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Abstract: MicroRNAs are known to regulate gene expression either by repressing translation or by
directing sequence-specific degradation of target mRNAs, and are therefore considered to be key
regulators of gene expression. A gene-regulatory pathway involving heterochronic genes controls the
temporal pattern of Caenorhabditis elegans postembryonic cell lineages. Based on experimental data,
we propose and analyze a mathematical model of a gene-regulatory module in this nematode involving
two heterochronic genes, lin-14 and lin-28, which are both regulated by lin-4, encoding a microRNA.
The conditions under which the model experiences bifurcations are investigated. We determine the
parameter regimes for which the system exhibits monostability and bistability, the latter associated
with a biological switch. We observe in particular that bistability occurs without co-operativity, in
keeping with knowledge about the regulatory behaviour of lin-14 and lin-28. The analytical results
are confirmed by numerical simulations that illustrate how the microRNA lin-4 plays a crucial role in
determining of the qualitative dynamics of the model.

Keywords: microRNA lin-4; heterochronic genes (lin-14 and lin-28); mathematical modelling;
biological switches

1. Introduction

Mathematical modelling of gene-regulatory networks is a relatively new area which plays an
important role in systems-biology investigations. The control and coordination of large sets of genes
is intrinsic to the ability of multicellular organisms to produce specific types of cells, in the proper
place and at the right time during development. The perception and integration of cellular and
environmental signals are essential in controlling gene expression during development. The roles of
specific proteins as gene-regulatory factors are well established; in addition, recent studies of small
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RNAs, particularly microRNAs (miRNAs), have generated considerable excitement. Lee et al. [1]
first described this phenomenon in 1993, though the term microRNA was introduced only in 2001 [2].
MicroRNAs are a class of small non-coding RNAs. At a post-transcriptional level, they enter the
RNA interference (RNAi) pathway to regulate the expression of protein-coding genes. They regulate
gene expression by blocking translation (by ribosomes) and by triggering the degradation of mRNA
in, for example, both Drosophila melanogaster and Caenorhabditis elegans (see [3–5] and references
therein). MicroRNAs are, therefore, key components of an evolutionarily conserved system of
RNA-based gene regulation in eukaryotes. In addition, they play crucial roles in many molecular
interactions, including defence against viruses and regulation of gene expression during development,
cell proliferation and apoptosis. For instance, DCL1 (DICER-LIKE 1) mRNA in plants is a miRNA
target, and the defects associated with dcl1 mutants include over-proliferation of meristems (which
contain pluripotent stem cells), conversion of normally determinate floral meristems into
indeterminate meristems, over-proliferation of embryonic suspensor cells, delayed flower timing and
leaf polarity defects [6]. Similarly, bantam miRNA, a microRNA identified in D. melanogaster,
functions to repress apoptosis and to promote cell proliferation in the developing fly, by repressing the
translation of the mRNA for Hid, a key activator of programmed cell death [6]. It is also believed that
the alterations in miRNA expression patterns might be involved in cancer development in humans [7];
this includes evidence for cancer-related miRNAs that regulate cellular proliferation, death and
tumorigenesis in a variety of tumors, including Burkitt’s lymphoma, glioblastoma, colorectal, lung
and breast cancers [8]. MicroRNAs can also control Nodal/activin signalling in some cases [9].
Recently, mir-34 microRNA has been identified as a key component of the DNA damage response
both in the nematode C. elegans and in human breast cancer cell lines [10]. In addition, studies
illustrate the role of a miRNA in well-established tumour-suppressor networks associated with
p53 [11–13]. Moreover, microRNAs have emerged as a class of gene-expression regulators that have
also been linked to environmental stress responses, such as low temperature, high-salinity and
drought. Liu et al. [14] identified 14 stress-inducible miRNAs using microarray data in which the
effects of abiotic stresses were surveyed in Arabidopsis thaliana. Such findings augment the current
view of miRNAs as ubiquitous regulators under stress conditions.

Our goal here is to study a specific regulatory module that involves three interacting genes in
C. elegans, one of which encodes a microRNA (similar genetic circuity of course also arises in other
contexts): lin-4 encodes a microRNA, lin-28 a RNA-binding protein and lin-14 a transcription factor,
the network being shown schematically in Figure 1. In the following paragraphs we discuss their
functions in C. elegans.

In the middle of the first larval stage (L1), expression of lin-4 is first observed [15]. Up-regulation
of this gene results in the down-regulation of the production of LIN-14 protein, which then allows the
transition from expression of L1 stage to the expression of L2 (second larval) developmental events to
occur [16].

In an experimental study, Feinbaum and Ambros [15] observed that over-expression of lin-4 in the
L1 stage results in precocious down-regulation of LIN-14 protein and precocious expression of larval
phenotypes, and noted that most of the precocious phenotypes in lin-4 over-expressing lines were
strong, consistent with a potent premature repression of LIN-14 in C. elegans. However, the L1
defects (precocious expression of L2 cell lineage patterns in the L1 stage) were relatively weak.
Perhaps lin-4 is not expressed at sufficiently high levels for full repression of LIN-14 synthesis until

Mathematical Biosciences and Engineering Volume 17, Issue 4, 2881–2904.



2883

later L1. The authors of [15] pose a question "Does lin-4 level function as a gradient or a switch?".
In the current study, we try to give a possible answer of the question posed by [15] via mathematical

modelling.
In summary, several heterochronic genes, such as lin-4, lin-14 and lin-28, collaborate to control the

timing of specific postembryonic developmental events in C. elegans. How these three genes interact
to control a particular stage-specific event of the lateral hypodermal cell lineages is described in [17].
Here, we also focus on these specific genes: Our goal is to develop and analyse a mathematical model
for a specific gene-regulatory network (described below) in which a particular miRNA plays crucial
role. It is hoped that the results will be of more general relevance in enhancing the understanding of
the types of phenomena just described.

2. Assumptions and model formulation

In developing the mathematical model, we adopt the general assumption that biochemical reactions
are reversible. Next we summarize the mathematical notation and existing experimental data, along
with the specific assumptions upon which the mathematical model is built (see also [18]).

(A1): [N] and [L] denote the concentrations of the mRNAs of lin-14 and lin-28, respectively, and
[Ψ] denotes the concentrations of the lin-4 miRNA.

(A2): Seggerson et al. [19] have suggested that lin-28 and lin-14 are repressed by lin-4 during
normal development by a mechanism that acts on their respective mRNAs after translation initiation.
This inhibition is reversible and seems to involve interference with the growing protein chain that is
being translated from the mRNA. The microRNA interactions occur at the far (3’) end of the mRNA
molecule, even though the process of translation is initiated at the opposite (5’) end. We denote the
concentrations of the inactive complexes of [N] and of [L] with [Ψ] by [CN] and [CL], respectively.
These reactions are reversible and are represented by

N + Ψ
k1


k−1

CN , L + Ψ
k2


k−2

CL, (2.1)

where ki’s are the rate constants.
(A3): We treat lin-14 and lin-28 as positively regulating each other, although in both cases this is in

reality mediated through two successive negative regulatory steps, see Figure 7 of Seggerson et al. [19];
it is believed that the mutual positive regulation of lin-28 and lin-14 is achieved through a two-step
negative regulation involving the miRNA let-7 [19–22].

(A4): lin-4 is robustly expressed from late L1 through to peak levels at L3 and persistently into
adulthood [15]. We take lin-4 to have expression rate ζ; by increasing the value of the parameter ζ
we will be able to investigate its effect from the late L1 stage through to the L2 stage. Note that the
numerical value of the parameter ζ is influenced by the amount of food during the time of hatching as
lin-4 is repressed by starvation and activated by nutrition. In a course of time, we would be able to find
that for a normal progression from L1 stage to L2 stage, an increasing value of ζ is needed (that is, a
continuous nutrition is required).

A schematic diagram of the gene-regulatory network of lin-4, lin-14 and lin-28 is given in Figure 1.
We model the degradation of lin-14 by the term β1[N][Ψ] and that of lin-28 by the term β2[L][Ψ].
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lin−14 lin−28

lin−4

Figure 1. Network of lin-4, lin-14 and lin-28;→ denotes activation and a repression.

(A5): The processes involved in the synthesis of lin-14 and lin-28 (i.e. transcription, translation
and post-translational modification) are combined together, since these processes occur on a timescale
of minutes to hours. The effect of a transcription factor on the transcription rate of a gene that it
upregulates is taken to be described by Hill function given in the case of regulation of N by L, for
example, by H([L]) = [L]m

[L]m+θm
ln

. The Hill coefficient m governs the steepness of the output function
(the larger m the more step-like the function) and we shall limit attention to the simplest Michaelis-
Menten case m = 1. The parameters θln and λln respectively represent the threshold on a target N of
the regulatory influence of L and the maximum rate of production of N induced by L. Each species
spontaneously decays due to degradation, at a rate µi (i = 1, 2, ..., 5).

