. In a course of time, we would be able to find
that for a normal progression from L1 stage to L2 stage, an increasing value of { is needed (that is, a
continuous nutrition is required).

A schematic diagram of the gene-regulatory network of lin-4, lin-14 and lin-28 is given in Figure 1.
We model the degradation of lin-14 by the term SB[ N][¥] and that of /in-28 by the term S,[L]['V'].
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lin-14 lin—28
-

Figure 1. Network of /in-4, lin-14 and lin-28; — denotes activation and 4 repression.

(AS): The processes involved in the synthesis of /in-14 and lin-28 (i.e. transcription, translation
and post-translational modification) are combined together, since these processes occur on a timescale
of minutes to hours. The effect of a transcription factor on the transcription rate of a gene that it
upregulates is taken to be described by Hill function given in the case of regulation of N by L, for
example, by H([L]) = % The Hill coefficient m governs the steepness of the output function
(the larger m the more step-like the function) and we shall limit attention to the simplest Michaelis-
Menten case m = 1. The parameters 6;, and A4, respectively represent the threshold on a target N of
the regulatory influence of L and the maximum rate of production of N induced by L. Each species
spontaneously decays due to degradation, at arate y; (i = 1,2, ..., 5).

The resulting model then reads

d[N] [L]
- = ”’"m k_1[Cy] - kINIY]
—

i complex separation complex formation
gene expression

- BilN][Y] - Nl (2.2a)
miRNA triggered degradation degradation
diL] _ 1 ﬂ% [CL] = k[ LI[Y] = B2l LI[Y] — p2[ L] (2.2b)
dr nl [N]+ 6, -21CL 2 2 M2l L], .
d[¥
% = {+kalCy] +kolCr] = kiINIYT = ka[LINY] = ps[¥1], (2.20)
d[C
= R IVI] - LG - (2.2d)
d[C
[ df] = klLI¥] — k[CL] - us[Cy). (2.2¢)

Tables 1 and 2 summarise the notation.
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Table 1. Variable.

Variable name Species Units
[NV] lin-14 mRNA uM
[L] lin-28 mRNA uM
(V] lin-4 miRNA uM
[Cy] Complex formed by [N] and [Y] uM
[Cr] Complex formed by [L] and [YV] uM

Table 2. System parameters.

Parameter Role Units

A Maximum production rate of [N] induced by [L] uM h!

A Maximum production rate of [L] induced by [/NV] uMh7!

6, Threshold on [N] by the influence of [L] uM

6, Threshold on [L] by the influence of [N] uM

ki, Bi, Biochemical reaction rates (i = 1,2.) uM~! h™!

i Biochemical reaction rates (i = 1,2.) h!

i Decay rates (i = 1,2, ...,5.) h™!

e Constitutive expression of [¥] uMh!

To complete the mathematical formulation of the above model we adopt for definiteness the
following initial conditions:

[N1(0) = N, [L](0) = LV, [P1(0) = ¥, [Cy]1(0) = Cy?¥, [C.1(0) = C.?, (2.3)

where NO, LO ¢O €@ and C;© are taken to be the steady state values that arise when lin-4 is
present (we mimic the transition from L1 stage to L2 stage by introducing a non-zero ¢ at ¢t = 0). The
system (2.2) has two physiological meaningful steady states,

NO =0, =0, ¥O=5  co=0  ¢®=0 (2.4)
M3
N9 = Ng, LO=Lg, Y9=¥g CW=Cy, C9=Cp (2.5)

where Ng, Lg, Wi, Cyg and Cpg are non-zero and can be obtained from an algebraic equation of order
seven (see [18]). The steady state represented in Eq (2.5) denotes the early L1 stage where lin-14 and
lin-28 are present and lin-4 is not yet expressed highly. The steady state in Eq (2.4) represents the L2
(or precocious L2) stage where lin-14 and lin-28 are absent and /in-4 is expressed highly.