The resulting model then reads

d[N]
dt

= λln
[L]

[L] + θln︸        ︷︷        ︸
gene expression

+ k−1[CN]︸  ︷︷  ︸
complex separation

− k1[N][Ψ]︸    ︷︷    ︸
complex formation

− β1[N][Ψ]︸    ︷︷    ︸
miRNA triggered degradation

− µ1[N],︸ ︷︷ ︸
degradation

(2.2a)

d[L]
dt

= λnl
[N]

[N] + θnl
+ k−2[CL] − k2[L][Ψ] − β2[L][Ψ] − µ2[L], (2.2b)

d[Ψ]
dt

= ζ + k−1[CN] + k−2[CL] − k1[N][Ψ] − k2[L][Ψ] − µ3[Ψ], (2.2c)

d[CN]
dt

= k1[N][Ψ] − k−1[CN] − µ4[CN], (2.2d)

d[CL]
dt

= k2[L][Ψ] − k−2[CL] − µ5[CL]. (2.2e)

Tables 1 and 2 summarise the notation.
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Table 1. Variable.

Variable name Species Units
[N] lin-14 mRNA µM
[L] lin-28 mRNA µM
[Ψ] lin-4 miRNA µM
[CN] Complex formed by [N] and [Ψ] µM
[CL] Complex formed by [L] and [Ψ] µM

Table 2. System parameters.

Parameter Role Units
λln Maximum production rate of [N] induced by [L] µM h−1

λnl Maximum production rate of [L] induced by [N] µM h−1

θln Threshold on [N] by the influence of [L] µM
θnl Threshold on [L] by the influence of [N] µM

ki, βi, Biochemical reaction rates (i = 1, 2.) µM−1 h−1

k−i Biochemical reaction rates (i = 1, 2.) h−1

µi Decay rates (i = 1, 2, ..., 5.) h−1

ζ Constitutive expression of [Ψ] µM h−1

To complete the mathematical formulation of the above model we adopt for definiteness the
following initial conditions:

[N](0) = N(0), [L](0) = L(0), [Ψ](0) = Ψ(0), [CN](0) = CN
(0), [CL](0) = CL

(0), (2.3)

where N(0), L(0), Ψ(0), CN
(0) and CL

(0) are taken to be the steady state values that arise when lin-4 is
present (we mimic the transition from L1 stage to L2 stage by introducing a non-zero ζ at t = 0). The
system (2.2) has two physiological meaningful steady states,

N(0) = 0, L(0) = 0, Ψ(0) =
ζ

µ3
, CN

(0) = 0, CL
(0) = 0 (2.4)

N(0) = NE, L(0) = LE, Ψ(0) = ΨE, CN
(0) = CNE, CL

(0) = CLE (2.5)

where NE, LE, ΨE, CNE and CLE are non-zero and can be obtained from an algebraic equation of order
seven (see [18]). The steady state represented in Eq (2.5) denotes the early L1 stage where lin-14 and
lin-28 are present and lin-4 is not yet expressed highly. The steady state in Eq (2.4) represents the L2
(or precocious L2) stage where lin-14 and lin-28 are absent and lin-4 is expressed highly.

We now introduce dimensionless quantities in according to

t =
τ

µ1
, [N] =

k−1

k1
N, [L] =

k−1

k2
L, [Ψ] =

µ1

k1
Ψ, [CN] =

µ1

k1
CN , [CL] =

µ1k−1

k1k−2
CL,
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the timescale being based on the degradation rate of [N], which is expected to be slow.
This gives

dN
dτ

=
λ̃ln L

L + θ̃ln
+ (CN − N Ψ) − β̃1 N Ψ − N, (2.6a)

dL
dτ

=
λ̃nl N

N + θ̃nl
+ k̃1 (CL − L Ψ) − β̃2 L Ψ − µ̃2 L, (2.6b)

ε
dΨ

dτ
= ε ζ + (CL − L Ψ) + (CN − N Ψ) − ε µ̃3 Ψ, (2.6c)

ε
dCN

dτ
= N Ψ −CN − ε µ̃4 CN , (2.6d)

ε
dCL

dτ
= k̃2 (L Ψ −CL) − ε µ̃5 CL, (2.6e)

where the dimensionless parameters are defined by

λ̃ln ≡
λln k1

µ1 k−1
, λ̃nl ≡

λnl k2

µ1 k−1
, θ̃ln ≡

θln k2

k−1
, θ̃nl ≡

θnl k1

k−1
, ε ≡

µ1

k−1
,

β̃i ≡
βi

k1
, ζ ≡

ζ k1

µ2
1

, k̃1 ≡
k2

k1
, k̃2 ≡

k−2

k−1
, and µ̃i ≡

µi

µ1
, i = 1, 2, ..., 5,

and the initial conditions (2.3) become

N(0) =
k−1

k1
N(0), L(0) =

k−1

k2
L(0), Ψ(0) =

µ1

k1
Ψ(0),CN(0) =

µ1

k1
C(0)

N , CL(0) =
µ1k−1

k1k−2
C(0)

L . (2.7)

We note that a linear combination of (2.6c)–(2.6e) can be chosen to eliminate the (fast)
complexification terms, namely

d
dτ

(Ψ + CN +
CL

k̃2
) = ζ − µ̃3 Ψ − µ̃4 CN −

µ̃5

k̃2
CL, (2.8)

which plays a key role in describing the dynamics in the limit ε → 0. We now indicate the basic
assumption on parameter sizes in the system (2.6). Formation and dissociation of a complex typically
operates on a timescale of the order of second, while it takes many minutes to a few hours for gene
regulation to complete (transcription and translation) [23]; therefore we take ε � 1. In the limit ε → 0
the order of system (2.6) is reduced and the associated singular perturbation problem is addressed
in [18]. Here we proceed directly to the quasi-steady limit that holds for τ = O(1), the behaviour of
which is significantly more accessible to analysis.

3. The reduced system

Taking the limit ε → 0 with τ = O(1) in (2.6) gives

CN0 = N0Ψ0, CL0 = L0Ψ0. (3.1)
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at leading order, together with

dN0

dτ
= fN(N0, L0,Ψ0),

dL0

dτ
= fL(N0, L0,Ψ0),

dΨ0

dτ
= fΨ(N0, L0,Ψ0), (3.2)

where the nonlinear functions fN(N0, L0,Ψ0), fL(N0, L0,Ψ0) and fΨ(N0, L0,Ψ0) are defined by

fN(N, L,Ψ) =
λln L

L + θln
− β1 N Ψ − N, fL(N, L,Ψ) =

λnl N
N + θnl

− β2 L Ψ − µ2 L,

fΨ(N, L,Ψ) =

(
ζ − µ3 Ψ − µ4 N Ψ −

µ5
k2

L Ψ − Ψ fN(N, L,Ψ) − Ψ
k2

fL(N, L,Ψ)
)

(1 + N + L
k2

)
.

The reduced system (3.2) subject to the initial data

N0(0) =
k−1

k1
N(0), L0(0) =

k−1

k2
L(0), Ψ0(0) =

µ1

k1
Ψ(0),

CN(0) =
µ1k−1

k1k1
N(0)Ψ(0), CL(0) =

µ1k−1

k1k2
L(0)Ψ(0) (3.4)

determines the behaviour for τ = O(1) and we next identify a number of its properties by a linear
stability analysis. We denote a steady state solution to (3.2) by (Ns, Ls,Ψs), so that

fN(Ns, Ls,Ψs) = 0, fL(Ns, Ls,Ψs) = 0, fΨ(Ns, Ls,Ψs) = 0. (3.5)

The system (3.2) has two kinds of steady states, of the form E1 ≡ (0, 0,Ψ0
e) and E2 = (Ne, Le,Ψe),

where Ψ0
e =

ζ

µ3
, and Ne, Le and Ψe are non-zero and can be obtained from a quintic equation

(see [18]). Applying standard linear stability methods to E1 and E2 leads to the following propositions
(details of the analysis are given in [18]).

Proposition 1. (i) The equilibrium point E1 is stable if and only if ζ > ζ[tc], where

ζ[tc] =
µ3(
√
θln

2θnl
2β1

2µ22−2 θln
2θnl

2β1µ2β2+θln
2θnl

2β2
2+4 θlnθnlβ1β2λnlλln−(θlnθnlβ1µ2+θlnθnlβ2))

2θlnθnlβ1β2
.

(ii) E1 becomes unstable at ζ = ζ[tc] via a transcritical bifurcation.

Proof. (i) The Jacobian matrix of the system (3.2) around E1 is given by

A =


−
β1ζ

µ3
− 1 λln

θln
0

λnl
θnl

−
β2ζ

µ3
− µ2 0

a32 a32 −µ3

 = (apq)3×3,

where

a31 = −
µ4ζ

µ3
− ζ

(
−
β1ζ

µ3
− 1

)
µ3
−1 −

ζ λnl

k2µ3θnl
,
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a32 = −
µ5ζ

k2µ3
−
ζ λln

θlnµ3
− ζ

(
−
β2ζ

µ3
− µ2

)
k2
−1µ3

−1.

We define C1 = tr(A) × M − det(A), where M is the sum of the second order principal minors of A.
Obviously, we have trA < 0, and we find that for ζ > ζ[tc], det A < 0 and C1 < 0. Hence the proof

follows from Routh-Hurwitz criteria.
(ii) We notice that at ζ = ζ[tc] , det A = 0 which means that A has one zero eigenvalue. Now when

ζ = ζ[tc] the other two eigenvalues are given by −(µ3 + µ2µ3 + β1ζ + β2ζ)/µ3 and −µ3, that is both of
them are negative. Let V and W are the eigenvectors corresponding to zero eigenvalue of the matrix A
and AT , the transpose of A, respectively. We obtain that V = (v1, v2, v3)T , W = (w1,w2,w3)T , where

v1 = 1, v2 =
(β1ζ + µ3) θln

µ3λln
, v3 = −

ζ (µ5µ3θln + µ3µ4k2λln + µ5ζ β1θln)
µ3

3λlnk2
,

w1 =
(β2ζ + µ2µ3) θln

µ3λln
, w2 = 1, w3 = 0.

Next we see WT [Fζ(E1, ζ
[tc])] = 0, WT [DFζ(E1, ζ

[tc])V] , 0 and WT [D2F(E1, ζ
[tc])(V,V)] , 0,

where Fζ = (∂ fN
∂ζ
, ∂ fL
∂ζ
, ∂ fΨ
∂ζ

)T , fN = fN(N, L,Ψ), fL = fL(N, L,Ψ) and fΨ = fΨ(N, L,Ψ) are defined
in (3.3), Fζ(E1, ζ

[tc]) is the value of Fζ evaluated at E1 for ζ = ζ[tc], and

DFζ =
∂A
∂ζ

=


−
β1
µ3

0 0

0 −
β2
µ3

0
−µ4µ3k2θnl+2 β1ζ k2θnl+k2µ3θnl−λnlµ3

µ32k2θnl

−µ5µ3θln−λlnk2µ3+2 β2ζ θln+θlnµ2µ3
k2µ32θln

0

 ,
where D2F ∈ R3×3×3 is defined in Appendix A. Therefore, by the Sotomayor theorem [24] the system
possesses a transcritical bifurcation around E1, see Figure 5.

Proposition 2. (i) For ζ[tc] < ζ < ζ[sn], the system is bistable and we denote the stable states by E1 and
EI

2, and the unstable one by EII
2 (Figures 3 and 5). EI

2 is linearly stable if Ωi < 0, i = 1, 2, 3, where the
Ωi are defined in the Appendix B. (ii) E2 (or specifically EI

2) experiences a saddle-node bifurcation at
ζ = ζ[sn], where ζ[sn] is determined from det B(ζ[sn]) = 0, B being the Jacobian matrix of the
system (3.2) at E2 (the lengthy details are again given in [18]).

Proof. (i) We examine the bistability of the system numerically (in section 4), that when the Eq (3.5)
have only two real positive roots EI

2 and EII
2 , then the system become bistable around E1 and EI

2
(unstable around EII

2 ) for ζ > ζ[tc]; (Figures 3 and 5). However the local stability of around EI
2 can be

shown as follows:
Let us denote the Jacobian matrix of the system (3.2) around EI

2(Ne, Le,Ψe) by B = (bi j) ∈ R3×3.
Here we note that the Jacobian matrix is a full matrix. Although the Routh-Hurwitz criteria can be
used, but the expressions for the conditions for local stability are even more complicated than those
found for the equilibrium point E1. To analyse the stability of the system (3.2) around (Ne, Le,Ψe), we
follow a different approach and get a simpler set of conditions for local stability.
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To show the first claim on the asymptotic stability of the equilibrium E2, we use the method of first
approximation. If B[2] =

(
b̄i j

)
be the second computed matrix of matrix B, then the matrix B[2] is given

by,

B[2] =


b11 + b22 b23 −b13

b32 b11 + b33 b12

−b31 b21 b22 + b33

 = (b̄i j)3×3.

Consider a diagonal matrix D = diag(Ψe, Le,Ne), then B[2] is similar to Q ≡ DB[2]D−1 = (qi j),
where Q ∈ R3×3 with elements

q11 = b̄11, q12 = b̄12
Ψe

Le
, q13 = b̄13

Ψe

Ne
,

q21 = b̄21
Le

Ψe
, q22 = b̄22, q23 = b̄23

Le

Ne
,

q31 = b̄31
Ne

Ψe
, q32 = b̄32

Ne

Le
, q33 = b̄33.

Now it is easy to see that the matrix B[2] is stable if and only if Q is stable. Since the diagonal
elements of the matrix Q are negative, by the Gershgorin’s theorem it is stable if it is diagonally
dominant in rows. Set

g1 = q11 + q12 + q13 = −1 − 2 β2Ψ − µ2,

g2 = q21 + q22 + q23 = Ω1, g3 = q31 + q32 + q33 = Ω2,

and ϑ∗ = max{g1, g2, g3}. Obviously, when the conditions Ω1 < 0 and Ω2 < 0 are met, then ϑ∗ < 0,
implying diagonal dominance. Next we have

detB =
Ω3(

1 + Ne + Le
k2

) .
In view of the third condition Ω3 < 0, we see det B < 0, which completes the proof.
(ii) Let V and U be the eigenvectors corresponding to eigenvalue 0 of the matrix B and its transpose,

respectively. We obtain that V = (ϕ1, ϕ2, ϕ3)T , U = (u1, u2, u3)T , where ϕi and ui are defined in
Appendix C. Next we obtain UT [Fζ(E2, ζ

[sn])] , 0, UT [D2F(E2, ζ
[sn])(V,V)] , 0, where D2F is given

in Appendix A; therefore, system experiences saddle-node bifurcation [24] around the positive interior
equilibrium E2 at ζ = ζ[sn], see Figure 5.

4. Numerical simulations

In section 1, we report that the larval development progressions of C. elegans (whether normal or
abnormal) depends on the level of expression of miRNA lin-4 [15]. The normal development
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progression means the transition from expression of the L1 stage to the expression of second larval
stage (L2) where as an abnormal progression refers to a premature adoption of L2 (precocious L2) by
skipping the first larval development stage (L1) [16].

In this section we perform numerical simulations of the reduced system (3.2) to illustrate how the
current mathematical modelling reflects these two types of (i.e normal and abnormal) larval
development progressions. The numerical simulations are undertaken with the set of parameter values
reported in Table 3 which also convenient for verifying the properties of the system determined
analytically. These computations are performed using Matlab routine ode15s and XPP-Auto for stiff
ODEs. The parameter values are hypothetical; however, they are closely related to the existing
literature such as [16, 23].

Table 3. Dimensionless parameter values chosen (after removing ˜ ).

Parameter value Parameter value Parameter value
θln 7 λln 1 β1 0.01
θnl 8 λnl 1 β2 0.015
k2 0.8 µ2 0.0129
µ3 10 µ4 100 µ5 8

4.1. Dynamics of the system (3.2) for constant ζ

First of all we illustrate the stability of the system (3.2) around E2 for ζ < ζ[tc], see Figure 2. Note
that the stability of E2 represents the early L1 larval stage where lin-4 is expressed very low and both
the lin-14 and lin-28 are highly expressed. Next, we illustrate the bistability of the system (3.2) for
ζ[tc] < ζ < ζ[sn]: see Figure 3. Figure 3 illustrates how the system is settling to two stable states
over time depending on their initial conditions. Then, we demonstrate the stability of the system (3.2)
around E1 for ζ > ζ[tc]: see Figure 4. The stability of E1 indicates the L2 larval stage where lin-4 is
expressed very high and both the lin-14 and lin-28 are absent. Figures 2–4 are obtained by varying the
values of the parameter ζ only (the other parameter values are kept same and are listed in Table 3).

Figure 5 demonstrates the transcritical bifurcation of the system (3.2) at E1 for ζ = ζ[tc] = 3.2 and
the saddle-node bifurcation at E2 for ζ = ζ[sn] = 5.1.