We now introduce dimensionless quantities in according to

k-
kik_»

k_ k_
t= Ml [N] = —N, [L] = =L, [¥] = 22w, [cy] = %CN, [C.] =
1 1 1

Cp,
ki k, k L
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the timescale being based on the degradation rate of [N], which is expected to be slow.
This gives

dN A, L

—_— = +(Cy—-N¥Y)-B;N¥ - N, 2.6a
o7 L+d, +(Cy — ) =B (2.6a)
dL AuN
—= = +%, (C, - LY LY - i, L, 2.6b
dr N+9 1 (CL ) — ,32 75 ( )
d¥ N
e = €l+(CL—LY)+(Cy-N¥)— ez ¥, (2.6¢)
T
dC
—X = N¥Y-Cy-€uCy, (2.6d)
dT
dC 3
dL = k(LY - CL) - efis Cp, (2.6¢)
=

where the dimensionless parameters are defined by

~ Anky  ~ ks ~ Onks ~ 0,1 k
/1111 = #’ /lnl = L2 B Hln = u9 enl = 1 1’ €= ﬂ’
My ks My k_y k_y k_ k_
i , k - k. k. l
ﬁi = ﬁ_ { = Q k = _2’ k2 = _2’ andlji =—, 1= 1529 955
:“1 ky k-1 H1

and the initial conditions (2.3) become

wik_y
N(@©0) = —NO, L10)= L<°> Y(0) = ‘P(O) ,Cyn(0) = C‘O) c0)=H

k e, Lc. @)

We note that a linear combination of (2.6¢)—(2.6e) can be chosen to eliminate the (fast)
complexification terms, namely

d C - -
d—(‘P+cN+~—L> = (¥ -, Cy - 22Cy, (2.8)
T k>

which plays a key role in describing the dynamics in the limit ¢ — 0. We now indicate the basic
assumption on parameter sizes in the system (2.6). Formation and dissociation of a complex typically
operates on a timescale of the order of second, while it takes many minutes to a few hours for gene
regulation to complete (transcription and translation) [23]; therefore we take € < 1. In the limit e — 0
the order of system (2.6) is reduced and the associated singular perturbation problem is addressed
in [18]. Here we proceed directly to the quasi-steady limit that holds for 7 = O(1), the behaviour of
which is significantly more accessible to analysis.

3. The reduced system
Taking the limit € — 0 with 7 = O(1) in (2.6) gives
Cno = No'Yo, Cro = Lo¥o. (3.1)
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at leading order, together with

dN, dL d¥
— = fu(No, Ly, Wo),  —= = f,(No, Lo, Wo),
dT dr d

where the nonlinear functions fy(Ny, Lo, Yo), f1.(No, Lo, Vo) and f(Ny, Ly, Vo) are defined by

= fw(No, Lo, ¥o), (3.2)

A L uN
N,L,¥Y) = —-BiNY - N, N,L,Y —B LY —u, L,
In( ) L+0, B Ji( ) = N +6, B2 H2
((-m¥ - N =LY = WAN.LY) - £ f,(N. L))
fe(N,L,¥Y) = .

I+ N+g)

The reduced system (3.2) subject to the initial data

k.,
No(®) = ZINO L0 = —L<°> ¥, (0) = ’%‘I’(O),

Hik-1 o) ©) H1k-1 - 0)gs00)
Cyv(0) = HEInowo o ) = KL oy 34
~(0) s £(0) = ko 3.4)

determines the behaviour for r = O(1) and we next identify a number of its properties by a linear
stability analysis. We denote a steady state solution to (3.2) by (N, Ly, '¥;), so that

fN(Ns’Ls’lPs) = O’ fL(Ns’Ls’lPs) = 0, f‘P(NsaLsa‘Ps) =0. (35)

The system (3.2) has two kinds of steady states, of the form E; = (0,0, ‘I’S) and £, = (N,, L., \Y,),
where ‘I’S = #%, and N,, L, and ¥, are non-zero and can be obtained from a quintic equation
(see [18]). Applying standard linear stability methods to £, and E, leads to the following propositions
(details of the analysis are given in [18]).

Proposition 1. (i) The equilibrium point E; is stable if and only if £ > /U, where

§[tc] #3(\/91n29n/2ﬁ12#22 2 01202 B1 1282+ 012 Ot * 2% +4 01101181 B2 At Ain = OinOpiB1 112+ 00 nlﬁz))
201,018182
(ii) E, becomes unstable at / = /1! via a transcritical bifurcation.