In interpreting Figures 3 and 5, we note that for the set of parameter values listed in Table 3 and
3.2 < ζ = 4 < 5.1, the system (3.2) attains the stable state EI

2(0.18, 1.55, 0.09) if the initial conditions
are N0(0) ≥ 0.023, L0(0) = 0.136 and Ψ0(0) = 0.3; and it attains the stable state E1(0, 0, 0.4) if
N0(0) < 0.023 (where L0(0) = 0.136 and Ψ0(0) = 0.3). Therefore, certain levels of expressions of
lin-14 and lin-28 are required for L1-specific fates to occur. This means certain levels of expression
of lin-14 and lin-28 are required for normal progression from the L1 stage (that is from E2) through
to the L2 stage (that is to E1); on the other hand, if the initial levels of expression of lin-14 and lin-28
are below the required level (that is, N0(0) < 0.023 and L0(0) < 0.136), then the development stage
L1 is skipped (as E2 is not attained) resulting in a premature adoption of L2 (precocious L2) which
illustrates an abnormal progression.
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Figure 2. The stability of the system (3.2) around E2(0.22, 2.02, 0.05) for ζ = 2 < ζ[tc] = 3.2
and remaining parameter values given in Table 3. The initial conditions are expressed as
N0(0) ∈ (0.02, 3), L0(0) = 0.136, Ψ0(0) = 0.3.
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Figure 3. Bistability of the system (3.2) for ζ = 4 (that is, for a ζ lies between ζ[tc] = 3.2
and ζ[sn] = 5.1) and remaining parameter values given in Table 3. The initial conditions are
provided as N0(0) ∈ (0.02, 3), L0(0) = 0.136, Ψ0(0) = 0.3.

4.2. Dynamics of the system (3.2) for time-dependent ζ

In section 4.2, we noted that how the dynamics of the system (3.2) behave for the different constant
values of ζ (constant over time t). It is observed that the system shows all possible scenarios (abnormal
and normal progression of the larval stages) while we increase the value of ζ and (as implied by the
discussion in section 1) we take an increasing value of ζ(t) to describe the up-regulation of miRNA
lin-4 which causes the down-regulation of LIN-14 and LIN-28, resulting in a transition from the first
developmental stage (L1) to the second developmental stage (L2) [16]. For these purposes we reinstate
the initial data (2.4) and (2.5).

For definitions, we adopt the specific form ζ = A+ Btanh(σt) to describe the transition between two
constant values (in keeping with its biological interpretation) with σ sufficiently small that the system
evolves in a quasi-steady fashion.
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Figure 4. The stability of the system (3.2) around E1(0, 0, 0.6) for ζ = 6 > ζ[sn] = 5.1
and remaining parameter values given in Table 3. The initial conditions are same as that of
Figures 2–3.

0 2 4 6
−0.1

0

0.1

0.2

0.3

ζ

lin
−1

4 
(N

)

L1

L2

Precocious L2

0 2 4 6
−1

0

1

2

3

ζ

lin
−2

8 
(L

)

L2

L1

Precocious L2

0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ζ

lin
−4

 (Ψ
)

L1

Precocious L2

L2

Figure 5. Bistability (for ζ[tc] = 3.2 < ζ < ζ[sn] = 5.1), with the transcritical bifurcation
at ζ = ζ[tc] = 3.2, and the saddle-node at ζ = ζ[sn] = 5.1, for the parameter values given in
Table 3. The solid lines represent loci of stable equilibria and the dotted lines the unstable
ones.

The following numerical simulations illustrate the corresponding changes in the solutions of the
non-autonomous ODE system (3.2) compared to that of autonomous one. Note that the steady states
E1 and E2 obtained earlier for a constant ζ will now be (slowly varying) functions of t. Figure 6
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illustrates how the solution of the non-autonomous system (3.2) converges from E2 (that is from L1
stage) to E1 (that is to the L2 stage) over time for the initial conditions N0(0) = 0.25, L0(0) = 2.124,
Ψ0(0) = 2.5, rapidly moving between branches at t = 4100. These initial conditions are taken in light
of the initial conditions represented by Eq (2.5) of the original system (2.2).
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Figure 6. Normal Progression: The solution of the system (3.2) for ζ = 2.5+4tanh(0.001∗ t)
and remaining parameter values are given in Table 3.

On the other hand if the initial conditions are chosen in such as way which correspond the Eq (2.4)
of the original system (2.2) (for example, N0(0) = 0, L0(0) = 0, Ψ0(0) = 2.5), then E2 converges (or E2

is not attained) to E1 very quickly, as might be anticipated. This represents an abnormal progression of
the larval stages (precocious L2 to L2), see Figure 7.

0 2000 4000 6000 8000 10000
Time (t)

0

0.02

0.04

lin
-1

4
 (

N
)

 Precocious
 L2

 L2

  The time point 
  at which the 
   produces
  the 'fold' value.

(a) Time evolution of lin-14 (N).

0 2000 4000 6000 8000 10000
Time (t)

0

0.1

0.2

0.3

lin
-2

8
 (

L
)

 Precocious
 L2

  The time point 
  at which the 
   produces
  the 'fold' value.

 L2

(b) Time evolution of lin-28 (L).

0 2000 4000 6000 8000 10000
Time (t)

0

0.2

0.4

0.6

lin
-4

 (
)

 Precocious
 L2

  The time point 
  at which the 
   produces
  the 'fold' value.

 L2

(c) Time evolution of lin-4 (Ψ).

Figure 7. Abnormal Progression: The solution of the system (3.2) for ζ = e + dtanh(ct),
where the parameter values are same as that of Figure 6.

Figure 8 demonstrates both the normal and abnormal progression of the larval stages in response
to the time dependent ζ(t) for the both set of initial conditions used in Figures 6–7. In interpreting
Figures 6–8, we again note that certain levels of expressions of lin-14 and lin-28 are necessary for a
normal progression from the L1 stage to the L2 stage; otherwise, the development stage L1 is skipped
and an abnormal progression takes place. These results are consistent with the results of experimental
study of [25], where the authors studied the development of the larval stages of C. elegans based on
genetic epistasis and expression analysis of heterochronic genes and observed that a high level of lin-
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14 is necessary for L1-specific fates to occur, while L2-specific fates occur only when both the lin-14
and lin-28 are at very low levels or off (Figure 5 of [25]).
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Figure 8. This figure combines both the normal and abnormal progression of the larval
stages in response to the time dependent ζ for the same set of parameter values used in
Figures 6–7. One of the double curves represents the normal progression (i.e L1 to L2) and
other an abnormal one (i.e Precocious L2 to L2). The current figure is the corresponding
representation of Figure 5 for the case of time dependent ζ.

5. Discussion

We have proposed a mathematical model of a microRNA regulated gene network in C. elegans.
The network consists two mutually activating heterochronic genes lin-14 and lin-28 and a microRNA
lin-4 of which negatively regulates both of them. The reduced model (3.2) captures the qualitative
behaviours, such as stability and bifurcation, of the full system (2.6). We summarize our numerical
investigations of the steady state solutions in Table 4, the parameter values other than ζ being as
in Table 3.

It has become increasingly clear that bistability is an important recurring feature in many gene-
regulatory networks. Bistability may be of particular relevance to biological systems that need switch
between states. Our focus lies on two mutually activating molecular species that are down-regulated
by a third species.

Interestingly, in the system (3.2), we see that bistability may arise without any cooperativity of
binding, in contrast to the situation familiar for two mutually repressing genes (see [26] for example).
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Table 4. The table shows different sets of parameter values for which the system (3.2) has
monostability and bistability.

Parameter values Non-negative Equilibria for specific ζ Stability
Two

ζ < ζ[tc] = 3.2 For ζ = 2 : E1(Ne = Le = 0, Ψe = 0.2) Unstable
EI

2 (Ne = 0.22, Le = 2.02, Ψe = 0.05) Stable
(Figure 2)

Three
ζ[tc] = 3.2 < ζ < ζ[sn] = 5.1 For ζ = 4 : E1 (Ne = Le = 0, Ψe = 0.4) Stable

EI
2 (Ne = 0.18, Le = 1.55, Ψe = 0.09) Stable

EII
2 (Ne = 0.03, Le = 0.25, Ψe = 0.295) Unstable

(Figure 3)

One
ζ > ζ[sn] = 5.1 For ζ = 6 : E1(Ne = Le = 0, Ψe = 0.6) Stable

(Figure 4)

An investigation of [27] showed that the products of the flh-1 and flh-2 genes (encoding FLYWCH
Zn finger transcription factors) function redundantly in C. elegans to repress embryonic expression of
the lin-4 microRNA gene, which is normally expressed only post-embryonically. However, double
mutation of flh-1 and flh-2 allows derepression of target miRNAs genes (e.g. lin-4) in embryos.
Mutating the flh-3 gene (encoding a third transcription factors with a FLYWCH motif) also increases
precocious expression of target miRNAs. Our model provides a mathematical interpretation for this:
in the early L1 larval stage lin-4 is low, that is ζ has a sufficiently small value that can be characterised
(namely, ζ < ζ[tc]), both lin-14 and lin-28 are expressed. This corresponds to the stability of E2 and
the instability E1 (see Figure 2 and first row of Table 4). Both lin-28 and lin-14, in turn, negatively
regulate lin-29, which is believed to act as a negative regulator of early larval development, including
the functions required for cell division and the expression of early larval-specific cuticle genes.
Therefore, if the lin-4 microRNA expression is low, both LIN-14 and LIN-28 levels will remain high
(Figure 3), and early-larval (L1-specific) stages are reiterated while later developmental events
(L2-specific development) fail to occur. Conversely, if lin-4 microRNA levels remain high (ζ > ζ[sn]),
then both LIN-14 and LIN-28 levels will be low (Figure 3 and first row of Table 4), resulting in the
skipping of early (L1-specific) cell lineages and developmental events, while later developmental
events (L2-specific) and cell lineages occur precociously, which corresponds to stability of E1

(Figure 4 and third row of Table 4). Intuitively, this means that the lin-29 gene will be turned on,
resulting in the positive regulation of adult development, including the functions required for cell
division and the expression for adult-specific cuticle genes; and Propositions 1 and 2 represent two
important threshold values ζ[tc] and ζ[sn] of the microRNA concentration level ζ. When ζ lies between
these (i.e. ζ[tc] < ζ < ζ[sn]), the system (3.2) has three steady states, namely E1, EI

2 (both stable) and
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EII
2 (unstable). Figure 5 illustrates the range of ζ for which the system (3.2) attains bistability. This

switching of between two stable states takes place in between early stage L1 and the later larval stages
precocious L2 which depends on the initial level of expression of lin-14, lin-28 and lin-4. This
switching determines whether development progresses from L1 to L2 or whether L2-precocious
patterns are reiterated (Figure 5). If the system adopts the L1 then it stays with L1 development until
saddle-node bifurcation point appears (and at the saddle-node bifurcation point) whereupon the
system switches to L2 development stage. This is a normal progression of the first two larval stages of
C. elegans development and is consistent with the current biology [25]. But if the system adopts
(depending on the initial level of presence of lin-14, lin-28 and lin-4) the other stable state, then this
leads to the precocious adoption of later cell fates (including L2 fates appearing during L1 and so on).
These events are illustrated in Figure 5, which describes an abnormal progression through these larval
stages. The numerical simulations of the current model imply that a certain level of activity of the
genes lin-14, lin-28 and lin-4 is necessary to allow L1-specific fates to occur (that is to adopt a normal
progression), see the initial conditions of Figure 3; and this view is also supported by the experimental
biology [25] . In summary, for a normal progression of the larval stages, three things are required (i) a
certain level of activity of the genes lin-14, lin-28 and lin-4, (ii) a progressive decrease in their
activities owing to repression by lin-4, (iii) a progressive increase in lin-4 activities (that is, increasing
nutrition is required). On the other hand, the absence of lin-14 and lin-28 causes an abnormal
progression through these larval stages, even though there is a progressive increase in lin-4 activities.
These views are consistent with the experimental biology [15, 16, 25] .

In conclusion, we have established that the simple microRNA-regulated gene network shown
schematically in Figure 1 exhibits qualitative behaviour that can be interpreted in terms of key aspects
of the development of C. elegans. Its partial central edge as a subnetwork of networks containing
significantly more components thus warrants investigation.
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Appendix

A. Notation

The notations are same as that of [28]. The value of D2F(E1, ζ
[tc])(V,V) is the value of

D2F(E, ζ)(V,V) = (Υ1,Υ2,Υ3)T at (E, ζ) = (E1, ζ
[tc]),

where Υi’s are given by

Υ1 =
∂2FN

∂N2 v2
1 +

∂2FN

∂L2 v2
2 +

∂2FN

∂Ψ2 v2
3 +

∂2FN

∂N∂L
v1v2 +

∂2FN

∂L∂N
v2v1

+
∂2FN

∂N∂Ψ
v1v3 +

∂2FN

∂L∂Ψ
v2v3 +

∂2FN
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v3v1 +

∂2FN

∂Ψ∂L
v3v2,
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∂2FL
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∂2FL

∂L∂N
v2v1

+
∂2FL

∂N∂Ψ
v1v3 +

∂2FL

∂L∂Ψ
v2v3 +

∂2FL
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∂2FL

∂Ψ∂L
v3v2,

Υ3 =
∂2FΨ

∂N2 v2
1 +

∂2FΨ
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B. Values of Ωi

For completeness we give here expressions for the Ωi in section 3, determined using Maple.

Ω1 =

((
−
µ5Ψe

k2
−

θlnλlnΨe

(Le + θln)2 −
Ψe (−β2Ψe − µ2)

k2

)(
1 + Ne +

Le

k2

)−1

−

(
ζ − µ3Ψe − µ4NeΨe −

µ5LeΨe

k2

)(
1 + Ne +

Le

k2

)−2

k2
−1

)
LeΨe

−1 − β1Ψe − 1

+

(
− µ3 − µ4Ne −

µ5Le

k2
+ β1NeΨe +

β2LeΨe

k2

)(
1 + Ne +

Le

k2

)−1

+
λlnθlnLe

(Le + θln)2Ne
,

Ω2 = −

((
− µ4Ψe + Ψe (β1Ψe + 1) − −

λnlθnlΨe

k2(Ne + θnl)2

)(
1 + Ne +

Le

k2

)−1
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−

(
ζ − µ3Ψe − µ4NeΨe −

µ5LeΨe

k2

)(
1 + Ne +

Le

k2

)−2)
NeΨe

−1 +
λnlθnlNe

(Ne + θnl)2Le

−β2Ψe − µ2+

(
− µ3 − µ4Ne −

µ5Le

k2
+ β1NeΨe +

β2LeΨe

k2

)(
1 + Ne +

Le

k2

)−1

,

Ω3 = (β1Ψe + 1)(β2Ψe + µ2)
(
− µ3 − µ4Ne −

µ5Le

k2
+ β1NeΨe +

β2LeΨe

k2

)(
1 + Ne +

Le

k2

)−1

−(β1Ψe + 1)β2Le

((
−
µ5Ψe

k2
−

λlnθlnΨe

(Le + θln)2 +
Ψe (β2Ψe + µ2)

k2

)
(
1 + Ne +

Le

k2

)−1

−

(
ζ − µ3Ψe − µ4NeΨe −

µ5LeΨe

k2

)(
1 + Ne +

Le

k2

)−2

k2
−1

)
− λlnθlnλnlθnl(

− µ3 − µ4Ne −
µ5Le

k2
+ β1NeΨe +

β2LeΨe

k2

)(
Ne + θnl

)−2(
Le + θln

)−2(
1 + Ne +

Le

k2

)−1

−λnlθnlβ1Ne

((
−
µ5Ψe

k2
−

λlnθlnΨe

(Le + θln)2 +
Ψe (β2Ψe + µ2)

k2

)(
1 + Ne +

Le

k2

)−1

−

(
ζ − µ3Ψe − µ4NeΨe −

µ5LeΨe

k2

)(
1 + Ne +

Le

k2

)−2

k2
−1

)(
Ne + θnl

)−2

−

((
− µ4Ψe + Ψe (β1Ψe + 1) −

λnlθnlΨe

k2(Ne + θnl)2

)(
1 + Ne +

Le

k2

)−1

−

(
ζ − µ3Ψe − µ4NeΨe −

µ5LeΨe

k2

)(
1 + Ne +

Le

k2

)−2)
λlnθlnβ2Le(Le + θln)−2

+

((
− µ4Ψe − Ψe

(
− β1Ψe − 1

)
−

λnlθnlΨe

k2(Ne + θnl)2

))(
1 + Ne +

Le

k2

)−1

+

(
ζ − µ3Ψe − µ4NeΨe −

µ5LeΨe

k2

)(
1 + Ne +

Le

k2

)−2)
β1Ne

(
β2Ψe + µ2

)
.