Proof. (i) The Jacobian matrix of the system (3.2) around E| is given by

_Bd_q Ain 0
M3 Hln
_ Al Bl _
A - 6 3 /-12 0 - (apq)3><3a
asp asp —HM3

where

il B¢ 4 LAy
ayy, = ———={|-—-1|u3s" - ,
M3 M3 kopi36,,
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_ ks L An B2{ o1, -
apn = —7— = |- |k s
kops O3 M3

We define C; = tr(A) X M — det(A), where M is the sum of the second order principal minors of A.

Obviously, we have trA < 0, and we find that for £ > /U, detA < 0 and C; < 0. Hence the proof
follows from Routh-Hurwitz criteria.

(ii) We notice that at = /1! | det A = 0 which means that A has one zero eigenvalue. Now when
¢ = [l the other two eigenvalues are given by —(u3 + uous + 81 + B20)/us and —pus, that is both of
them are negative. Let V and W are the eigenvectors corresponding to zero eigenvalue of the matrix A
and AT, the transpose of A, respectively. We obtain that V = (v, v, v3)T, W = (w1, wp, w3)T, where

_ (Bl +143) O e = & (usp30i, + papako Ay + s B101)
=, V3=-— ,

vi = 1, v ,
! 2 s d, /J33/llnk2
_ (Bad + pops) O B B
wp, = , W = 1, w3 = 0.
3

Next we see W/ [F(E,'N] = 0, WI[DF/(E,,{!YV] # 0 and WI[D*F(E;, ") (V, V)] # 0,

where Fy = (%, %%, L), fy = fu(N,L,YW), fo = fulN,L,¥) and fy = fu(N,L,'¥) are defined

in (3.3), Fy(E, ™) is the value of F, evaluated at E; for = "], and

_B 0 0
P H3
A B
_ _ P2
DF[ - ag - 0 H3 0 ’
—Hap3koOu+2 P1d koOnitkopt36u—Amps  —psp36m—Amkop3 +2 Bl O +Omiapts 0
U326y ko326,

where D°F € R¥3*3 is defined in Appendix A. Therefore, by the Sotomayor theorem [24] the system
possesses a transcritical bifurcation around E, see Figure 5.

Proposition 2. (i) For /1! < / < /1", the system is bistable and we denote the stable states by E| and
EJ, and the unstable one by EX' (Figures 3 and 5). E} is linearly stable if Q; < 0, i = 1, 2, 3, where the
Q; are defined in the Appendix B. (ii) E; (or specifically E}) experiences a saddle-node bifurcation at
. = M where [ is determined from det B(/!*) = 0, B being the Jacobian matrix of the
system (3.2) at E, (the lengthy details are again given in [18]).

Proof. (i) We examine the bistability of the system numerically (in section 4), that when the Eq (3.5)
have only two real positive roots E} and EJ, then the system become bistable around E; and E}
(unstable around EY) for ¢ > {!"); (Figures 3 and 5). However the local stability of around E} can be
shown as follows:

Let us denote the Jacobian matrix of the system (3.2) around E5(N,, L., ¥,) by B = (b;;) € R¥°.
Here we note that the Jacobian matrix is a full matrix. Although the Routh-Hurwitz criteria can be
used, but the expressions for the conditions for local stability are even more complicated than those
found for the equilibrium point E;. To analyse the stability of the system (3.2) around (N,, L,,'¥,), we
follow a different approach and get a simpler set of conditions for local stability.
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To show the first claim on the asymptotic stability of the equilibrium E,, we use the method of first
approximation. If B! = (l_),-.,-) be the second computed matrix of matrix B, then the matrix B*! is given

by,

bll + bzz b23 _b13
B2 — b3, by + bss by, = (bij)3xa-
—b31 bz] b22 + b33

Consider a diagonal matrix D = diag(¥,, L, N,), then B"?! is similar to Q = DBZD™! = (¢,
where Q € R¥? with elements

_ - ¥ - ¥
= b . = b _e’ fd b _6’
q11 11 qi2 12 L qi13 13Ne
_ L - - L
= by —, = by, = byy—,
q»1 21 v, q» 22 q23 23 N,
= bal,  gm=bp—S, gy = by
qs31 31\1,8 q32 32 L q33 33