C. Coefficients of the vectors V and U.

The component of vectors V(ϕ1, ϕ2, ϕ3) and U(u1, u2, u3) are defined by

ϕ1 =

(
λlnθlnβ2L
(L + θln)2 + β1N(β2Ψ + µ2)

)/(
λnlθnlλlnθln

(N + θnl)2(L + θln)2

−(β1Ψ + 1)(β2Ψ + µ2)
)
,

ϕ2 =

(
λnlθnlβ1N
(N + θnl)2 − (β1Ψ + 1)β2L

)/(
λnlθnlλlnθln

(N + θnl)2(L + θln)2

−(β1Ψ + 1)(β2Ψ + µ2)
)
,

ϕ3 = 1; u1 =

(
k2(2 k2β1Ψ

2N3µ2Lθln + 4 Ψ NθnlL2µ2θln + k2β1Ψ
3N2β2L2

+2 Ψ k2N2θnlµ2L2 + 2 Ψ k2N2θnlµ2θln
2 + 2 Ψ2θnl

2L2β2θln
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+Ψ2θnl
2Lβ2θln

2 − 2 ζ k2Nθnlβ2Ψ L2 − 4 ζ k2Nθnlβ2Ψ Lθln

+2 Ψ2N2L2β2θln + Ψ2N2Lβ2θln
2 + Ψ2k2N3β2L2 + 2 Ψ2k2N3β2Lθln

+Ψ k2N3µ2L2 + 2 Ψ k2N3µ2Lθln + Ψ k2N3µ2θln
2 + 2 Ψ2k2N2β2Lθln

−ζ k2θnl
2µ2L2 + β1Ψ

2N2L3µ2 + 2 β1Ψ
2N2L2µ2θln + β1Ψ

2N2Lµ2θln
2

+4 β1Ψ
2NθnlL2µ2θln + 2 β1Ψ

2NθnlLµ2θln
2 − ζ k2θnl

2β2Ψ L2

+Ψ N2Lµ2θln
2 − 4 Ψ2µ4NθnlL2β2θln − 2 Ψ2µ4NθnlLβ2θln

2

+2 β1Ψ
3N2L2β2θln + β1Ψ

3N2Lβ2θln
2 − 2 Ψ µ4NθnlL3µ2

+2 k2β1Ψ
3Nθnlβ2L2 + 4 k2β1Ψ

3Nθnlβ2Lθln + 2 k2β1Ψ
3Nθnlβ2θln

2

+4 k2β1Ψ
2Nθnlµ2Lθln + 2 k2β1Ψ

2Nθnlµ2θln
2 + 2 k2β1Ψ

2θnl
2µ2Lθln

+k2β1Ψ
2θnl

2µ2θln
2 + µ3Ψ k2θnl

2µ2θln
2 + 2 Ψ2k2N2θnlβ2θln

2

+4 Ψ k2N2θnlµ2Lθln − λnlθnlΨ µ5L2 − λnlθnlΨ µ5θln
2 − λnlθnlΨ λlnθlnk2

−λnlθnlζ θln
2 + 2 λnlθnlµ4NΨ Lθln + k2β1Ψ

2N3µ2θln
2

−Ψ2µ4k2θnl
2β2L2 + 2 µ3Ψ k2Nθnlµ2L2 + 4 µ3Ψ k2Nθnlµ2Lθln

+2 µ3Ψ k2Nθnlµ2θln
2 + 2 µ5L2Ψ2N2β2θln + µ5LΨ2N2β2θln

2 + µ5L3Ψ N2µ2

+2 µ5L2Ψ N2µ2θln + µ5LΨ N2µ2θln
2 + 2 µ5L3Ψ2Nθnlβ2 + 4 µ5L2Ψ2Nθnlβ2θln

+2 µ5LΨ2Nθnlβ2θln
2 + 2 µ5L3Ψ Nθnlµ2 + 4 µ5L2Ψ Nθnlµ2θln

+2 k2β1Ψ
2N2θnlµ2L2 + 2 k2β1Ψ

2N2θnlµ2θln
2 + 2 k2β1Ψ

3N2θnlβ2θln
2

+2 β1Ψ
3NθnlL3β2 + 4 β1Ψ

3NθnlL2β2θln + Ψ2k2N2β2L2 + Ψ2k2N2β2θln
2

+Ψ k2θnl
2µ2L2 + 2 λnlθnlµ3Ψ Lθln + λnlθnlµ4NΨ L2 + λnlθnlµ4NΨ θln

2

+k2β1Ψ
2θnl

2Nµ2θln
2 + β1Ψ

3θnl
2L3β2 + 2 β1Ψ

3θnl
2L2β2θln

+β1Ψ
3θnl

2Lβ2θln
2 + β1Ψ

2θnl
2L3µ2 + 2 β1Ψ

2θnl
2L2µ2θln

+Ψ2N2L3β2 − 2 Ψ2µ4k2Nθnlβ2L2 − 4 Ψ2µ4k2Nθnlβ2Lθ2
ln

−2 ζ k2Nθnlβ2Ψ θln
2 + Ψ2k2N3β2θln

2 + 2 β1Ψ
2NθnlL3µ2 − 2 ζ k2θnl

2β2Ψ Lθln

+β1Ψ
3N2L3β2 − 4 Ψ µ4NθnlL2µ2θln − λnlθnlζ L2

+2 k2β1Ψ
2Nθnlµ2L2 + 2 µ5LΨ Nθnlµ2θln

2 + 2 k2β1Ψ
2θnl

2Nµ2Lθln

−2 Ψ2µ4k2Nθnlβ2θln + 2 k2β1Ψ
3θnl

2Nβ2Lθln

−2 Ψ µ4k2Nθnlµ2L2 − 4 Ψ µ4k2Nθnlµ2Lθln − Ψ2µ4k2θnl
2β2θln

2 − Ψ µ4k2θnl
2µ2L2

−2 Ψ µ4k2θnl
2µ2Lθln − Ψ µ4k2θnl

2µ2θln
2 + k2β1Ψ

3θnl
2β2L2

+2 k2β1Ψ
3θnl

2β2Lθln + k2β1Ψ
3θnl

2β2θln
2 + k2β1Ψ

2θnl
2µ2L2

+2 Ψ2k2N2θnlβ2L2 + 4 Ψ2k2N2θnlβ2Lθln + 2 k2β1Ψ
3N2θnlβ2L2 + 2 Ψ k2N2µ2Lθln

−2 λnlθnlΨ µ5Lθln − λnlθnlΨ µ5L2N − 2 λnlθnlΨ µ5LθlnN − ζ k2θnl
2µ2θln

2

+Ψ k2N2µ2L2 + k2β1Ψ
2N3µ2L2 + Ψ k2N2µ2θln

2 − 2 Ψ µ4k2Nθnlµ2θln
2

−Ψ2µ4N2L3β2 − 2 Ψ2µ4N2L2β2θln − Ψ2µ4N2Lβ2θln
2 − Ψ µ4N2L3µ2

−Ψ µ4N2Lµ2θln
2 − Ψ2µ4θnl

2L3β2 − 2 Ψ2µ4θnl
2L2β2θln
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−Ψ2µ4θnl
2Lβ2θln

2 − Ψ µ4θnl
2L3µ2 − ζ k2N2β2Ψ L2

−λnlθnlΨ λlnθlnL − 2 λnlθnlζ Lθln + 4 Ψ2k2Nθnlβ2Lθln

+2 Ψ2k2Nθnlβ2θln
2 + µ5L3Ψ2θnl

2β2 + 2 µ5L2Ψ2θnl
2β2θln

+2 β1Ψ
3NθnlLβ2θln

2 − 2 ζ k2θnl
2µ2Lθln + 4 k2β1Ψ

3N2θnlβ2Lθln

+µ5LΨ2θnl
2β2θln

2 + k2β1Ψ
2N2µ2L2 + 2 k2β1Ψ

2N2µ2Lθln + 4 Ψ2NθnlL2β2θln

+2 Ψ2NθnlLβ2θln
2 + 2 Ψ NθnlL3µ2 + 2 Ψ NθnlLµ2θln

2 + 2 k2β1Ψ
3N2β2Lθln

+k2β1Ψ
3N2β2θln

2 + k2β1Ψ
2N2µ2θln

2 + Ψ N2L3µ2 − 2 Ψ µ4θnl
2L2µ2θln

−Ψ µ4θnl
2Lµ2θln

2 − 2 ζ k2N2β2Ψ Lθln − ζ k2N2β2Ψ θln
2

+µ3Ψ
2k2θnl

2β2L2 + 2 µ3Ψ
2k2θnl

2β2Lθln + 2 µ3Ψ k2θnl
2µ2Lθln

+µ3Ψ
2k2θnl

2β2θln
2 + µ3Ψ k2θnl

2µ2L2 + 2 Ψ2NθnlL3β2 + 2 µ3Ψ
2k2Nθnlβ2L2

+4 µ3Ψ
2k2Nθnlβ2Lθln + 2 µ3Ψ

2k2Nθnlβ2θln
2 − 2 ζ k2Nθnlµ2L2 − 4 ζ k2Nθnlµ2Lθln

−2 ζ k2Nθnlµ2θln
2 + Ψ θnl

2L3µ2 + 2 Ψ θnl
2L2µ2θln

+Ψ θnl
2Lµ2θln

2 + Ψ2k2θnl
2Nβ2L2 + 2 Ψ2k2θnl

2Nβ2Lθln

+Ψ2k2θnl
2Nβ2θln

2 + Ψ k2θnl
2Nµ2L2 + 2 Ψ k2θnl

2Nµ2Lθln

−2 Ψ µ4k2N2µ2Lθln − Ψ µ4k2N2µ2θln
2 + 4 k2β1Ψ

2N2θnlµ2Lθln

+Ψ2θnl
2L3β2 + 2 Ψ N2L2µ2θln − 2 Ψ2µ4NθnlL3β2 + β1Ψ

2θnl
2Lµ2θln

2

+µ3Ψ
2k2N2β2L2 + 2 µ3Ψ

2k2N2β2Lθln + µ3Ψ
2k2N2β2θln

2 + µ3Ψ k2N2µ2L2

+2 µ3Ψ k2N2µ2Lθln + µ3Ψ k2N2µ2θln
2 + µ5L3Ψ θnl

2µ2

+2 µ5L2Ψ θnl
2µ2θln + µ5LΨ θnl

2µ2θln
2 − ζ k2θnl

2β2Ψ θln
2

−2 Ψ µ4N2L2µ2θln + Ψ k2θnl
2Nµ2θln

2 + 2 Ψ2k2Nθnlβ2L2 + 2 Ψ k2Nθnlµ2L2

+4 Ψ k2Nθnlµ2Lθln + 2 Ψ k2Nθnlµ2θln
2 − Ψ2µ4k2N2β2L2

−2 Ψ2µ4k2N2β2Lθln − Ψ2µ4k2N2β2θln
2 − Ψ µ4k2N2µ2L2 + λnlθnlµ3Ψ L2

+λnlθnlµ3Ψ θln
2 − λnlθnlΨ λlnθlnk2N − λnlθnlΨ µ5θln

2N

−2 Ψ µ4NθnlLµ2θln
2 + µ5L3Ψ2N2β2 + k2β1Ψ

3θnl
2Nβ2L2

+k2β1Ψ
3θnl

2Nβ2θln
2 + k2β1Ψ

2θnl
2Nµ2L2

+k2β1Ψ
3N3β2L2 + 2 k2β1Ψ

3N3β2Lθln + k2β1Ψ
3N3β2θln

2 − 2 Ψ2µ4k2θnl
2β2Lθln

+2 Ψ2k2θnl
2β2Lθln + 2 Ψ k2θnl

2µ2Lθln + Ψ k2θnl
2µ2θln

2 + Ψ2k2θnl
2β2L2

+Ψ2k2θnl
2β2θln

2 − ζ k2N2µ2L2 − 2 ζ k2N2µ2Lθln

−ζ k2N2µ2θln
2)
)(

(2 β2Ψ Nθnlθln
2 + 2 β2Ψ θnl

2Lθln

+2 µ2N2Lθln + 2 µ2NθnlL2 + β1Ψ
2β2θnl

2L2 + 2 β1Ψ
2β2θnl

2Lθln

+β1Ψ
2β2θnl

2θln
2 + 2 β1Ψ

2β2NθnlL2 + 4 β1Ψ
2β2NθnlLθln

+2 β1Ψ
2β2Nθnlθln

2 + 2 β1Ψ µ2NθnlL2 + 4 β1Ψ µ2NθnlLθln

+2 β1Ψ µ2Nθnlθln
2 + β2Ψ N2L2 + β2Ψ N2θln

2 + β2Ψ θnl
2L2 + β2Ψ θnl

2θln
2
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+µ2N2θln
2 + µ2N2L2 + µ2θnl

2L2 + β1Ψ µ2θnl
2L2 + 2 β1Ψ µ2θnl

2Lθln

+β1Ψ µ2θnl
2θln

2 − λnlθnlλlnθln + β1Ψ
2β2N2L2

+2 β1Ψ
2β2N2Lθln + β1Ψ

2β2N2θln
2 + 4 µ2NθnlLθln + 2 µ2Nθnlθln

2

+2 µ2θnl
2Lθln + µ2θnl

2θln
2 + 2 β2Ψ N2Lθln + 2 β2Ψ NθnlL2

+4 β2Ψ NθnlLθln + β1Ψ µ2N2L2

+2 β1Ψ µ2N2Lθln + β1Ψ µ2N2θln
2)(k2 + Nk2 + L)2

)

u2 =

(
− 2 Ψ µ5Lθlnk2N2 − 4 Ψ µ5Lθlnk2Nθnl − 2 Ψ µ5Lθlnk2θnl

2

−Ψ µ5L2N3k2 − 2 Ψ µ5L2N2k2θnl − Ψ µ5L2Nk2θnl
2 − 2 Ψ µ5LθlnN3k2

−4 Ψ µ5LθlnN2k2θnl − 2 Ψ µ5LθlnNk2θnl
2 − 2 ζ k2LθlnN2 − 4 ζ k2LθlnNθnl

−2 ζ k2Lθlnθnl
2 − Ψ µ5θln

2N3k2 + 2 µ4N3Ψ k2Lθln + 4 µ4N2Ψ k2Lθlnθnl

+2 µ4NΨ k2Lθlnθnl
2 + µ4N3Ψ k2θln

2 + 2 µ4N2Ψ k2θln
2θnl

+2 µ3Ψ k2LθlnN2 + 4 µ3Ψ k2LθlnNθnl + 2 µ3Ψ k2Lθlnθnl
2 + 2 µ4N2Ψ k2L2θnl

+µ4NΨ k2L2θnl
2 − 2 Ψ µ5θln

2N2k2θnl − Ψ µ5θln
2Nk2θnl

2 + µ4N3Ψ k2L2

+µ4NΨ k2θln
2θnl

2 − β1Ψ ζ k2L2N2 − 2 β1Ψ ζ k2L2Nθnl − β1Ψ ζ k2L2θnl
2

+2 k2β1Ψ
2N3µ2Lθln + 4 Ψ NθnlL2µ2θln + k2β1Ψ

3N2β2L2 + 2 Ψ k2N2θnlµ2L2

+2 Ψ k2N2θnlµ2θln
2 + 2 Ψ2θnl

2L2β2θln + Ψ2θnl
2Lβ2θln

2

+2 Ψ2N2L2β2θln + Ψ2N2Lβ2θln
2 + Ψ2k2N3β2L2 + 2 Ψ2k2N3β2Lθln

+Ψ2k2N3β2θln
2 + Ψ k2N3µ2L2 + 2 Ψ k2N3µ2Lθln + Ψ k2N3µ2θln

2

−4 β1Ψ
2µ5Lθlnk2Nθnl − 2 β1Ψ

2µ5Lθlnk2θnl
2 − 2 β1Ψ

2µ5LθlnN3k2

−β1Ψ
2µ5L2N3k2 − 2 β1Ψ

2µ5L2N2k2θnl − β1Ψ
2µ5L2Nk2θnl

2

+β1Ψ
2N2L3µ2 + 2 β1Ψ

2N2L2µ2θln + β1Ψ
2N2Lµ2θln

2

+4 β1Ψ
2NθnlL2µ2θln + 2 β1Ψ

2NθnlLµ2θln
2 + Ψ N2Lµ2θln

2 +

β1Ψ
3N2L3β2 + 2 β1Ψ

3N2L2β2θln + β1Ψ
3N2Lβ2θln

2 + 2 k2β1Ψ
3Nθnlβ2L2

+4 k2β1Ψ
3Nθnlβ2Lθln + 2 k2β1Ψ

3Nθnlβ2θln
2 + 2 k2β1Ψ

2Nθnlµ2L2

+2 k2β1Ψ
2Nθnlµ2θln

2 + 2 k2β1Ψ
2θnl

2µ2Lθln + k2β1Ψ
2θnl

2µ2θln
2

+2 Ψ2k2N2θnlβ2θln
2 + 4 Ψ k2N2θnlµ2Lθln − λnlθnlΨ λlnθlnk2

+k2β1Ψ
2N3µ2θln

2 − β1Ψ
2µ5θln

2N3k2 − 2 β1Ψ
2µ5θln

2N2k2θnl

−β1Ψ
2µ5θln

2Nk2θnl
2 + 2 β1Ψ

2µ3k2LθlnN2 + 4 β1Ψ
2µ3k2LθlnNθnl

+2 k2β1Ψ
2N2θnlµ2L2 + 2 k2β1Ψ

2N2θnlµ2θln
2 + 2 k2β1Ψ

3N2θnlβ2θln
2

+2 β1Ψ
3NθnlL3β2 + 4 β1Ψ

3NθnlL2β2θln + Ψ2k2N2β2L2 + Ψ2k2N2β2θln
2

−λnlθnlΨ λlnθlnk2N + 2 β1Ψ
2µ3k2Lθlnθnl

2 + β1Ψ
2µ4N3k2L2

+2 β1Ψ
2µ4N2k2L2θnl + β1Ψ

2µ4Nk2L2θnl
2 + k2β1Ψ

3θnl
2Nβ2L2

+2 k2β1Ψ
3θnl

2Nβ2Lθln + Ψ k2θnl
2µ2L2 − 2 β1Ψ

2µ5Lθlnk2N2

−4 β1Ψ
2µ5LθlnN2k2θnl − 2 β1Ψ

2µ5LθlnNk2θnl
2
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+2 β1Ψ
2NθnlL3µ2 + 4 k2β1Ψ