Now it is easy to see that the matrix B?! is stable if and only if Q is stable. Since the diagonal
elements of the matrix Q are negative, by the Gershgorin’s theorem it is stable if it is diagonally
dominant in rows. Set

&1 = qutquntqi=-1=-28Y-u,
& = qun+tqn+qn=LQ, 8 =q31 +qn +q3 =y,

and ¢ = max{gy, g2, g3}. Obviously, when the conditions Q; < 0 and Q, < 0 are met, then J* < 0,
implying diagonal dominance. Next we have

Q3

detB = .
(1 +N, + %)

In view of the third condition Q3 < 0, we see det B < 0, which completes the proof.

(i1) Let V and U be the eigenvectors corresponding to eigenvalue O of the matrix B and its transpose,
respectively. We obtain that V = (¢, ¢2,¢3)7, U = (uj,uz,u3)’, where ¢; and u; are defined in
Appendix C. Next we obtain U [F/(E,, )] # 0, UT[D*F(E, {*)(V, V)] # 0, where D*F is given
in Appendix A; therefore, system experiences saddle-node bifurcation [24] around the positive interior
equilibrium E; at / = /", see Figure 5.

4. Numerical simulations

In section 1, we report that the larval development progressions of C. elegans (whether normal or
abnormal) depends on the level of expression of miRNA [lin-4 [15]. The normal development
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progression means the transition from expression of the L1 stage to the expression of second larval
stage (L2) where as an abnormal progression refers to a premature adoption of L2 (precocious L2) by
skipping the first larval development stage (L1) [16].

In this section we perform numerical simulations of the reduced system (3.2) to illustrate how the
current mathematical modelling reflects these two types of (i.e normal and abnormal) larval
development progressions. The numerical simulations are undertaken with the set of parameter values
reported in Table 3 which also convenient for verifying the properties of the system determined
analytically. These computations are performed using Matlab routine ode15s and XPP-Auto for stiff
ODEs. The parameter values are hypothetical; however, they are closely related to the existing
literature such as [16,23].

Table 3. Dimensionless parameter values chosen (after removing ~ ).

Parameter value Parameter value Parameter value
O, 7 A 1 B 0.01
0,1 8 Al 1 B> 0.015
ks 0.8 U 0.0129
M3 10 i 100 Hs 8

4.1. Dynamics of the system (3.2) for constant {

First of all we illustrate the stability of the system (3.2) around E, for ¢ < ¢U), see Figure 2. Note
that the stability of E, represents the early L1 larval stage where lin-4 is expressed very low and both
the lin-14 and lin-28 are highly expressed. Next, we illustrate the bistability of the system (3.2) for
2V < ¢ < /" see Figure 3. Figure 3 illustrates how the system is settling to two stable states
over time depending on their initial conditions. Then, we demonstrate the stability of the system (3.2)
around E; for £ > ¢U"!: see Figure 4. The stability of E; indicates the L2 larval stage where lin-4 is
expressed very high and both the lin-14 and lin-28 are absent. Figures 2—4 are obtained by varying the
values of the parameter { only (the other parameter values are kept same and are listed in Table 3).

Figure 5 demonstrates the transcritical bifurcation of the system (3.2) at E; for / = /! = 3.2 and
the saddle-node bifurcation at E, for ¢ = /" = 5.1,

In interpreting Figures 3 and 5, we note that for the set of parameter values listed in Table 3 and
3.2 < ¢ =4 < 5.1, the system (3.2) attains the stable state E§(0.18, 1.55,0.09) if the initial conditions
are Ny(0) > 0.023, Ly(0) = 0.136 and Y¥y(0) = 0.3; and it attains the stable state E£;(0,0,0.4) if
No(0) < 0.023 (where Ly(0) = 0.136 and ¥y(0) = 0.3). Therefore, certain levels of expressions of
lin-14 and lin-28 are required for L1-specific fates to occur. This means certain levels of expression
of lin-14 and lin-28 are required for normal progression from the L1 stage (that is from E,) through
to the L2 stage (that is to E); on the other hand, if the initial levels of expression of lin-14 and lin-28
are below the required level (that is, Ny(0) < 0.023 and L,(0) < 0.136), then the development stage
L1 is skipped (as E; is not attained) resulting in a premature adoption of L2 (precocious L2) which
illustrates an abnormal progression.
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0.3 3 0.3
£0.2 S¥) 502
S & <
g0l £l £01

0 0 0
0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
Time (1) Time (1) Time (1)
(a) Time evolution of lin-14 (N). (b) Time evolution of lin-28 (L). (c) Time evolution of lin-4 (\P).

Figure 2. The stability of the system (3.2) around E,(0.22,2.02,0.05) for / = 2 < /") = 3.2

and remaining parameter values given in Table 3. The initial conditions are expressed as
Ny(0) € (0.02,3), Ly(0) = 0.136, ¥y(0) = 0.3.

0.2 2

~.0.15 = 504

=z ~—

S 01 o 1 0.2

L = =

= 0.05 -
0 0

0 0 5000 10000 15000 0 5000 10000 15000
0 2000400060008000 . .
Time (1) Time (1) Time (t)
(a) Time evolution of lin-14 (N). (b) Time evolution of /in-28 (L). (c) Time evolution of lin-4 (V).

Figure 3. Bistability of the system (3.2) for £ = 4 (that is, for a £ lies between /1! = 3.2
and /¥ = 5.1) and remaining parameter values given in Table 3. The initial conditions are
provided as Ny(0) € (0.02, 3), Ly(0) = 0.136, ¥,(0) = 0.3.

4.2. Dynamics of the system (3.2) for time-dependent {

In section 4.2, we noted that how the dynamics of the system (3.2) behave for the different constant
values of { (constant over time ?). It is observed that the system shows all possible scenarios (abnormal
and normal progression of the larval stages) while we increase the value of { and (as implied by the
discussion in section 1) we take an increasing value of {(¢) to describe the up-regulation of miRNA
lin-4 which causes the down-regulation of LIN-14 and LIN-28, resulting in a transition from the first
developmental stage (L.1) to the second developmental stage (L2) [16]. For these purposes we reinstate
the initial data (2.4) and (2.5).

For definitions, we adopt the specific form { = A + Btanh(ot) to describe the transition between two
constant values (in keeping with its biological interpretation) with o sufficiently small that the system
evolves in a quasi-steady fashion.
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Figure 4. The stability of the system (3.2) around E;(0,0,0.6) for £ = 6 > /" = 5.1
and remaining parameter values given in Table 3. The initial conditions are same as that of
Figures 2-3.
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Figure 5. Bistability (for /! = 3.2 < ¢ < ¢ = 5.1), with the transcritical bifurcation
at £ = £V'! = 3.2, and the saddle-node at £ = £!*"! = 5.1, for the parameter values given in
Table 3. The solid lines represent loci of stable equilibria and the dotted lines the unstable
ones.

The following numerical simulations illustrate the corresponding changes in the solutions of the
non-autonomous ODE system (3.2) compared to that of autonomous one. Note that the steady states
E, and E, obtained earlier for a constant £ will now be (slowly varying) functions of ¢. Figure 6
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illustrates how the solution of the non-autonomous system (3.2) converges from E; (that is from L1
stage) to E (that is to the L2 stage) over time for the initial conditions Ny(0) = 0.25, Ly(0) = 2.124,
Yy (0) = 2.5, rapidly moving between branches at t = 4100. These initial conditions are taken in light
of the initial conditions represented by Eq (2.5) of the original system (2.2).

0.3 2.5 3
The time point i i
at which tﬂe 2 The time point — ;—th fvf?ir:: tﬁgmt
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0.2 ¢ prduces the B2 rduces the
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— N 1
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0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 .
Time (1) Time (1 Time (1)
(a) Time evolution of lin-14 (N). (b) Time evolution of lin-28 (L). (c) Time evolution of lin-4 (\P).

Figure 6. Normal Progression: The solution of the system (3.2) for { = 2.5+4tanh(0.001 1)
and remaining parameter values are given in Table 3.