2Nθnlµ2Lθln + 2 Ψ2k2N2β2Lθln

+k2β1Ψ
3θnl

2Nβ2θln
2 + k2β1Ψ

2θnl
2Nµ2L2 + 2 k2β1Ψ

2θnl
2Nµ2Lθln

+k2β1Ψ
2θnl

2Nµ2θln
2 + β1Ψ

3θnl
2L3β2 + 2 β1Ψ

3θnl
2L2β2θln + β1Ψ

3θnl
2Lβ2θln

2

+β1Ψ
2θnl

2L3µ2 + 2 β1Ψ
2θnl

2L2µ2θln + Ψ2N2L3β2 + 2 β1Ψ
2µ4N3k2Lθln

+4 β1Ψ
2µ4N2k2Lθlnθnl + 2 β1Ψ

2µ4Nk2Lθlnθnl
2 − 2 β1Ψ ζ k2LθlnN2

−4 β1Ψ ζ k2LθlnNθnl − 2 β1Ψ ζ k2Lθlnθnl
2 + 2 β1Ψ

2µ4N2k2θln
2θnl

+µ3Ψ k2θln
2N2 + β1Ψ

2µ4N3k2θln
2 + k2β1Ψ

3θnl
2β2L2 + 2 k2β1Ψ

3θnl
2β2Lθln

+k2β1Ψ
3θnl

2β2θln
2 + k2β1Ψ

2θnl
2µ2L2 + 2 Ψ2k2N2θnlβ2L2

+4 Ψ2k2N2θnlβ2Lθln + 2 k2β1Ψ
3N2θnlβ2L2 + 2 Ψ k2N2µ2Lθln

+Ψ k2N2µ2L2 + k2β1Ψ
2N3µ2L2 + β1Ψ

2µ3k2θln
2θnl

2 − β1Ψ ζ k2θln
2N2

−2 β1Ψ ζ k2θln
2Nθnl − β1Ψ ζ k2θln

2θnl
2 − β1Ψ

2µ5θln
2k2N2

+β1Ψ
2µ3k2θln

2N2 + 2 β1Ψ
2µ3k2θln

2Nθnl − β1Ψ
2µ5L2k2N2

−2 β1Ψ
2µ5L2k2Nθnl − Ψ µ5θln

2k2N2 + µ3Ψ k2θln
2θnl

2 − 2 ζ k2θln
2Nθnl

+2 β1Ψ
2µ3k2L2Nθnl + β1Ψ

2µ3k2L2θnl
2 − 2 β1Ψ

2µ5θln
2k2Nθnl − β1Ψ

2µ5θln
2k2θnl

2

+2 µ3Ψ k2θln
2Nθnl + β1Ψ

2µ3k2L2N2 + λlnθlnk2µ5LΨ N2 + 2 λlnθlnk2µ5LΨ Nθnl

+λlnθlnk2µ5LΨ θnl
2 − β1Ψ

2µ5L2k2θnl
2 − 2 Ψ µ5θln

2k2Nθnl

−Ψ µ5θln
2k2θnl

2 + Ψ k2N2µ2θln
2 − λlnθlnΨ µ4k2

2θnl
2

+2 λlnθlnµ3Ψ k2
2Nθnl − λlnθlnζ k2

2N2 − 2 λlnθlnΨ µ4k2
2Nθnl

−λlnθlnΨ µ4k2
2N2 + λlnθlnµ3Ψ k2

2θnl
2 + λlnθlnµ3Ψ k2

2N2

−2 λlnθlnζ k2
2Nθnl − λlnθlnζ k2

2θnl
2 − λnlθnlΨ λlnθlnL

+4 Ψ2k2Nθnlβ2Lθln + 2 Ψ2k2Nθnlβ2θln
2 − λlnθlnΨ µ4k2N2L

−λlnθlnΨ µ4k2θnl
2L − 2 λlnθlnΨ µ4k2NθnlL + 2 β1Ψ

3NθnlLβ2θln
2

+4 k2β1Ψ
3N2θnlβ2Lθln − ζ k2θln

2θnl
2 − ζ k2θln

2N2 + k2β1Ψ
2N2µ2L2

+2 k2β1Ψ
2N2µ2Lθln + 4 Ψ2NθnlL2β2θln + 2 Ψ2NθnlLβ2θln

2

+2 Ψ NθnlL3µ2 + 2 Ψ NθnlLµ2θln
2 + 2 k2β1Ψ

3N2β2Lθln + k2β1Ψ
3N2β2θln

2

+k2β1Ψ
2N2µ2θln

2 + Ψ N2L3µ2 − ζ k2L2θnl
2 − ζ k2L2N2 + 2 Ψ2NθnlL3β2

+Ψ θnl
2L3µ2 + 2 Ψ θnl

2L2µ2θln + Ψ θnl
2Lµ2θln

2 + Ψ2k2θnl
2Nβ2L2

+2 Ψ2k2θnl
2Nβ2Lθln + Ψ2k2θnl

2Nβ2θln
2 + Ψ k2θnl

2Nµ2L2

+2 Ψ k2θnl
2Nµ2Lθln + Ψ k2θnl

2Nµ2θln
2 + 2 Ψ2k2Nθnlβ2L2

+2 Ψ k2Nθnlµ2L2 + 4 Ψ k2Nθnlµ2Lθln + 2 Ψ k2Nθnlµ2θln
2

+4 k2β1Ψ
2N2θnlµ2Lθln + Ψ2θnl

2L3β2 + 2 Ψ N2L2µ2θln + β1Ψ
2θnl

2Lµ2θln
2

+β1Ψ
2µ4Nk2θln

2θnl
2 + µ3Ψ k2L2N2 + 2 µ3Ψ k2L2Nθnl − 2 Ψ µ5L2k2Nθnl

−Ψ µ5L2k2θnl
2 + µ3Ψ k2L2θnl

2 − Ψ µ5L2k2N2 + k2β1Ψ
3N3β2L2
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+2 k2β1Ψ
3N3β2Lθln + k2β1Ψ

3N3β2θln
2 + 2 Ψ2k2θnl

2β2Lθln

+2 Ψ k2θnl
2µ2Lθln + Ψ k2θnl

2µ2θln
2 + Ψ2k2θnl

2β2L2

+Ψ2k2θnl
2β2θln

2 − 2 ζ k2L2Nθnl

)/(
(2 β2Ψ Nθnlθln

2

+2 β2Ψ θnl
2Lθln + 2 µ2N2Lθln + 2 µ2NθnlL2 + β1Ψ

2β2θnl
2L2

+2 β1Ψ
2β2θnl

2Lθln + β1Ψ
2β2θnl

2θln
2 + 2 β1Ψ

2β2NθnlL2

+4 β1Ψ
2β2NθnlLθln + 2 β1Ψ

2β2Nθnlθln
2 + 2 β1Ψ µ2NθnlL2

+4 β1Ψ µ2NθnlLθln + 2 β1Ψ µ2Nθnlθln
2 + β2Ψ N2L2 + β2Ψ N2θln

2

+β2Ψ θnl
2L2 + β2Ψ θnl

2θln
2 + µ2N2θln

2 + µ2N2L2 + µ2θnl
2L2

+β1Ψ µ2θnl
2L2 + 2 β1Ψ µ2θnl

2Lθln + β1Ψ µ2θnl
2θln

2

−λnlθnlλlnθln + β1Ψ
2β2N2L2 + 2 β1Ψ

2β2N2Lθln + β1Ψ
2β2N2θln

2

+4 µ2NθnlLθln + 2 µ2Nθnlθln
2 + 2 µ2θnl

2Lθln + µ2θnl
2θln

2

+2 β2Ψ N2Lθln + 2 β2Ψ NθnlL2 + 4 β2Ψ NθnlLθln

+β1Ψ µ2N2L2 + 2 β1Ψ µ2N2Lθln + β1Ψ µ2N2θln
2)(k2 + Nk2 + L)2

)
, u3 = 1.
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