On the other hand if the initial conditions are chosen in such as way which correspond the Eq (2.4)
of the original system (2.2) (for example, Ny(0) = 0, Ly(0) = 0, ¥,(0) = 2.5), then E, converges (or E,
is not attained) to E; very quickly, as might be anticipated. This represents an abnormal progression of
the larval stages (precocious L2 to L.2), see Figure 7.

0.3
- The time point - The time point
A0-04 Precocious| | 4t which the Precocious| | 4t which the 0.6 4\ . .
Z L2 ( produces 30-2 L2 ¢ produces s The time point
< the 'fold' value. © the ‘fold' value. S04 at which the
% 002 N zf ¢ produces
=he So01 = 02 the 'fold" value.
-2 | Precocious
L2
\ ¥ L= o
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Time (t Time (t Time (1)
(a) Time evolution of lin-14 (N). (b) Time evolution of lin-28 (L). (c) Time evolution of lin-4 (‘).

Figure 7. Abnormal Progression: The solution of the system (3.2) for { = e + dtanh(ct),
where the parameter values are same as that of Figure 6.

Figure 8 demonstrates both the normal and abnormal progression of the larval stages in response
to the time dependent {(¢) for the both set of initial conditions used in Figures 6-7. In interpreting
Figures 6-8, we again note that certain levels of expressions of /in-/4 and lin-28 are necessary for a
normal progression from the L1 stage to the L2 stage; otherwise, the development stage L1 is skipped
and an abnormal progression takes place. These results are consistent with the results of experimental
study of [25], where the authors studied the development of the larval stages of C. elegans based on
genetic epistasis and expression analysis of heterochronic genes and observed that a high level of /lin-
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14 is necessary for L1-specific fates to occur, while L2-specific fates occur only when both the lin-14
and lin-28 are at very low levels or off (Figure 5 of [25]).

Precocious

!
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2,

1.5}

lin-28

Precocious
L2

0.3
0.25;
— 0.2
=
S, 0.15
£
= 0.1y L2
0.05
O,
2

4

0.5} l
> 4

40

L2

Precocious

c®

Figure 8. This figure combines both the normal and abnormal progression of the larval
stages in response to the time dependent ¢ for the same set of parameter values used in
Figures 6-7. One of the double curves represents the normal progression (i.e L1 to L2) and
other an abnormal one (i.e Precocious L2 to L2). The current figure is the corresponding
representation of Figure 5 for the case of time dependent £.

5. Discussion

We have proposed a mathematical model of a microRNA regulated gene network in C. elegans.
The network consists two mutually activating heterochronic genes lin-14 and lin-28 and a microRNA
lin-4 of which negatively regulates both of them. The reduced model (3.2) captures the qualitative
behaviours, such as stability and bifurcation, of the full system (2.6). We summarize our numerical
investigations of the steady state solutions in Table 4, the parameter values other than { being as

in Table 3.

It has become increasingly clear that bistability is an important recurring feature in many gene-
regulatory networks. Bistability may be of particular relevance to biological systems that need switch
between states. Our focus lies on two mutually activating molecular species that are down-regulated

by a third species.

Interestingly, in the system (3.2), we see that bistability may arise without any cooperativity of
binding, in contrast to the situation familiar for two mutually repressing genes (see [26] for example).
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Table 4. The table shows different sets of parameter values for which the system (3.2) has
monostability and bistability.

Parameter values Non-negative Equilibria for specific £ Stability
Two
< =32 For{=2:E/(N,=L,=0,% =0.2) Unstable
E}(N,=0.22,L, =202, =0.05) Stable
(Figure 2)
Three
AV =32<¢< M =51 For{=4:E,(N,=L,=0,%¥, =04) Stable
E}(N,=0.18,L, = 1.55, ¥, = 0.09) Stable
EJ (N, =0.03, L, = 0.25, ¥, = 0.295) Unstable
(Figure 3)
One
> =51 For{=6:E/(N,=L,=0,%, =0.6) Stable
(Figure 4)

An investigation of [27] showed that the products of the flh-1 and flh-2 genes (encoding FLYWCH
Zn finger transcription factors) function redundantly in C. elegans to repress embryonic expression of
the /in-4 microRNA gene, which is normally expressed only post-embryonically. However, double
mutation of flh-1 and flh-2 allows derepression of target miRNAs genes (e.g. [in-4) in embryos.
Mutating the flh-3 gene (encoding a third transcription factors with a FLY WCH motif) also increases
precocious expression of target miRNAs. Our model provides a mathematical interpretation for this:
in the early L1 larval stage lin-4 is low, that is £ has a sufficiently small value that can be characterised
(namely, ¢ < £V, both lin-14 and lin-28 are expressed. This corresponds to the stability of E, and
the instability E; (see Figure 2 and first row of Table 4). Both /in-28 and [lin-14, in turn, negatively
regulate /in-29, which is believed to act as a negative regulator of early larval development, including
the functions required for cell division and the expression of early larval-specific cuticle genes.
Therefore, if the /in-4 microRNA expression is low, both LIN-14 and LIN-28 levels will remain high
(Figure 3), and early-larval (L1-specific) stages are reiterated while later developmental events
(L2-specific development) fail to occur. Conversely, if lin-4 microRNA levels remain high (£ > /1),
then both LIN-14 and LIN-28 levels will be low (Figure 3 and first row of Table 4), resulting in the
skipping of early (L1-specific) cell lineages and developmental events, while later developmental
events (L2-specific) and cell lineages occur precociously, which corresponds to stability of E;
(Figure 4 and third row of Table 4). Intuitively, this means that the lin-29 gene will be turned on,
resulting in the positive regulation of adult development, including the functions required for cell
division and the expression for adult-specific cuticle genes; and Propositions 1 and 2 represent two
important threshold values /! and /1" of the microRNA concentration level /. When ¢ lies between
these (i.e. {" < ¢ < ¢I), the system (3.2) has three steady states, namely E;, E} (both stable) and
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EZ(unstable). Figure 5 illustrates the range of ¢ for which the system (3.2) attains bistability. This
switching of between two stable states takes place in between early stage L1 and the later larval stages
precocious L2 which depends on the initial level of expression of lin-14, lin-28 and lin-4. This
switching determines whether development progresses from L1 to L2 or whether L2-precocious
patterns are reiterated (Figure 5). If the system adopts the L1 then it stays with L1 development until
saddle-node bifurcation point appears (and at the saddle-node bifurcation point) whereupon the
system switches to L2 development stage. This is a normal progression of the first two larval stages of
C. elegans development and is consistent with the current biology [25]. But if the system adopts
(depending on the initial level of presence of lin-14, lin-28 and lin-4) the other stable state, then this
leads to the precocious adoption of later cell fates (including L2 fates appearing during L1 and so on).
These events are illustrated in Figure 5, which describes an abnormal progression through these larval
stages. The numerical simulations of the current model imply that a certain level of activity of the
genes lin-14, lin-28 and lin-4 is necessary to allow L1-specific fates to occur (that is to adopt a normal
progression), see the initial conditions of Figure 3; and this view is also supported by the experimental
biology [25] . In summary, for a normal progression of the larval stages, three things are required (i) a
certain level of activity of the genes lin-14, lin-28 and lin-4, (ii) a progressive decrease in their
activities owing to repression by lin-4, (iii) a progressive increase in lin-4 activities (that is, increasing
nutrition is required). On the other hand, the absence of lin-14 and [lin-28 causes an abnormal
progression through these larval stages, even though there is a progressive increase in lin-4 activities.
These views are consistent with the experimental biology [15,16,25] .

In conclusion, we have established that the simple microRNA-regulated gene network shown
schematically in Figure 1 exhibits qualitative behaviour that can be interpreted in terms of key aspects
of the development of C. elegans. Its partial central edge as a subnetwork of networks containing
significantly more components thus warrants investigation.
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Appendix
A. Notation

The notations are same as that of [28]. The value of D?F(E,,")(V,V) is the value of

DZF(Ea {)(‘/a V) = (Tla TZa T3)T at (E’ é) = (El’ é/[tc])a
where Y;’s are given by
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B. Values of Q;

For completeness we give here expressions for the €; in section 3, determined using Maple.
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C. Coefficients of the vectors V and U.

The component of vectors V(¢y, ¢, ¢3) and U(uy, us, uz) are defined by
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